首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tobacco chloroplast tRNAs have been purified by two-dimensional polyacrylamide gel electrophoresis, identified by aminoacylation, labelled at their 3-end and hybridized to tobacco chloroplast DNA restriction fragments, in order to establish a tRNA gene map. These hybridization studies have revealed the localization of at least seven genes in each inverted repeat region, a minimum of 22 tRNA genes in the large single copy region and one tRNA gene in the small single copy region. Comparison of the tobacco chloroplast tRNA gene map to that of maize shows many similarities, but also some differences suggesting that DNA sequence rearrangements have occurred in the chloroplast genome during evolution.  相似文献   

2.
3.
Construction of a physical map of the chloroplast DNA from Phaseolus vulgaris showed that this circular molecule is segmentally organized into four regions. Unlike other chloroplast DNAs which have analogous organization, two single-copy regions that separate two inverted repeats have been demonstrated to exist in both relative orientations, giving rise to two populations of DNA molecules.Hybridization studies using individual rRNA and tRNA species revealed the location of a set of rRNA genes and at least seven tRNA genes in each inverted repeat region, a minimum of 17 tRNA genes in the large single-copy region and one tRNA gene in the small single-copy region. The tRNA genes code for 24 tRNA species corresponding to 16 amino acids. Comparison of this gene map with those of other chloroplast DNAs suggests that DNA sequence rearrangements, involving some tRNA genes, have occurred.  相似文献   

4.
Complete structure of the chloroplast genome of a legume, Lotus japonicus.   总被引:4,自引:0,他引:4  
The nucleotide sequence of the entire chloroplast genome (150,519 bp) of a legume, Lotus japonicus, has been determined. The circular double-stranded DNA contains a pair of inverted repeats of 25,156 bp which are separated by a small and a large single copy region of 18,271 bp and 81,936 bp, respectively. A total of 84 predicted protein-coding genes including 7 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acids species were assigned on the genome based on similarity to genes previously identified in other chloroplasts. All the predicted genes were conserved among dicot plants except that rpl22, a gene encoding chloroplast ribosomal protein CL22, was missing in L. japonicus. Inversion of a 51-kb segment spanning rbcL to rpsl6 (positions 5161-56,176) in the large single copy region was observed in the chloroplast genome of L. japonicus. The sequence data and gene information are available on our World Wide Web database at http://www.kazusa.or.jp/en/plant/database.html.  相似文献   

5.
Summary By homogenizing rice leaves in liquid nitrogen, it was possible to isolate intact chloroplasts and, subsequently, pure rice chloroplast DNA from the purified chloroplasts. The DNA was digested by several restriction enzymes and fragments were fractionated by agarose gel electrophoresis. The sum of the fragment sizes generated by the restriction enzymes showed that the total length of the DNA is 130 kb. A circular physical map of fragments, generated by digestion with SalI, PstI, and PvuII, has been constructed. The circular DNA contains two inverted repeats of about 20 kb separated by a large, single copy region of about 75 kb and a short, single copy region of about 15 kb. The location of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase (Fraction I protein) and the 32 KD photosystem II reaction center gene were determined by using as probes tobacco chloroplast DNAs containing these genes. Rice chloroplast DNA differs from chloroplast DNAs of wheat and corn as well as from dicot chloroplast DNAs by having the 32 KD gene located 20 kb removed from the end of an inverted repeat instead of close to the end, as in other plants.  相似文献   

6.
Unusual chloroplast transformants of Chlamydomonas reinhardtii that contain 2000 copies of a mutant version of the chloroplast atpB gene, maintained as an extrachromosomal tandem repeat, have recently been described. In this paper studies have been undertaken to (i) address possible mechanisms for generating and maintaining the amplified DNA and (ii) determine whether it is possible to use chloroplast gene amplification to overexpress chloroplast or foreign genes. Data presented here indicate that high copy number transformants harbor characteristic rearrangements in both copies of the chloroplast genome large inverted repeat. These rearrangements appear to be a consequence of, or required for, maintenance of the amplified DNA. In an attempt to mimic the apparently autonomous replication of extrachromosomal DNA in the chloroplast, transformation was carried out with a plasmid that lacked homology with the chloroplast genome or with the same plasmid carrying a putative chloroplast DNA replication origin ( oriA ). Transformants were recovered only with the plasmid containing oriA , and all transformants contained an integrated plasmid copy at oriA , suggesting that establishment or maintenance of the extrachromosomal tandem repeat requires conditions that were not replicated in this experiment. To determine whether other genes could be maintained at high copy number in the chloroplast, plasmids carrying the wild-type atpB gene or the bacterial aadA gene were introduced into a high copy number transformant. Surprisingly, the copy number of the plasmid tandem repeat declined rapidly after the secondary transformation events, even when strong selective pressure for the introduced gene was applied. Thus, chloroplast transformation can either create or destabilize high copy number tandem repeats.  相似文献   

