首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We identify cpna-1 (F31D5.3) as a novel essential muscle gene in the nematode Caenorhabditis elegans. Antibodies specific to copine domain protein atypical-1 (CPNA-1), as well as a yellow fluorescent protein translational fusion, are localized to integrin attachment sites (M-lines and dense bodies) in the body-wall muscle of C. elegans. CPNA-1 contains an N-terminal predicted transmembrane domain and a C-terminal copine domain and binds to the M-line/dense body protein PAT-6 (actopaxin) and the M-line proteins UNC-89 (obscurin), LIM-9 (FHL), SCPL-1 (SCP), and UNC-96. Proper CPNA-1 localization is dependent upon PAT-6 in embryonic and adult muscle. Nematodes lacking cpna-1 arrest elongation at the twofold stage of embryogenesis and display disruption of the myofilament lattice. The thick-filament component myosin heavy chain MYO-3 and the M-line component UNC-89 are initially localized properly in cpna-1–null embryos. However, in these embryos, when contraction begins, MYO-3 and UNC-89 become mislocalized into large foci and animals die. We propose that CPNA-1 acts as a linker between an integrin-associated protein, PAT-6, and membrane-distal components of integrin adhesion complexes in the muscle of C. elegans.  相似文献   

2.
SmTAL1 is a calcium binding protein from the parasitic worm, Schistosoma mansoni. Structurally it is comprised of two domains – an N-terminal EF-hand domain and a C-terminal dynein light chain (DLC)-like domain. The protein has previously been shown to interact with the anti-schistosomal drug, praziquantel (PZQ). Here, we demonstrated that both EF-hands in the N-terminal domain are functional calcium ion binding sites. The second EF-hand appears to be more important in dictating affinity and mediating the conformational changes which occur on calcium ion binding. There is positive cooperativity between the four calcium ion binding sites in the dimeric form of SmTAL1. Both the EF-hand domain and the DLC-domain dimerise independently suggesting that both play a role in forming the SmTAL1 dimer. SmTAL1 binds non-cooperatively to PZQ and cooperatively to an IQ-motif from SmCav1B, a voltage-gated calcium channel. PZQ tends to strengthen this interaction, although the relationship is complex. These data suggest the hypothesis that SmTAL1 regulates at least one voltage-gated calcium channel and PZQ interferes with this process. This may be important in the molecular mechanism of this drug. It also suggests that compounds which bind SmTAL1, such as six from the Medicines for Malaria Box identified in this work, may represent possible leads for the discovery of novel antagonists.  相似文献   

3.
Box H/ACA small nucleolar (sno) ribonucleoproteins (RNPs) are responsible for the formation of pseudouridine in a variety of RNAs and are essential for ribosome biogenesis, modification of spliceosomal RNAs, and telomerase stability. A mature snoRNP has been reconstituted in vitro and is composed of a single RNA and four proteins. However, snoRNP biogenesis in vivo requires multiple factors to coordinate a complex and poorly understood assembly and maturation process. Among the factors required for snoRNP biogenesis in yeast is Shq1p, an essential protein necessary for stable expression of box H/ACA snoRNAs. We have found that Shq1p consists of two independent domains that contain casein kinase 1 phosphorylation sites. We also demonstrate that Shq1p binds the pseudourydilating enzyme Cbf5p through the C-terminal domain, in synergy with the N-terminal domain. The NMR solution structure of the N-terminal domain has striking homology to the ‘Chord and Sgt1’ domain of known Hsp90 cochaperones, yet Shq1p does not interact with the yeast Hsp90 homologue in vitro. Surprisingly, Shq1p has stand-alone chaperone activity in vitro. This activity is harbored by the C-terminal domain, but it is increased by the presence of the N-terminal domain. These results provide the first evidence of a specific biochemical activity for Shq1p and a direct link to the H/ACA snoRNP.  相似文献   

