首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
The aim of the present work was to use GastroPlus™ software for the prediction of pharmacokinetic profiles and in vitroin vivo correlation (IVIVC) as tools to optimize the development of new generic medications. GastroPlus™ was used to simulate the gastrointestinal compartment and was based on the advanced compartmental absorption and transit model. Powder dissolution and efavirenz tablet dissolution studies were carried out to generate data from which correlation was established. The simulated plasma profile, based on the physicochemical properties of efavirenz, was almost identical to that observed in vivo for biobatches A and B. A level A IVIVC was established for the dissolution method obtained for the generic candidate using the Wagner–Nelson (r2 = 0.85) and for Loo–Riegelman models (r2 = 0.92). The percentage of fraction absorbed indicated that 0.5% sodium lauryl sulfate may be considered a biorelevant dissolution medium for efavirenz tablets. The simulation of gastrointestinal bioavailability and IVIVC obtained from immediate-release tablet formulations suggests that GastroPlus™ is a valuable in silico method for IVIVC and for studies directed at developing formulations of class II drugs.KEY WORDS: bioavailability, computational simulation, efavirenz, GastroPlus™, in vivo–in vitro correlation  相似文献   

2.
Trimetazidine dihydrochloride is an effective anti-anginal agent; however, it is freely soluble in water and suffers from a relatively short half-life. To solve this encumbrance, it is a prospective candidate for fabricating trimetazidine extended-release formulations. Trimetazidine extended-release floating tablets were prepared using different hydrophilic matrix forming polymers including HPMC 4000 cps, carbopol 971P, polycarbophil, and guar gum. The tablets were fabricated by dry coating technique. In vitro evaluation of the prepared tablets was performed by the determination of the hardness, friability, content uniformity, and weight variation. The floating lag time and floating duration were also evaluated. Release profile of the prepared tablets was performed and analyzed. Furthermore, a stability study of the floating tablets was carried out at three different temperatures over 12 weeks. Finally, in vivo bioavailability study was done on human volunteers. All tablet formulas achieved <0.5 min of floating lag time, more than 12 h of floating duration, and extended t 1/2. The drug release in all formulas followed zero-order kinetics. T4 and T8 tablets contained the least polymer concentration and complied with the dissolution requirements for controlled-release dosage forms. These two formulas were selected for further stability studies. T8 exhibited longer expiration date and was chosen for in vivo studies. T8 floating tablets showed an improvement in the drug bioavailability compared to immediate-release tablets (Vastrel® 20 mg).  相似文献   

3.
In the sublingual (SL) cavity, compared with the gastrointestinal tract, tablets are subjected to minimal physiological agitation, and a limited volume of saliva is available to facilitate disintegration and dissolution. None of the official compendial dissolution apparatuses and methods simulate these SL conditions. In this study, a custom-made dissolution apparatus was constructed, and a novel in vitro method that simulates SL conditions was evaluated. Several epinephrine 40 mg SL tablet formulations under development and two commercial SL tablets, isosorbide dinitrate 5 mg and nitroglycerin 0.6 mg, were studied. The dissolution medium was 2 mL of distilled water at 25°C. Dissolution was measured at 60 and 120 s. The novel in vitro method was validated for accuracy, reproducibility, and discrimination capability, and was compared with the official US Pharmacopeia (USP) dissolution method using apparatus 2 (Paddle). The data obtained following the novel in vitro method were accurate and reproducible. This method was capable of detecting minor changes in SL formulations that could not be detected using other in vitro tests. Results from the official USP dissolution method and our novel in vitro method were significantly different (p < 0.05). Results reflecting the dissolution of rapidly disintegrating tablets using simulated SL conditions were obtained using the novel in vitro dissolution method.  相似文献   

