首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The set of the laboratory strain M. hominis H-34 mutants resistant to fluoroquinolones (ciprofloxacin-Cfl, lomefloxacin-Lfl, ofloxacin-Ofl) was obtained by selection in broth medium. The mutation was found in the quinolone resistance-determining region (QRDR) of A subunit of topoisomerase IV gene (parC) and new mutations were found in QRDR of genes encoding the A subunit of DNA gyrase (gyrA) in M. hominis mutants resistant to various concentrations of the Cfl, Lfl and Ofl. After multistep selection of the obtained mutants at constant concentrations of Cfl additional mutation Ser83 to Trp was revealed. No mutations in parE and gyrB were found. Mutations in parC for laboratory strain M. hominis H34 appeared at lower antibiotic concentrations than in gyrA. All mutations in gyr A were associated with mutations in parC. This confirms the previous data that topoisomerase IV is the primary target of Cfl and Ofl and suggests that it is the primary target of Lfl. Some M. hominis mutants selected at Ofl without any substitution in QRDRs were shown to be insensitive to Cfl and of Lfl. Studies of cross-resistance of the selected M. hominis mutants showed that their resistance to various fluoroquinolone concentrations could not depend on any mutations in QRDR of topoisomerase IV and DNA gyrase genes and suggests involvement of other unknown molecular mechanisms specific for Mycoplasmas.  相似文献   

2.
Fluoroquinolone antibiotics are among the most potent second-line drugs used for treatment of multidrug-resistant tuberculosis (MDR TB), and resistance to this class of antibiotics is one criterion for defining extensively drug resistant tuberculosis (XDR TB). Fluoroquinolone resistance in Mycobacterium tuberculosis has been associated with modification of the quinolone resistance determining region (QRDR) of gyrA. Recent studies suggest that amino acid substitutions in gyrB may also play a crucial role in resistance, but functional genetic studies of these mutations in M. tuberculosis are lacking. In this study, we examined twenty six mutations in gyrase genes gyrA (seven) and gyrB (nineteen) to determine the clinical relevance and role of these mutations in fluoroquinolone resistance. Transductants or clinical isolates harboring T80A, T80A+A90G, A90G, G247S and A384V gyrA mutations were susceptible to all fluoroquinolones tested. The A74S mutation conferred low-level resistance to moxifloxacin but susceptibility to ciprofloxacin, levofloxacin and ofloxacin, and the A74S+D94G double mutation conferred cross resistance to all the fluoroquinolones tested. Functional genetic analysis and structural modeling of gyrB suggest that M330I, V340L, R485C, D500A, D533A, A543T, A543V and T546M mutations are not sufficient to confer resistance as determined by agar proportion. Only three mutations, N538D, E540V and R485C+T539N, conferred resistance to all four fluoroquinolones in at least one genetic background. The D500H and D500N mutations conferred resistance only to levofloxacin and ofloxacin while N538K and E540D consistently conferred resistance to moxifloxacin only. Transductants and clinical isolates harboring T539N, T539P or N538T+T546M mutations exhibited low-level resistance to moxifloxacin only but not consistently. These findings indicate that certain mutations in gyrB confer fluoroquinolone resistance, but the level and pattern of resistance varies among the different mutations. The results from this study provide support for the inclusion of the QRDR of gyrB in molecular assays used to detect fluoroquinolone resistance in M. tuberculosis.  相似文献   

3.
Hospital and agriculture wastewater is mostly responsible for causing environmental pollution by spreading un-metabolized antibiotics and resistant bacteria, especially in Bangladesh. Here, we studied the influence of the most frequently prescribed antibiotic, fluoroquinolone (~72%), on the development of antibiotic resistance in Escherichia coli. Out of 300, 24 ciprofloxacin resistant E. coli isolates were selected for the study that showed the MBC(100) higher than expected (600 μg/mL). Here, we profiled plasmid, sequenced gyr genes, screened mutations and analyzed the effect of mutation on drug-protein interaction through molecular docking approach. We found that (1) out of 10, most of them (n = 7) had large plasmid(s); (2) all ciprofloxacin-resistant isolates had gyrA double mutations (S83L and D87Y); (3) no isolate had qnr gene; and (4) docking of ciprofloxacin with DNA gyrase A subunit suggests that acquisition of double mutation leads to alteration of the ciprofloxacin binding pocket.  相似文献   