4.
Resistance to Pseudomonas syringae bacteria in tomato (Solanum lycopersicum) is conferred by the Prf recognition complex, composed of the nucleotide-binding leucine-rich repeats protein Prf and the protein kinase Pto. The complex is activated by recognition of the P. syringae effectors AvrPto and AvrPtoB. The N-terminal domain is responsible for Prf homodimerization, which brings two Pto kinases into close proximity and holds them in inactive conformation in the absence of either effector. Negative regulation is lost by effector binding to the catalytic cleft of Pto, leading to disruption of its P+1 loop within the activation segment. This change is translated through Prf to a second Pto molecule in the complex. Here we describe a schematic model of the unique Prf N-terminal domain dimer and its interaction with the effector binding determinant Pto. Using heterologous expression in Nicotiana benthamiana, we define multiple sites of N domain homotypic interaction and infer that it forms a parallel dimer folded centrally to enable contact between the N and C termini. Furthermore, we found independent binding sites for Pto at either end of the N-terminal domain. Using the constitutively active mutant ptoL205D, we identify a potential repression site for Pto in the first ∼100 amino acids of Prf. Finally, we find that the Prf leucine-rich repeats domain also binds the N-terminal region, highlighting a possible mechanism for transfer of the effector binding signal to the NB-LRR regulatory unit (consisting of a central nucleotide binding and C-terminal leucine-rich repeats).  相似文献   

5.
Paralogs NDE1 (nuclear distribution element 1) and NDEL1 (NDE-like 1) are essential for mitosis and neurodevelopment. Both proteins are predicted to have similar structures, based upon high sequence similarity, and they co-complex in mammalian cells. X-ray diffraction studies and homology modeling suggest that their N-terminal regions (residues 8–167) adopt continuous, extended α-helical coiled-coil structures, but no experimentally derived information on the structure of their C-terminal regions or the architecture of the full-length proteins is available. In the case of NDE1, no biophysical data exists. Here we characterize the structural architecture of both full-length proteins utilizing negative stain electron microscopy along with our established paradigm of chemical cross-linking followed by tryptic digestion, mass spectrometry, and database searching, which we enhance using isotope labeling for mixed NDE1-NDEL1. We determined that full-length NDE1 forms needle-like dimers and tetramers in solution, similar to crystal structures of NDEL1, as well as chain-like end-to-end polymers. The C-terminal domain of each protein, required for interaction with key protein partners dynein and DISC1 (disrupted-in-schizophrenia 1), includes a predicted disordered region that allows a bent back structure. This facilitates interaction of the C-terminal region with the N-terminal coiled-coil domain and is in agreement with previous results showing N- and C-terminal regions of NDEL1 and NDE1 cooperating in dynein interaction. It sheds light on recently identified mutations in the NDE1 gene that cause truncation of the encoded protein. Additionally, analysis of mixed NDE1-NDEL1 complexes demonstrates that NDE1 and NDEL1 can interact directly.  相似文献   

6.
7.
Proteins Rpf2 and Rrs1 are required for 60S ribosomal subunit maturation. These proteins are necessary for the recruitment of three ribosomal components (5S ribosomal RNA [rRNA], RpL5 and RpL11) to the 90S ribosome precursor and subsequent 27SB pre-rRNA processing. Here we present the crystal structure of the Aspergillus nidulans (An) Rpf2-Rrs1 core complex. The core complex contains the tightly interlocked N-terminal domains of Rpf2 and Rrs1. The Rpf2 N-terminal domain includes a Brix domain characterized by similar N- and C-terminal architecture. The long α-helix of Rrs1 joins the C-terminal half of the Brix domain as if it were part of a single molecule. The conserved proline-rich linker connecting the N- and C-terminal domains of Rrs1 wrap around the side of Rpf2 and anchor the C-terminal domain of Rrs1 to a specific site on Rpf2. In addition, gel shift analysis revealed that the Rpf2-Rrs1 complex binds directly to 5S rRNA. Further analysis of Rpf2-Rrs1 mutants demonstrated that Saccharomyces cerevisiae Rpf2 R236 (corresponds to R238 of AnRpf2) plays a significant role in this binding. Based on these studies and previous reports, we have proposed a model for ribosomal component recruitment to the 90S ribosome precursor.  相似文献   