4.
The major concern with the use of some synthetic excipients is their safety towards biological tissues, hence influencing the reliability of products. With the aim to minimize dependency on highly toxic synthetic excipients, the present study was designed to deliver metronidazole (MNZ) into the colonic region for localized treatment of amoebiasis using natural polysaccharide-based drug delivery. Compression-coated tablets were prepared using water extractable natural polysaccharide from Trigonella foenum-graecum (FG). Physical properties of the tablets were evaluated and dissolution study was performed at pH 1.2, 6.8, and 7.4 with rat cecal material. Results indicate that all batches demonstrated pH-dependent drug release and prevented release into the stomach, allowing traces into the intestine and highest availability into the colon. A significant correlation (r2?=?0.975) was found between the coating levels of extracted polysaccharide and lag time release of drug. Gamma scintigraphy images of in vivo study conducted on human volunteers showed a small intestinal transit time, i.e., 3–5 (4.2?±?0.4) h and confirmed that the tablets reached the colon within 6–8 h. The present study revealed that the FG polysaccharide-based double compression tablets may be promising colon-specific drug carriers with reduced toxic effects of commonly used synthetic excipients.  相似文献   

5.
The present study was aimed to predict the absorption profile of a risperidone immediate release tablet (IR) and to develop the level A in vitroin vivo correlation (IVIVC) of the drug using the gastrointestinal simulation based on the advanced compartmental absorption and transit model implemented in GastroPlus™. Plasma concentration data, physicochemical, and pharmacokinetic properties of the drug were used in building its absorption profile in the gastrointestinal tract. Since the fraction absorbed of risperidone in simulation was more than 90% with low water solubility, the drug met the criteria of class II of the Biopharmaceutics Classification System. The IVIVC was developed based on the model built using the plasma data and the in vitro dissolution data in several dissolution media based on the Japanese Guideline for Bioequivalence Studies of Generic Products. The gastrointestinal absorption profile of risperidone was successfully predicted. A level A IVIVC was also successfully developed in all dissolution media with percent prediction error for Cmax and the area under the curve less than 10% for both reference and test drug.Key words: GastroPlus™, immediate release tablet, in vitroin vivo correlation, risperidone  相似文献   

6.
A dissolution test for tablets containing 40 mg of olmesartan medoxomil (OLM) was developed and validated using both LC-UV and UV methods. After evaluation of the sink condition, dissolution medium, and stability of the drug, the method was validated using USP apparatus 2, 50 rpm rotation speed, and 900 ml of deaerated H2O + 0.5% sodium lauryl sulfate (w/v) at pH 6.8 (adjusted with 18% phosphoric acid) as the dissolution medium. The model-independent method using difference factor (f 1) and similarity factor (f 2), model-dependent method, and dissolution efficiency were employed to compare dissolution profiles. The kinetic parameters of drug release were also investigated. The obtained results provided adequate dissolution profiles. The developed dissolution test was validated according to international guidelines. Since there is no monograph for this drug in tablets, the dissolution method presented here can be used as a quality control test for OLM in this dosage form, especially in a batch to batch evaluation.  相似文献   

7.
This study described a pH-gradient dissolution method combined with flux measurements as an in vitro tool for assessing the risk of bioavailability reduction due to drug-drug interactions (DDI) caused by acid reducing agents (ARAs). The device incorporates absorption chambers into USP II dissolution vessels, with fiber optic UV-probes monitoring concentration in situ. Dosage forms of Genentech BCS class II drugs, GDC-0810, GDC-0941, and compound A, were tested by starting the dissolution in either pH 1.6 or pH 4.0 media then converting to FaSSIF after 30 min. GDC-0810 showed no significant difference in flux between the two conversion experiments. A supersaturation phase was observed for GDC-0941 in the pH 1.6 experiments after media conversion to FaSSIF; however, it did not appear to occur in the pH 4.0 experiment due to low drug solubility at pH 4.0, resulting in a 95% decrease in flux compared to pH 1.6 experiment. The extent of flux reduction and the total accumulated API mass in the absorption chamber agreed well with the 89% reduction in mean Cmax and the 82% reduction in mean AUC from dog PK study between animals treated with pentagastrin and famotidine. Testing of the compound A optimized formulation tablets showed a 25% reduction in flux and in vitro absorbed amount by changing pH 1.6 to 4.0, correlating well with the AUC decrease in clinical studies. Good correlation between in vitro data and in vivo PK data demonstrated the applicability of the method for formulators to develop drug products mitigating DDI from ARAs.  相似文献   