7.
8.
The nucleotide sequence of Korean ginseng (Panax schinseng Nees) chloroplast genome has been completed (AY582139). The circular double-stranded DNA, which consists of 156,318 bp, contains a pair of inverted repeat regions (IRa and IRb) with 26,071 bp each, which are separated by small and large single copy regions of 86,106 bp and 18,070 bp, respectively. The inverted repeat region is further extended into a large single copy region which includes the 5' parts of the rpsl9 gene. Four short inversions associated with short palindromic sequences that form stem-loop structures were also observed in the chloroplast genome of P. schinseng compared to that of Nicotiana tabacum. The genome content and the relative positions of 114 genes (75 peptide-encoding genes, 30 tRNA genes, 4 rRNA genes, and 5 conserved open reading frames [ycfs]), however, are identical with the chloroplast DNA of N. tabacum. Sixteen genes contain one intron while two genes have two introns. Of these introns, only one (trnL-UAA) belongs to the self-splicing group I; all remaining introns have the characteristics of six domains belonging to group II. Eighteen simple sequence repeats have been identified from the chloroplast genome of Korean ginseng. Several of these SSR loci show infra-specific variations. A detailed comparison of 17 known completed chloroplast genomes from the vascular plants allowed the identification of evolutionary modes of coding segments and intron sequences, as well as the evaluation of the phylogenetic utilities of chloroplast genes. Furthermore, through the detailed comparisons of several chloroplast genomes, evolutionary hotspots predominated by the inversion end points, indel mutation events, and high frequencies of base substitutions were identified. Large-sized indels were often associated with direct repeats at the end of the sequences facilitating intra-molecular recombination.  相似文献   

9.
Complete sequence of Euglena gracilis chloroplast DNA.   总被引:20,自引:4,他引:16       下载免费PDF全文
We report the complete DNA sequence of the Euglena gracilis, Pringsheim strain Z chloroplast genome. This circular DNA is 143,170 bp, counting only one copy of a 54 bp tandem repeat sequence that is present in variable copy number within a single culture. The overall organization of the genome involves a tandem array of three complete and one partial ribosomal RNA operons, and a large single copy region. There are genes for the 16S, 5S, and 23S rRNAs of the 70S chloroplast ribosomes, 27 different tRNA species, 21 ribosomal proteins plus the gene for elongation factor EF-Tu, three RNA polymerase subunits, and 27 known photosynthesis-related polypeptides. Several putative genes of unknown function have also been identified, including five within large introns, and five with amino acid sequence similarity to genes in other organisms. This genome contains at least 149 introns. There are 72 individual group II introns, 46 individual group III introns, 10 group II introns and 18 group III introns that are components of twintrons (introns-within-introns), and three additional introns suspected to be twintrons composed of multiple group II and/or group III introns, but not yet characterized. At least 54,804 bp, or 38.3% of the total DNA content is represented by introns.  相似文献   

10.
A rapid and simple method for constructing restriction maps of large DNAs (100-200 kb) is presented. The utility of this method is illustrated by mapping the Sal I, Sac I, and Hpa I sites of the 152 kb Atriplex triangularis chloroplast genome, and the Sal I and Pvu II sites of the 155 kb Cucumis sativa chloroplast genome. These two chloroplast DNAs are very similar in organization; both feature the near-universal chloroplast DNA inverted repeat sequence of 22-25 kb. The positions of four different genes have been localized on these chloroplast DNAs. In both genomes the 16S and 23S ribosomal RNAs are encoded by duplicate genes situated at one end of the inverted repeat, while genes for the large subunit of ribulose-1,5-bisphosphate carboxylase and a 32 kilodalton photosystem II polypeptide are separated by 55 kb of DNA within the large single copy region. The physical and genetic organization of these DNAs is compared to that of spinach chloroplast DNA.  相似文献   