8.
The kinetochore is a large, macromolecular assembly that is essential for connecting chromosomes to microtubules during mitosis. Despite the recent identification of multiple kinetochore components, the nature and organization of the higher-order kinetochore structure remain unknown. The outer kinetochore KNL-1/Mis12 complex/Ndc80 complex (KMN) network plays a key role in generating and sensing microtubule attachments. Here we demonstrate that Caenorhabditis elegans KNL-1 exists as an oligomer, and we identify a specific domain in KNL-1 responsible for this activity. An N-terminal KNL-1 domain from both C. elegans and the related nematode Caenorhabditis remanei oligomerizes into a decameric assembly that appears roughly circular when visualized by electron microscopy. On the basis of sequence and mutational analysis, we identify a small hydrophobic region as responsible for this oligomerization activity. However, mutants that precisely disrupt KNL-1 oligomerization did not alter KNL-1 localization or result in the loss of embryonic viability based on gene replacements in C. elegans. In C. elegans, KNL-1 oligomerization may coordinate with other kinetochore activities to ensure the proper organization, function, and sensory capabilities of the kinetochore–microtubule attachment.  相似文献   

9.
Bidirectional membrane trafficking along microtubules is mediated by kinesin-1, kinesin-3, and dynein. Several organelle-bound adapters for kinesin-1 and dynein have been reported that orchestrate their opposing activity. However, the coordination of kinesin-3/dynein-mediated transport is not understood. In this paper, we report that a Hook protein, Hok1, is essential for kinesin-3– and dynein-dependent early endosome (EE) motility in the fungus Ustilago maydis. Hok1 binds to EEs via its C-terminal region, where it forms a complex with homologues of human fused toes (FTS) and its interactor FTS- and Hook-interacting protein. A highly conserved N-terminal region is required to bind dynein and kinesin-3 to EEs. To change the direction of EE transport, kinesin-3 is released from organelles, and dynein binds subsequently. A chimaera of human Hook3 and Hok1 rescues the hok1 mutant phenotype, suggesting functional conservation between humans and fungi. We conclude that Hok1 is part of an evolutionarily conserved protein complex that regulates bidirectional EE trafficking by controlling attachment of both kinesin-3 and dynein.  相似文献   

10.
Cytoplasmic dynein is the major microtubule minus end–directed motor. Although studies have probed the mechanism of the C-terminal motor domain, if and how dynein''s N-terminal tail and the accessory chains it binds regulate motor activity remain to be determined. Here, we investigate the structure and function of the Saccharomyces cerevisiae dynein light (Dyn2) and intermediate (Pac11) chains in dynein heavy chain (Dyn1) movement. We present the crystal structure of a Dyn2-Pac11 complex, showing Dyn2-mediated Pac11 dimerization. To determine the molecular effects of Dyn2 and Pac11 on Dyn1 function, we generated dyn2Δ and dyn2Δpac11Δ strains and analyzed Dyn1 single-molecule motor activity. We find that the Dyn2-Pac11 complex promotes Dyn1 homodimerization and potentiates processivity. The absence of Dyn2 and Pac11 yields motors with decreased velocity, dramatically reduced processivity, increased monomerization, aggregation, and immobility as determined by single-molecule measurements. Deleting dyn2 significantly reduces Pac11-Dyn1 complex formation, yielding Dyn1 motors with activity similar to Dyn1 from the dyn2Δpac11Δ strain. Of interest, motor phenotypes resulting from Dyn2-Pac11 complex depletion bear similarity to a point mutation in the mammalian dynein N-terminal tail (Loa), highlighting this region as a conserved, regulatory motor element.  相似文献   