8.
An investigation was made of the pharmaceutical properties and the in vitro dissolution rates of 18 commercially available brands of tolbutamide tablets, all of which met the limits set by the Food and Drug Regulations for tablets sold in Canada.A marked variation in dissolution rates was found, which bore no relation to the official disintegration time. These wide variations in dissolution rate point to a need for (a) a comprehensive study of the in vivo effects of different tolbutamide tablets, and (b) an official test that sets limits for the rate of dissolution of tolbutamide tablets, in addition to the one that places limits on disintegration time.  相似文献   

9.
The aim of the present work is to answer the question is it possible to replace the ester prodrug candesartan cilexetil (CC) by its active metabolite candesartan (C) to bypass the in vivo variable effect of esterase enzymes. A comparative physicochemical evaluation was conducted through solubility, dissolution, and stability studies; additionally, ex vivo permeation and in vivo studies were assessed. C demonstrated higher solubility over CC at alkaline pH. Moreover, dissolution testing using the pharmacopeial method showed better release profile of C even in the absence of surfactant in the testing medium. Both drugs demonstrated a slight degradation in acidic pH after short-term stability. Instead, shifting to alkaline pH of 6.5 and 7.4 showed superiority of C solution stability compared to CC solution. The ex vivo permeation results demonstrated that the parent compound C has a significant (P < 0.05) enhanced permeation compared to its prodrug from CC, that agreed with in vivo results in which C suspension reached significantly (P < 0.05) higher C max of 1.39 ± 0.59 μg/mL at T max of 0.66 ± 0.11 h, while CC suspension reached C max of 0.47 ± 0.22 μg/mL at T max of 2.00 ± 0.27 h, a lag period of 40 min is needed prior to detection of any absorbed CC in plasma. Those findings are not in agreement with the previously reported rationale on the prodrug formation owing to the poor permeability of the parent compound, suggesting the possibility of marketing the parent drug candesartan for clinical use similarly to azilsartan and its prodrug.  相似文献   

10.
The aim of this study was to investigate the influence of experimental conditions on levothyroxine sodium release from two immediate-release tablet formulations which narrowly passed the standard requirements for bioequivalence studies. The in vivo study was conducted as randomised, single-dose, two-way cross-over pharmacokinetic study in 24 healthy subjects. The in vitro study was performed using various dissolution media, and obtained dissolution profiles were compared using the similarity factor value. Drug solubility in different media was also determined. The in vivo results showed narrowly passing bioequivalence. Considering that levothyroxine sodium is classified as Class III drug according to the Biopharmaceutics Classification System, drug bioavailability will be less sensitive to the variation in its dissolution characteristics and it can be assumed that the differences observed in vitro in some of investigated media probably do not have significant influence on the absorption process, as long as rapid and complete dissolution exists. The study results indicate that the current regulatory criteria for the value of similarity factor in comparative dissolution testing, as well as request for very rapid dissolution (more than 85% of drug dissolved in 15 min), are very restricted for immediate-release dosage forms containing highly soluble drug substance and need further investigation. The obtained results also add to the existing debate on the appropriateness of the current bioequivalence standards for levothyroxine sodium products.KEY WORDS: bioequivalence, dissolution, immediate release, levothyroxine sodium, solubility  相似文献   