11.
Actinidia chinensis is an important economic plant belonging to the basal lineage of the asterids. Availability of a complete Actinidia chloroplast genome sequence is crucial to understanding phylogenetic relationships among major lineages of angiosperms and facilitates kiwifruit genetic improvement. We report here the complete nucleotide sequences of the chloroplast genomes for Actinidia chinensis and A. chinensis var deliciosa obtained through de novo assembly of Illumina paired-end reads produced by total DNA sequencing. The total genome size ranges from 155,446 to 157,557 bp, with an inverted repeat (IR) of 24,013 to 24,391 bp, a large single copy region (LSC) of 87,984 to 88,337 bp and a small single copy region (SSC) of 20,332 to 20,336 bp. The genome encodes 113 different genes, including 79 unique protein-coding genes, 30 tRNA genes and 4 ribosomal RNA genes, with 16 duplicated in the inverted repeats, and a tRNA gene (trnfM-CAU) duplicated once in the LSC region. Comparisons of IR boundaries among four asterid species showed that IR/LSC borders were extended into the 5portion of the psbA gene and IR contraction occurred in Actinidia. The clap gene has been lost from the chloroplast genome in Actinidia, and may have been transferred to the nucleus during chloroplast evolution. Twenty-seven polymorphic simple sequence repeat (SSR) loci were identified in the Actinidia chloroplast genome. Maximum parsimony analyses of a 72-gene, 16 taxa angiosperm dataset strongly support the placement of Actinidiaceae in Ericales within the basal asterids.  相似文献   

12.
Chloroplast genome organization, gene order, and content are highly conserved among land plants. We sequenced the chloroplast genome of Trachelium caeruleum L. (Campanulaceae), a member of an angiosperm family known for highly rearranged genomes. The total genome size is 162,321 bp, with an inverted repeat (IR) of 27,273 bp, large single-copy (LSC) region of 100,114 bp, and small single-copy (SSC) region of 7,661 bp. The genome encodes 112 different genes, with 17 duplicated in the IR, a tRNA gene (trnI-cau) duplicated once in the LSC region, and a protein-coding gene (psbJ) with two duplicate copies, for a total of 132 putatively intact genes. ndhK may be a pseudogene with internal stop codons, and clpP, ycf1, and ycf2 are so highly diverged that they also may be pseudogenes. ycf15, rpl23, infA, and accD are truncated and likely nonfunctional. The most conspicuous feature of the Trachelium genome is the presence of 18 internally unrearranged blocks of genes inverted or relocated within the genome relative to the ancestral gene order of angiosperm chloroplast genomes. Recombination between repeats or tRNA genes has been suggested as a mechanism of chloroplast genome rearrangements. The Trachelium chloroplast genome shares with Pelargonium and Jasminum both a higher number of repeats and larger repeated sequences in comparison to eight other angiosperm chloroplast genomes, and these are concentrated near rearrangement endpoints. Genes for tRNAs occur at many but not all inversion endpoints, so some combination of repeats and tRNA genes may have mediated these rearrangements.  相似文献   

13.
We determined the complete nucleotide sequence of the chloroplast genome of the leptosporangiate fern, Adiantum capillus-veneris L. (Pteridaceae). The circular genome is 150,568 bp, with a large single-copy region (LSC) of 82,282 bp, a small-single copy region (SSC) of 21,392 bp and inverted repeats (IR) of 23,447 bp each. We compared the sequence to other published chloroplast genomes to infer the location of putative genes. When the IR is considered only once, we assigned 118 genes, of which 85 encode proteins, 29 encode tRNAs and 4 encode rRNAs. Four protein-coding genes, all four rRNA genes and six tRNA genes occur in the IR. Most (57) putative protein-coding genes appear to start with an ATG codon, but we also detected five other possible start codons, some of which suggest tRNA editing. We also found 26 apparent stop codons in 18 putative genes, also suggestive of RNA editing. We found all but one of the tRNA genes necessary to encode the complete repertoire required for translation. The missing trnK gene appears to have been disrupted by a large inversion, relative to other published chloroplast genomes. We detected several structural rearrangements that may provide useful information for phylogenetic studies.  相似文献   