11.
Pih1 is an unstable protein and a subunit of the R2TP complex that, in yeast Saccharomyces cerevisiae, also contains the helicases Rvb1, Rvb2, and the Hsp90 cofactor Tah1. Pih1 and the R2TP complex are required for the box C/D small nucleolar ribonucleoprotein (snoRNP) assembly and ribosomal RNA processing. Purified Pih1 tends to aggregate in vitro. Molecular chaperone Hsp90 and its cochaperone Tah1 are required for the stability of Pih1 in vivo. We had shown earlier that the C terminus of Pih1 destabilizes the protein and that the C terminus of Tah1 binds to the Pih1 C terminus to form a stable complex. Here, we analyzed the secondary structure of the Pih1 C terminus and identified two intrinsically disordered regions and five hydrophobic clusters. Site-directed mutagenesis indicated that one predicted intrinsically disordered region IDR2 is involved in Tah1 binding, and that the C terminus of Pih1 contains multiple destabilization or degron elements. Additionally, the Pih1 N-terminal domain, Pih11–230, was found to be able to complement the physiological role of full-length Pih1 at 37 °C. Pih11–230 as well as a shorter Pih1 N-terminal fragment Pih11–195 is able to bind Rvb1/Rvb2 heterocomplex. However, the sequence between the two disordered regions in Pih1 significantly enhances the Pih1 N-terminal domain binding to Rvb1/Rvb2. Based on these data, a model of protein-protein interactions within the R2TP complex is proposed.  相似文献   

12.
The symptoms of Clostridium difficile infections are caused by two exotoxins, TcdA and TcdB, which target host colonocytes by binding to unknown cell surface receptors, at least in part via their combined repetitive oligopeptide (CROP) domains. A combination of the anti-TcdA antibody actoxumab and the anti-TcdB antibody bezlotoxumab is currently under development for the prevention of recurrent C. difficile infections. We demonstrate here through various biophysical approaches that bezlotoxumab binds to specific regions within the N-terminal half of the TcdB CROP domain. Based on this information, we solved the x-ray structure of the N-terminal half of the TcdB CROP domain bound to Fab fragments of bezlotoxumab. The structure reveals that the TcdB CROP domain adopts a β-solenoid fold consisting of long and short repeats and that bezlotoxumab binds to two homologous sites within the CROP domain, partially occluding two of the four putative carbohydrate binding pockets located in TcdB. We also show that bezlotoxumab neutralizes TcdB by blocking binding of TcdB to mammalian cells. Overall, our data are consistent with a model wherein a single molecule of bezlotoxumab neutralizes TcdB by binding via its two Fab regions to two epitopes within the N-terminal half of the TcdB CROP domain, partially blocking the carbohydrate binding pockets of the toxin and preventing toxin binding to host cells.  相似文献   

13.
Tpa1 (for termination and polyadenylation) from Saccharomyces cerevisiae is a component of a messenger ribonucleoprotein (mRNP) complex at the 3′ untranslated region of mRNAs. It comprises an N-terminal Fe(II)- and 2-oxoglutarate (2OG) dependent dioxygenase domain and a C-terminal domain. The N-terminal dioxygenase domain of a homologous Ofd1 protein from Schizosaccharomyces pombe was proposed to serve as an oxygen sensor that regulates the activity of the C-terminal degradation domain. Members of the Tpa1 family are also present in higher eukaryotes including humans. Here we report the crystal structure of S. cerevisiae Tpa1 as a representative member of the Tpa1 family. Structures have been determined as a binary complex with Fe(III) and as a ternary complex with Fe(III) and 2OG. The structures reveal that both domains of Tpa1 have the double-stranded β-helix fold and are similar to prolyl 4-hydroxylases. However, the binding of Fe(III) and 2OG is observed in the N-terminal domain only. We also show that Tpa1 binds to poly(rA), suggesting its direct interaction with mRNA in the mRNP complex. The structural and functional data reported in this study support a role of the Tpa1 family as a hydroxylase in the mRNP complex and as an oxygen sensor.  相似文献   