11.
The purpose of this study was to develop taste-masked oral disintegrating tablets (ODTs) using the combination of ion exchange resin and cyclodextrin, to mask the bitter taste and enhance drug dissolution. Meloxicam (MX) was selected as a model drug with poor water solubility and a bitter taste. Formulations containing various forms of MX (free drug, MX-loaded resin or resinate, complexes of MX and 2-hydroxypropyl-β-cyclodextrin (HPβCD) or MX/HPβCD complexes, and a mixture of resinate and MX/HPβCD complexes) were made and tablets were prepared by direct compression. The ODTs were evaluated for weight variation, thickness, diameter, hardness, friability, disintegration time, wetting time, MX content, MX release, degree of bitter taste, and stability. The results showed that thickness, diameter, weight, and friability did not differ significantly for all of these formulations. The tablet hardness was approximately 3 kg/in.2, and the friability was less than 1%. Tablets formulated with resinate and the mixture of resinate and MX/HPβCD complexes disintegrated rapidly within 60 s, which is the acceptable limit for ODTs. These results corresponded to the in vivo disintegration and wetting times. However, only tablets containing the mixture of resinate and MX/HPβCD complexes provided complete MX dissolution and successfully masked the bitter taste of MX. In addition, this tablet was stable at least 6 months. The results from this study suggest that the appropriate combination of ion exchange resin and cyclodextrin could be used in ODTs to mask the bitter taste of drug and enhance the dissolution of drugs that are weakly soluble in water.  相似文献   

12.
Etodolac (ET) is a nonsteroidal anti-inflammatory drug with proved potential antitumor and uric acid lowering effects. It shows dissolution rate-dependent bioavailability. This work was carried out to improve the dissolution rate of etodolac using three carriers of known potential to improve solubility and hence dissolution rate of poorly soluble drugs through coevaporation technique. The polymeric surfactant inutec, 2-hydroxypropyl-β-cyclodextrin, and tromethamine were used at three different drug/carrier ratios. The dissolution rate of ET at pH 1.2 and 6.8 is improved in all of the solid dispersion systems compared to that of the pure drug and physical mixtures. DSC of coevaporates at 1:5 drug/carrier ratio providing the fastest dissolution rate suggested loss of ET crystallinity which was further confirmed by X-ray diffraction. Inutec-based coevaporate was chosen for the formulation of ET chewable tablets. Chewable tablets (F3) that met the USP monograph specifications for ET tablets, with 86% dissolved amount within 15 min, was chosen for in vivo absorption study in comparison with pure ET-filled hard gelatin capsules. The results showed significantly higher mean C max and shorter mean T max (about 2 h earlier) and about 1.32-fold higher mean AUC0–24 values for the F3 chewable tablets compared to ET-filled capsules.  相似文献   

13.
Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate.  相似文献   

14.
Khan FN  Dehghan MH 《AAPS PharmSciTech》2011,12(4):1077-1086
Oral bioavailability of atorvastatin calcium (ATC) is very low (only 14%) due to instability and incomplete intestinal absorption and/or extensive gut wall extraction. When ATC is packed in the form of tablets, powders, etc., it gets destabilized as it is exposed to the oxidative environment, which is usually present during the production process, the storage of the substance, and the pharmaceutical formulation. Therefore, stabilized gastro-retentive floating tablets of ATC were prepared to enhance bioavailability. Water sorption and viscosity measurement studies are performed to get the best polymer matrix for gastro-retention. A 32 factorial design used to prepare optimized formulation of ATC. The selected excipients such as docusate sodium enhanced the stability and solubility of ATC in gastric media and tablet dosage form. The best formulation (F4) consisting of hypromellose, sodium bicarbonate, polyethylene oxide, docusate sodium, mannitol, crosscarmellose sodium, and magnesium stearate, gave floating lag time of 56 ± 4.16 s and good matrix integrity with in vitro dissolution of 98.2% in 12 h. After stability studies, no significant change was observed in stability, solubility, floating lag time, total floating duration, matrix integrity, and sustained drug release rates, as confirmed by DSC and powder X-ray diffraction studies. In vivo pharmacokinetic study performed in rabbits revealed enhanced bioavailability of F4 floating tablets, about 1.6 times compared with that of the conventional tablet (Storvas® 80 mg tablet). These results suggest that the gastric resident formulation is a promising approach for the oral delivery of ATC for improving bioavailability.Key words: atorvastatin calcium, bioavailibility, floating tablets, gastro-retention, stabilization  相似文献   