4.
DNA gyrase is a validated target of fluoroquinolones which are key components of multidrug resistance tuberculosis (TB) treatment. Most frequent occurring mutations associated with high level of resistance to fluoroquinolone in clinical isolates of TB patients are A90V, D94G, and A90V–D94G (double mutant [DM]), present in the larger subunit of DNA Gyrase. In order to explicate the molecular mechanism of drug resistance corresponding to these mutations, molecular dynamics (MD) and mechanics approach was applied. Structure-based molecular docking of complex comprised of DNA bound with Gyrase A (large subunit) and Gyrase C (small subunit) with moxifloxacin (MFX) revealed high binding affinity to wild type with considerably high Glide XP docking score of ?7.88 kcal/mol. MFX affinity decreases toward single mutants and was minimum toward the DM with a docking score of ?3.82 kcal/mol. Docking studies were also performed against 8-Methyl-moxifloxacin which exhibited higher binding affinity against wild and mutants DNA gyrase when compared to MFX. Molecular Mechanics/Generalized Born Surface Area method predicted the binding free energy of the wild, A90V, D94G, and DM complexes to be ?55.81, ?25.87, ?20.45, and ?12.29 kcal/mol, respectively. These complexes were further subjected to 30 ns long MD simulations to examine significant interactions and conformational flexibilities in terms of root mean square deviation, root mean square fluctuation, and strength of hydrogen bond formed. This comparative drug interaction analysis provides systematic insights into the mechanism behind drug resistance and also paves way toward identifying potent lead compounds that could combat drug resistance of DNA gyrase due to mutations.  相似文献   

5.
Involvement of host DNA gyrase in growth of bacteriophage T5.   总被引:1,自引:0,他引:1       下载免费PDF全文
Bacteriophage T5 did not grow at the nonpermissive temperature of 42 degrees C in Escherichia coli carrying a temperature-sensitive mutation in gyrB [gyrB(Ts)], but it did grow in gyrA(Ts) mutants at 42 degrees C. These findings indicate that the A subunit of host DNA gyrase is unnecessary, whereas the B subunit is necessary for growth of T5. The necessity for the B subunit was confirmed by a strong inhibition of T5 growth by novobiocin and coumermycin A1, which interfere specifically with the function of the B subunit of host DNA gyrase. However, T5 growth was also strongly inhibited by nalidixic acid, which interferes specifically with the function of the A subunit. This inhibition was due to the interaction of nalidixic acid with the A subunit and not just to its binding to DNA, because appropriate mutations in the gyrA gene of the host conferred nalidixic acid resistance to the host and resistance to T5 growth in such a host. The inhibition by nalidixic acid was also not due to a cell poison formed between nalidixic acid and the A subunit (K. N. Kreuzer and N. R. Cozzarelli, J. Bacteriol. 140:424-435, 1979) because nalidixic acid inhibited growth of T5 in a gyrA(Ts) mutant (KNK453) at 42 degrees C. We suggest that T5 grows in KNK453 at 42 degrees C because its gyrA(Ts) mutation is leaky for T5. Inhibition of T5 growth due to inactivation of host DNA gyrase was caused mainly by inhibition of T5 DNA replication. In addition, however, late T5 genes were barely expressed when host DNA gyrase was inactivated.  相似文献   

6.
The action of novobiocin and coumermycin (two coumarins which interact with the gyrB subunit of eubacterial DNA gyrase) and ciprofloxacin (a fluoroquinolone which interacts with the gyrA subunit of DNA gyrase) was tested on several archaebacteria, including five methanogens, two halobacteria, and a thermoacidophile. Most strains were sensitive to doses of coumarins (0.02 to 10 micrograms/ml) which specifically inhibit DNA gyrase in eubacteria. Ciprofloxacin inhibited growth of the haloalkaliphilic strain Natronobacterium gregoryi and of the methanogen Methanosarcina barkeri. In addition, ciprofloxacin partly relieved the sensitivity to coumarins (and vice versa). Novobiocin inhibited DNA replication in Halobacterium halobium rapidly and specifically. Topological analysis has shown that the 1.7-kilobase plasmid from Halobacterium sp. strain GRB is negatively supercoiled; this plasmid was relaxed after novobiocin treatment. These results support the existence in archaebacteria of a coumarin and quinolone target related to eubacterial DNA gyrase.  相似文献   

7.
Abstract We have isolated spontaneous mutant strains of Escherichia coli KL16 showing different levels of nalidixic acid (NAL) resistance. From 40 independent mutants, 36 had gyrA and four had gyrB mutations. Most of the gyrA mutations (30/36) conferred high level NAL resistance. In contrast, the only gyrB mutation that conferred a relatively high level of NAL resistance also determined enhanced susceptibility to quinolones with a piperazinyl substituent at C7 position of the quinolone ring (amphoteric quinolones). This gyrB mutation (denoted gyrB1604 ), jointly with a gyrA mutation (denoted gyrA972 ) which confers a high level of quinolone resistance, were used to construct strain IC2476, carrying the two gyr mutant alleles. The susceptibility of this strain to amphoteric quinolones (pipemidic acid, norfloxacin and ciprofloxacin) was similar to that of the gyrA972 single mutant. This result indicates that the change in GyrA subunit which determines a high level of quinolone-resistance has the capacity to mask the hypersusceptibility to amphoteric quinolones promoted by the GyrB1604 mutant subunit. This capacity was further confirmed by studying the effects of ciprofloxacin (CFX) on gyrase inhibition in the gyrA972 gyrB1604 strain.  相似文献   

