首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
Wild-type Streptomyces lividans produced the three xylanases (XlnA, XlnB, and XlnC) when xylan, xylan hydrolysates obtained by the action of XlnA, XlnB, and XlnC, or purified small xylo-oligosaccharides (xylobiose [X2], xylotriose [X3], xylotetraose [X4], and xylopentaose [X5]) were used as the carbon source. The three xylanase genes of S. lividans (xlnA, xlnB, and xlnC) were disrupted by using vectors that integrate into the respective genes. Disruption of one or more of the xln genes resulted in reduced growth rates and reduced total xylanase activities when the strain was grown in xylan. The greatest effect was observed when xlnA was disrupted. In medium containing xylan, disruption of xlnA did not affect expression of xlnB and xlnC; disruption of xlnB did not affect expression of xlnA but affected expression of xlnC; and disruption of xlnC did not affect expression of xlnA but affected expression of xlnB. A fraction of XlnB or XlnC hydrolytic products (those with a degree of polymerization greater than 11 [X11]) was found to stimulate expression of xlnB and xlnC in strains disrupted in xlnC and xlnB, respectively, whereas lower-molecular-weight fractions as well as purified small xylo-oligosaccharides did not. The stimulating molecule(s) lost its effect when it was hydrolyzed further by XlnA. A mechanism of transglycosylation reactions by the S. lividans xylanases is postulated to be involved in the regulation of xln genes.  相似文献   

3.
4.
5.
6.
Plant expression signals of the Agrobacterium T-cyt gene.   总被引:6,自引:1,他引:5       下载免费PDF全文
Within the 5' and 3' non-coding regions of the T-cyt gene from the octopine T-DNA of Agrobacterium tumefaciens sequences required for expression of this gene in plant cells were identified by deletion mutagenesis. The results show that 184 bp of the 5' non-coding region and 270 bp of the 3' non-coding region are sufficient for wild-type expression. Within the 5' non-coding region two essential expression signals were identified: (1.) an activator element located between -185 and -129 with respect to the ATG start codon and (2.) one out of two TATA boxes. Deletions of the activator element or the two TATA boxes resulted in nonfunctional genes. Deletion of the upstream TATA box and both putative CAAT boxes did not significantly affect expression. Within the 3' non-coding region, the polyadenylation box most distal to the stop codon was not essential for expression, but sequences more upstream, including a second polyadenylation box were found to be required for wild-type expression.  相似文献   

7.
8.
A deletion analysis of the Arabidopsis thaliana rbcS-1A promoter defined a 196 bp region (-320 to -125) sufficient to confer light-regulated expression on a heterologous Arabidopsis alcohol dehydrogenase (Adh) reporter gene in transgenic Nicotiana tabacum (tobacco) leaves. This region, which contains DNA sequences I, G and GT boxes, with homology to other ribulose-1,5-bisphosphate carboxylase small subunit (RBCS) gene promoter sequences, directed expression independent of orientation and relative position in the Adh promoter. Site-specific mutagenesis of these conserved sequences and subsequent expression analysis in transgenic tobacco showed that both G box and I box mutations in the context of the full (-1700 to +21) rbcS-1A promoter substantially reduced the expression of Adh and beta-glucuronidase (GUS) reporter genes. The G box has previously been shown to specifically bind in vitro a factor isolated from nuclear extracts of tomato and Arabidopsis. This factor (GBF) is distinct from the factor GT-1 which binds to adjacent GT boxes in the pea rbcS-3A promoter. Multiple mutations in putative Arabidopsis rbcS-1A promoter GT boxes had no pronounced affect on expression, possibly due to a redundancy of these sites. Experiments in which rbcS-1A promoter fragments were fused to truncated 35S CaMV (cauliflower mosaic virus) promoter--GUS reporter constructs showed that cis-acting CaMV promoter elements could partially restore expression to G-box-mutated rbcS-1A sequences.  相似文献   

9.
10.
An approximately 4.9 kb Sau3A I genomic DNA fragment from the Streptomyces aureofaciens NRRL 2209 aiding in the biosynthesis of PHB in recombinant Escherichia coli has been sequenced and analysed for phaC gene. The putative phaC(Sa) gene of 2 kb is 79.1% GC rich and encodes a 63.5 kDa protein. It expressed under its own promoter and significant PHA synthase activity was detected in the recombinant E. coli. This is the first putative PHA synthase gene reported from a Streptomyces sp. with serine as the active nucleophile in the conserved lipase box. The phaC(Sa) was found in close proximity to a regulatory gene, which apparently regulated the phaC expression.  相似文献   

11.
12.
13.
Sequence analysis of a functional member of the Em gene family from wheat.   总被引:5,自引:0,他引:5  
We report the complete sequence of one functional member of the Em gene family whose expression in wheat embryos is regulated by a complex set of environmental and developmental controls, including the phytohormone abscisic acid (ABA). The Em coding region contains one short intron, and there is an inverted repeat in the transcribed 3'-flanking region. A 646 bp fragment from the 5' promoter, which was previously shown to direct ABA-regulated expression in transformed tobacco tissue and rice cells, is characterized by: (1) three stretches of between 33 and 73 nucleotides of A/T rich (greater than 86%) boxes, (2) one copy of an eight bp palindrome (CATGCATG) which is identical to the RY repeat found in the 5' promoters of many legume genes expressed during embryo development, (3) 15 copies of a six bp repeat (PuCACGPy), found primarily in the 5' region, and (4) two sequences in the ABA-response region, CGAGCAG and a CACGT motif, both of which are conserved in 5' non-coding regions of other plant genes that are expressed in response to ABA and/or in embryos. These sequence comparisons are discussed in relation to the regulation of Em gene expression and other ABA-regulated genes.  相似文献   

14.
15.
16.
17.
18.
19.
20.
Luan R  Liang Y  Chen Y  Liu H  Jiang S  Che T  Wong B  Sun H 《Fungal biology》2010,114(8):599-608
Mycelia of basidiomycetes differentiating into fruiting body is a controlled developmental process, however the underlying molecular mechanism remains unknown. In previous work, a novel fungal Agrocybe aegerita galectin (AAL) was isolated from A. aegerita in our laboratory. AAL was shown to promote mycelial differentiation in A. aegerita and Auricularia polytricha, indicating that AAL might function as a conserved fruiting initiator during basidiomycete mycelia development. In the current work, we investigate the role of AAL in mycelia differentiation and fruiting body formation. First, the expression and localization of AAL in mycelia, primordium and fruiting body were assessed by Western blotting and immunohistochemistry. AAL was found to be ubiquitously expressed in the primordium and fruiting body but not in the mycelia. AAL facilitated mycelia congregation and promoted fruiting body production when AAL was applied on mycelia. At the same time, when AAL was spread on potato dextrose agar (PDA) medium prior to mycelia inoculation, mycelia exhibited slowed growth rates, resulting in mycelia cords formation and inhibition of fruiting body formation. The 5' regulatory sequence of aal was cloned by 'genome walking'. Here, we show that aal lack introns in the coding region and the upstream 740 bp sequence was characterized by the existence of core promoter elements, which included: two CCAAT boxes (-535/-280), a GC box (-145), a TATA box (-30) and a fungal leader intron within the 5' UTR. The identification of regulatory expression elements may provide an explanation to the stage-specific and high-level expression of aal during fruiting development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号