14.
The RAVE complex (regulator of the H+-ATPase of vacuolar and endosomal membranes) is required for biosynthetic assembly and glucose-stimulated reassembly of the yeast vacuolar H+-ATPase (V-ATPase). Yeast RAVE contains three subunits: Rav1, Rav2, and Skp1. Rav1 is the largest subunit, and it binds Rav2 and Skp1 of RAVE; the E, G, and C subunits of the V-ATPase peripheral V1 sector; and Vph1 of the membrane Vo sector. We identified Rav1 regions required for interaction with its binding partners through deletion analysis, co-immunoprecipitation, two-hybrid assay, and pulldown assays with expressed proteins. We find that Skp1 binding requires sequences near the C terminus of Rav1, V1 subunits E and C bind to a conserved region in the C-terminal half of Rav1, and the cytosolic domain of Vph1 binds near the junction of the Rav1 N- and C-terminal halves. In contrast, Rav2 binds to the N-terminal domain of Rav1, which can be modeled as a double β-propeller. Only the V1 C subunit binds to both Rav1 and Rav2. Using GFP-tagged RAVE subunits in vivo, we demonstrate glucose-dependent association of RAVE with the vacuolar membrane, consistent with its role in glucose-dependent V-ATPase assembly. It is known that V1 subunit C localizes to the V1-Vo interface in assembled V-ATPase complexes and is important in regulated disassembly of V-ATPases. We propose that RAVE cycles between cytosol and vacuolar membrane in a glucose-dependent manner, positioning V1 and V0 subcomplexes and orienting the V1 C subunit to promote assembly.  相似文献   

15.
In the nematode Caenorhabditis elegans, fem-1, fem-2, and fem-3 play crucial roles in male sexual development. Among these three genes, fem-2 encodes a PP2C (serine/threonine phosphatase type 2C)-like protein, whose activity promotes the development of masculinity. Different from the canonical PP2Cs, FEM-2 consists of an additional N-terminal domain (NTD) apart from its C-terminal catalytic domain. Interestingly, genetic studies have indicated indispensable roles for both of these two domains of FEM-2 in promoting male development, but the underlying mechanism remains unknown. In the present study, we solved the crystal structure of full-length FEM-2, which revealed a novel structural fold formed by its NTD. Structural and functional analyses demonstrated that the NTD did not directly regulate the in vitro dephosphorylation activity of FEM-2, but instead functioned as a scaffold domain in the assembly of the FEM-1/2/3 complex, the executioner in the final step of the sex determination pathway. Biochemical studies further identified the regions in the NTD involved in FEM-1 and FEM-3 interactions. Our results not only identified a novel fold formed by the extra domain of a noncanonical PP2C enzyme, but also provided important insights into the molecular mechanism of how the NTD works in mediating the sex-determining role of FEM-1/2/3 complex.  相似文献   

16.
Functional analysis of cytoplasmic dynein in Caenorhabditis elegans has revealed a wide range of cellular functions for this minus-end–directed motor protein. Dynein transports a variety of cargos to diverse cellular locations, and thus cargo selection and destination are likely regulated by accessory proteins. The microtubule-associated proteins LIS-1 and dynein interact, but the nature of this interaction remains poorly understood. Here we show that both LIS-1 and the dynein heavy-chain DHC-1 are required for integrity of the actin cytoskeleton in C. elegans. Although both dhc-1(or195ts) and lis-1 loss-of-function disrupt the actin cytoskeleton and produce embryonic lethality, a double mutant suppresses these defects. A targeted RNA interference screen revealed that knockdown of other actin regulators, including actin-capping protein genes and prefoldin subunit genes, suppresses dhc-1(or195ts)–induced lethality. We propose that release or relocation of the mutant dynein complex mediates this suppression of dhc-1(or195ts)--induced phenotypes. These results reveal an unexpected direct or indirect interaction between the actin cytoskeleton and dynein activity.  相似文献   

17.
The mammalian Nrf/CNC proteins (Nrf1, Nrf2, Nrf3, p45 NF-E2) perform a wide range of cellular protective and maintenance functions. The most thoroughly described of these proteins, Nrf2, is best known as a regulator of antioxidant and xenobiotic defense, but more recently has been implicated in additional functions that include proteostasis and metabolic regulation. In the nematode Caenorhabditis elegans, which offers many advantages for genetic analyses, the Nrf/CNC proteins are represented by their ortholog SKN-1. Although SKN-1 has diverged in aspects of how it binds DNA, it exhibits remarkable functional conservation with Nrf/CNC proteins in other species and regulates many of the same target gene families. C. elegans may therefore have considerable predictive value as a discovery model for understanding how mammalian Nrf/CNC proteins function and are regulated in vivo. Work in C. elegans indicates that SKN-1 regulation is surprisingly complex and is influenced by numerous growth, nutrient, and metabolic signals. SKN-1 is also involved in a wide range of homeostatic functions that extend well beyond the canonical Nrf2 function in responses to acute stress. Importantly, SKN-1 plays a central role in diverse genetic and pharmacologic interventions that promote C. elegans longevity, suggesting that mechanisms regulated by SKN-1 may be of conserved importance in aging. These C. elegans studies predict that mammalian Nrf/CNC protein functions and regulation may be similarly complex and that the proteins and processes that they regulate are likely to have a major influence on mammalian life- and healthspan.  相似文献   