14.
This work describes the organization, at the nucleotide sequence level, of genes flanking the junctions of the large single copy regions and the inverted repeats of Spinacia oleracea (spinach) and Nicotiana debneyi chloroplast DNAs. In both genomes, trnH1, the gene for tRNA-His(GUG) is located at the extremity of the large single copy region 3' to psbA, the gene for the 35 kd Photosystem 2 protein. Both psbA and trnH1 are transcribed towards the inverted repeat. In spinach, the first 48 codons of rps19, the gene for the chloroplast ribosomal protein S19, lie in the inverted repeat and the last 44 codons lie in the large single copy region at the end opposite to that carrying trnH1. The gene for a protein homologous to the E. coli ribosomal protein L2, rp12, is in the inverted repeat immediately 5' to rps19 and, like rps19, is transcribed towards the large single copy region. In N. debneyi, but not in spinach, rp12 is interrupted by a 666 bp insertion. The gene for tRNA-lle(CAT), trnl1, is located in the inverted repeats of spinach and N. debneyi, 5' to rp12 and is transcribed in the same direction as rp12.  相似文献   

15.
Complete structure of the chloroplast genome of Arabidopsis thaliana.   总被引:7,自引:0,他引:7  
The complete nucleotide sequence of the chloroplast genome of Arabidopsis thaliana has been determined. The genome as a circular DNA composed of 154,478 bp containing a pair of inverted repeats of 26,264 bp, which are separated by small and large single copy regions of 17,780 bp and 84,170 bp, respectively. A total of 87 potential protein-coding genes including 8 genes duplicated in the inverted repeat regions, 4 ribosomal RNA genes and 37 tRNA genes (30 gene species) representing 20 amino acid species were assigned to the genome on the basis of similarity to the chloroplast genes previously reported for other species. The translated amino acid sequences from respective potential protein-coding genes showed 63.9% to 100% sequence similarity to those of the corresponding genes in the chloroplast genome of Nicotiana tabacum, indicating the occurrence of significant diversity in the chloroplast genes between two dicot plants. The sequence data and gene information are available on the World Wide Web database KAOS (Kazusa Arabidopsis data Opening Site) at http://www.kazusa.or.jp/arabi/.  相似文献   

16.
We characterized the genes in the regions of large inverted repeats (IRA and IRB, 10,058 base-pairs each) and a small single copy (SSC 19,813 bp) of chloroplast DNA from Marchantia polymorpha. The inverted repeat (IR) regions contain genes for four ribosomal RNAs (16 S, 23 S, 4.5 S and 5 S rRNAs) and five transfer RNAs (valine tRNA(GAC), isoleucine tRNA(GAU), alanine tRNA(UGC), arginine tRNA(ACG) and asparagine tRNA(GUU)). The gene organization of the IR regions in the liverwort chloroplast genome is conserved, although the IR regions are smaller (10,058 base-pairs) than any reported in higher plant chloroplasts. The small single-copy region (19,813 base-pairs) encoded genes for 17 open reading frames, a leucine tRNA(UAG) and a proline tRNA(GGG)-like sequence. We identified 12 open reading frames by homology of their coding sequences to a 4Fe-4S-type ferredoxin protein, a bacterial nitrogenase reductase component (Fe-protein), five human mitochondrial components of NADH dehydrogenase (ND1, ND4, ND4L, ND5 and ND6), two Escherichia coli ribosomal proteins (S15 and L21), two putative proteins encoded in the kinetoplast maxicircle DNA of Leishmania tarentolae (LtORF 3 and LtORF 4), and a bacterial permease inner membrane component (encoded by malF in E. coli or hisQ in Salmonella typhimurium).  相似文献   