15.
The aim of this study was to develop a drug-specific absorption model for gliclazide (GLK) using mechanistic gastrointestinal simulation technology (GIST) implemented in GastroPlusTM software package. A range of experimentally determined, in silico predicted or literature data were used as input parameters. Experimentally determined pH-solubility profile was used for all simulations. The human jejunum effective permeability (P eff) value was estimated on the basis of in vitro measured Caco-2 permeability (literature data). The required PK inputs were taken from the literature. The results of the simulations were compared with actual clinical data and revealed that the GIST-model gave accurate prediction of gliclazide oral absorption. The generated absorption model provided the target in vivo dissolution profile for in vitro–in vivo correlation and identification of biorelevant dissolution specification for GLK immediate-release (IR) tablets. A set of virtual in vitro data was used for correlation purposes. The obtained results suggest that dissolution specification of more than 85% GLK dissolved in 60 min may be considered as “biorelevant” dissolution acceptance criteria for GLK IR tablets.  相似文献   

16.
The purpose of the current study was to mask the taste of cetirizine HCl and to incorporate the granules produced in oral disintegrating tablets (ODT). The bitter, active substance was coated by fluidized bed coating using Eudragit® RL30-D at levels between 15% and 40% w/w. The ODTs were developed by varying the ratio of superdisintegrants such as sodium croscarmellose, crospovidone grades and low substituted hydroxypropyl cellulose (L-HPC). A direct compression process was used to compress the ODTs under various compaction forces to optimize tablet robustness. The properties of the compressed tablets including porosity, hardness, friability and dissolution profiles were further investigated. The in vitro and in vivo evaluation of the tablet disintegration times showed almost identical rapid disintegration below 10 s at the optimal levels of each superdisintegrant. Finally, the taste and sensory evaluation in human volunteers demonstrated excellence in masking the bitter active and tablet palatability.  相似文献   

17.
Controlled-release (CR) tablet formulation of olanzapine was developed using a binary mixture of Methocel® K100 LV-CR and Ethocel® standard 7FP premium by the dry granulation slugging method. Drug release kinetics of CR tablet formulations F1, F2, and F3, each one suitably compressed for 9-, 12-, and 15-kg hardness, were determined in a dissolution media of 0.1 N HCl (pH 1.5) and phosphate buffer (pH 6.8) using type II dissolution apparatus with paddles run at 50 rpm. Ethocel® was found to be distinctly controlling drug release, whereas the hardness of tablets and pH of the dissolution media did not significantly affect release kinetics. The CR test tablets containing 30% Methocel® and 60% Ethocel® (F3) with 12-kg hardness exhibited pH-independent zero-order release kinetics for 24 h. In vivo performance of the CR test tablet and conventional reference tablet were determined in rabbit serum using high-performance liquid chromatography coupled with electrochemical detector. Bioavailability parameters including Cmax, Tmax, and AUC0–48 h of both tablets were compared. The CR test tablets produced optimized Cmax and extended Tmax (P < 0.05). A good correlation of drug absorption in vivo and drug release in vitro (R2 = 0.9082) was observed. Relative bioavailability of the test tablet was calculated as 94%. The manufacturing process employed was reproducible and the CR test tablets were stable for 6 months at 40 ± 2°C/75 ± 5% relative humidity. It was concluded that the CR test tablet formulation successfully developed may improve tolerability and patient adherence by reducing adverse effects.Key words: bioavailability, controlled release, Ethocel®, olanzapine  相似文献   