18.
Correct spindle positioning is fundamental for proper cell division during development and in stem cell lineages. Dynein and an evolutionarily conserved ternary complex (nuclear mitotic apparatus protein [NuMA]–LGN–Gα in human cells and LIN-5–GPR-1/2–Gα in Caenorhabditis elegans) are required for correct spindle positioning, but their relationship remains incompletely understood. By analyzing fixed specimens and conducting live-imaging experiments, we uncovered that appropriate levels of ternary complex components are critical for dynein-dependent spindle positioning in HeLa cells and C. elegans embryos. Moreover, using mutant versions of Gα in both systems, we established that dynein acts at the membrane to direct spindle positioning. Importantly, we identified a region within NuMA that mediates association with dynein. By using this region to target dynein to the plasma membrane, we demonstrated that the mere presence of dynein at that location is sufficient to direct spindle positioning in HeLa cells. Overall, we propose a model in which the ternary complex serves to anchor dynein at the plasma membrane to ensure correct spindle positioning.  相似文献   

19.
Nuclear abundant poly(A) RNA-binding protein 2 (Nab2) is an essential yeast heterogeneous nuclear ribonucleoprotein that modulates both mRNA nuclear export and poly(A) tail length. The N-terminal domain of Nab2 (residues 1-97) mediates interactions with both the C-terminal globular domain of the nuclear pore-associated protein, myosin-like protein 1 (Mlp1), and the mRNA export factor, Gfd1. The solution and crystal structures of the Nab2 N-terminal domain show a primarily helical fold that is analogous to the PWI fold found in several other RNA-binding proteins. In contrast to other PWI-containing proteins, we find no evidence that the Nab2 N-terminal domain binds to nucleic acids. Instead, this domain appears to mediate protein:protein interactions that facilitate the nuclear export of mRNA. The Nab2 N-terminal domain has a distinctive hydrophobic patch centered on Phe73, consistent with this region of the surface being a protein:protein interaction site. Engineered mutations within this hydrophobic patch attenuate the interaction with the Mlp1 C-terminal domain but do not alter the interaction with Gfd1, indicating that this patch forms a crucial component of the interface between Nab2 and Mlp1.  相似文献   

20.
The vacuolar ATPase (V-ATPase) is a multisubunit complex that carries out ATP-driven proton transport. It is composed of a peripheral V1 domain that hydrolyzes ATP and an integral V0 domain that translocates protons. Subunit a is a 100-kDa integral membrane protein (part of V0) that possesses an N-terminal cytoplasmic domain and a C-terminal hydrophobic domain. Although the C-terminal domain functions in proton transport, the N-terminal domain is critical for intracellular targeting and regulation of V-ATPase assembly. Despite its importance, there is currently no high resolution structure for subunit a of the V-ATPase. Recently, the crystal structure of the N-terminal domain of the related subunit I from the archaebacterium Meiothermus ruber was reported. We have used homology modeling to construct a model of the N-terminal domain of Vph1p, one of two isoforms of subunit a expressed in yeast. To test this model, unique cysteine residues were introduced into a Cys-less form of Vph1p and their accessibility to modification by the sulfhydryl reagent 3-(N-maleimido-propionyl) biocytin (MPB) was determined. In addition, accessibility of introduced cysteine residues to MPB modification was compared in the V1V0 complex and the free V0 domain to identify residues protected from modification by the presence of V1. The results provide an experimental test of the proposed model and have identified regions of the N-terminal domain of subunit a that likely serve as interfacial contact sites with the peripheral V1 domain. The possible significance of these results for in vivo regulation of V-ATPase assembly is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号