17.
Chung HJ  Jung JD  Park HW  Kim JH  Cha HW  Min SR  Jeong WJ  Liu JR 《Plant cell reports》2006,25(12):1369-1379
The complete nucleotide sequence of the chloroplast genome of potato Solanum tuberosum L. cv. Desiree was determined. The circular double-stranded DNA, which consists of 155,312 bp, contains a pair of inverted repeat regions (IRa, IRb) of 25,595 bp each. The inverted repeat regions are separated by small and large single copy regions of 18,373 and 85,749 bp, respectively. The genome contains 79 proteins, 30 tRNAs, 4 rRNAs, and unidentified genes. A comparison of chloroplast genomes of seven Solanaceae species revealed that the gene content and their relative positions of S. tuberosum are similar to the other six Solanaceae species. However, undefined open reading frames (ORFs) in LSC region were highly diverged in Solanaceae species except N. sylvestris. Detailed comparison was identified by numerous indels in the intergenic regions that were mostly located in the LSC region. Among them, a single large 241-bp deletion, was not associated with direct repeats and found in only S. tuberosum, clearly discriminates a cultivated potato from wild potato species Solanum bulbocastanum. The extent of sequence divergence may provide the basis for evaluating genetic diversity within the Solanaceae species, and will be useful to examine the evolutionary processes in potato landraces.  相似文献   

18.
Summary The 4S RNA of cyanelles from Cyanophora paradoxa strain LB 555 UTEX was fractionated by two-dimensional gel electrophoresis. Individual tRNA species were identified by aminoacylation, labeled in vitro and hybridized to restriction endonuclease fragments of cyanelle DNA. Hybridization experiments, using individual tRNA species, have revealed the location of two tRNA genes, coding for tRNAAla and tRNAIle, in each of the two spacer segments separating the 16S and 23S rRNA genes on the two inverted repeats (10 kbp each) and three tRNA genes in the small single-copy region (17 kbp) separating the two inverted repeats. A minimum of 14 tRNA genes in the large single-copy region (88.5 kbp) has also been found.Heterologous hybridization studies, using cyanelle tRNAs and chloroplast DNA from spinach, broad bean, or maize, indicate a high degree of homology between some tRNAs from cyanelles and chloroplasts.Although cyanelles are often condisered as having evolved from endosymbiotic cyanobacteria, the organization of tRNA genes on cyanelle DNA and the results of heterologous hybridization studies show that cyanelles are related to higher plant chloroplasts.  相似文献   

19.
We determined the complete nucleotide sequence of the chloroplast genome of Selaginella uncinata, a lycophyte belonging to the basal lineage of the vascular plants. The circular double-stranded DNA is 144,170 bp, with an inverted repeat of 25,578 bp separated by a large single copy region (LSC) of 77,706 bp and a small single copy region (SSC) of 40,886 bp. We assigned 81 protein-coding genes including four pseudogenes, four rRNA genes and only 12 tRNA genes. Four genes, rps15, rps16, rpl32 and ycf10, found in most chloroplast genomes in land plants were not present in S. uncinata. While gene order and arrangement of the chloroplast genome of another lycophyte, Hupertzia lucidula, are almost the same as those of bryophytes, those of S. uncinata differ considerably from the typical structure of bryophytes with respect to the presence of a unique 20 kb inversion within the LSC, transposition of two segments from the LSC to the SSC and many gene losses. Thus, the organization of the S. uncinata chloroplast genome provides a new insight into the evolution of lycophytes, which were separated from euphyllophytes approximately 400 million years ago. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
The complete chloroplast genome of Chionographis japonica (Willd.) Maxim. (Melanthiaceae, Liliales) was mapped using polymerase chain reaction and the Sanger method. The circular double-stranded DNA was a typical quadripartite structure consisting of two inverted repeated regions (27,397 bp), a small single copy region (18,205 bp), and a large single-copy region (81,646 bp), with a total length of 154,645 bp. The genome consisted of 137 coding genes, including 91 protein-coding genes, 38 distinct tRNA, and 8 rRNA genes. The ycf15 and ycf68 genes had several internal stop codons interpreted as pseudogenes. The inverted repeat (IR) region expanded to part of the rps3 gene in the junction between large single-copy and IRA regions in C. japonica. We designed 785 primers, of which 481 were used to map the entire chloroplast genome of C. japonica. Primers were compared with the complete chloroplast sequence of Smilax china (Smilacaceae) to identify primers that could be used for other Liliales members and whole chloroplast genome sequencing. Of the primers used for C. japonica, 398 could be used with other smaller species within the order.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号