18.
Free-flowing proniosomal powders of acemetacin (AC) were prepared using the slurry method and maltodextrin as carrier. Positively charged proniosomes composed of 70:20:10 of Span 60/cholesterol (Chol)/stearylamine (SA), respectively, were successively compressed into tablets using direct compression method. The tablets were characterized for weight variability, friability, hardness, drug content uniformity, and dissolution properties. The in vivo evaluation of the prepared proniosomes (powder or tablet forms) after oral administration was investigated by the determination of AC and its active metabolite indomethacin (IND) in the blood of albino rabbits. Results indicated that the increase of Chol from 10% to 20% markedly reduced the efflux of the drug. Further Chol addition from 30% to 50% led to increased AC release rates. The proniosome tablets of AC showed greater hardness and disintegration time and less friability than AC plain tablets. The dissolution of proniosomal tablets indicated a lower drug release percentage compared to powdered proniosomes and AC plain tablets. The mean pharmacokinetic parameters of AC and IND from different formulations indicated increased t1/2 and area under the curve (AUC) of both AC and IND for proniosomal tablets compared with both proniosomal powders and AC plain tablets. This study suggested the formulation of AC proniosomal powder into tablets to control and extend its pharmacologic effects.KEY WORDS: acemetacin, proniosomes, sustained-release tablet, pharmacokinetics  相似文献   

19.
The aim of this work was to establish a method for preparing stable and controllable solid self-microemulsifying drug delivery system (S-SMEDDS) by spherical crystallization technique, which was explored for promoting the dissolution, oral bioavailability, and process efficiency. Solubility test, preparation of liquid self-microemulsifying drug delivery system (L-SMEDDS), and the obtained ternary phase diagrams test have been performed to screen and optimize the composition of LSMEDDS. The optimized formulation was used to prepare puerarin solid self-microemulsifying drug delivery system (Pue-SSMEDDS) by spherical crystallization technique. Droplet size and morphological analysis of the optimal Pue-SSMEDDS were determined to evaluate the final formulation. And the Pue-SSMEDDS was also assessed by flowability study, angle of repose, Carr’s index, and flow velocity. Furthermore, the vitro dissolution and pharmacokinetic profile in vivo were analyzed. The study in vitro showed the Pue-SSMEDDS could disperse in the dispersion medium within 60 s and was spherical with the particle size of 19.66 nm and zeta potential of ?28.3 mV. It could keep stable at low temperature and seal condition for 3 months. In vivo pharmacokinetic experiments of rats, the mean plasma concentration of self-microemulsion group was much higher than that of conventional tablets and could play a long-lasting efficacy, while there was no significant difference between the LSMEDDS and S-SMEDDS. The results suggested the potential of S-SMEDDS could improve the oral bioavailability of poorly water-soluble drug, such as puerarin.  相似文献   

20.
The helical tension of chromosomal DNA is one of the epigenetic landmarks most difficult to examine experimentally. The occurrence of DNA crosslinks mediated by psoralen photobinding (PB) stands as the only suitable probe for assessing this problem. PB is affected by chromatin structure when is done to saturation; but it is mainly determined by DNA helical tension when it is done to very low hit conditions. Hence, we developed a method for genome-wide analysis of DNA helical tension based on PB. We adjusted in vitro PB conditions that discern DNA helical tension and applied them to Saccharomyces cerevisiae cells. We selected the in vivo cross-linked DNA sequences and identified them on DNA arrays. The entire procedure was robust. Comparison of PB obtained in vivo with that obtained in vitro with naked DNA revealed that numerous chromosomal regions had deviated PB values. Similar analyses in yeast topoisomerase mutants uncovered further PB alterations across specific chromosomal domains. These results suggest that distinct chromosome compartments might confine different levels of DNA helical tension in yeast. Genome-wide analysis of psoralen–DNA PB can be, therefore, a useful approach to uncover a trait of the chromosome architecture not amenable to other techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号