8.
Quinolone resistance in Salmonella spp. is usually attributed to both active efflux and mutations leading to modification of the target enzymes DNA gyrase and topoisomerase IV. Here, we investigated the presence of mutations in the efflux regulatory genes of fluoroquinolone- and multidrug-resistant mutants of Salmonella enterica serovar Typhimurium (S. Typhimurium) selected in vitro with enrofloxacin that both carried a mutation in the target gene gyrA and overproduced the AcrAB efflux pump. No mutations were detected in the global regulatory loci marRAB and soxRS for the four strains studied. A mutation in acrR, the local repressor of acrAB, was found for two ciprofloxacin-resistant selected-mutants, leading to duplication of amino acids Ile75 and Glu76. Complementation experiments with wild-type acrR showed that the mutation identified in acrR partially contributed to the increase in resistance levels to several unrelated antibiotics. The acrR mutation also contributed to acrAB overexpression as shown by RT-PCR. Thus, this study underlines the role of an acrR mutation, in addition to the mutation in gyrA, in the fluoroquinolone and multidrug resistance phenotype of S. Typhimurium mutants, through overexpression of acrAB.  相似文献   

9.
DNA gyrase, an essential enzyme that regulates DNA topology in bacteria, is the target of fluoroquinolones. Three fluoroquinolone-resistant mutants derived from one strain of Clostridium perfringens had amino acid substitutions of glycine 81 to cysteine, aspartic acid 87 to tyrosine, or both, in α-helix-4 of gyrase A. The gyrase mutations affected the growth kinetics of mutants differently when the mutants were exposed to increasing concentrations of gatifloxacin and ciprofloxacin. Fluoroquinolone concentration-dependent effects observed during growth in the exponential and stationary phases depended on the presence of particular gyrA mutations. Introduction of a wild-type gyrA gene into the mutants enhanced their susceptibility to fluoroquinolones and decreased their growth rates proportional to increases in fluoroquinolone concentrations. Amino acid substitutions in α-helix-4 of gyrase A protected C. perfringens from fluoroquinolones, and a strain with two substitutions was the most resistant.  相似文献   

10.
A real-time PCR assay with the cycling probe method was used to detect mutations at codons 83 and 87 in the DNA gyrase A subunit encoded by gyrA in Salmonella enterica serovar Typhi and Paratyphi A clinical isolates. The susceptibility estimated from the results of the gyrA mutation assay was consistent with that identified by the culture method using an E-test. This assay allows rapid screening of S. enterica serovar Typhi and Paratyphi A with reduced susceptibility to ciprofloxacin.  相似文献   

11.

Background

The detection of mutations in the gyrA and gyrB genes in the Mycobacterium tuberculosis genome that have been demonstrated to confer phenotypic resistance to fluoroquinolones is the most promising technology for rapid diagnosis of fluoroquinolone resistance.

Methods

In order to characterize the diversity and frequency of gyrA and gyrB mutations and to describe the global distribution of these mutations, we conducted a systematic review, from May 1996 to April 2013, of all published studies evaluating Mycobacterium tuberculosis mutations associated with resistance to fluoroquinolones. The overall goal of the study was to determine the potential utility and reliability of these mutations as diagnostic markers to detect phenotypic fluoroquinolone resistance in Mycobacterium tuberculosis and to describe their geographic distribution.

Results

Forty-six studies, covering four continents and 18 countries, provided mutation data for 3,846 unique clinical isolates with phenotypic resistance profiles to fluoroquinolones. The gyrA mutations occurring most frequently in fluoroquinolone-resistant isolates, ranged from 21–32% for D94G and 13–20% for A90V, by drug. Eighty seven percent of all strains that were phenotypically resistant to moxifloxacin and 83% of ofloxacin resistant isolates contained mutations in gyrA. Additionally we found that 83% and 80% of moxifloxacin and ofloxacin resistant strains respectively, were observed to have mutations in the gyrA codons interrogated by the existing MTBDRsl line probe assay. In China and Russia, 83% and 84% of fluoroquinolone resistant strains respectively, were observed to have gyrA mutations in the gene regions covered by the MTBDRsl assay.

Conclusions

Molecular diagnostics, specifically the Genotype MTBDRsl assay, focusing on codons 88–94 should have moderate to high sensitivity in most countries. While we did observe geographic differences in the frequencies of single gyrA mutations across countries, molecular diagnostics based on detection of all gyrA mutations demonstrated to confer resistance should have broad and global utility.  相似文献   

12.
Fluoroquinolone resistance in Pseudomonas aeruginosa is mainly attributable to the constitutive expression of the xenobiotic efflux pump and mutation in DNA gyrase or topoisomerase IV. We constructed cells with a double-mutation in gyrA and mexR encoding DNA gyrase and repressor for the mexAB-oprM operon, respectively. The mutant showed 1,024 times higher fluoroquinolone resistance than cells lacking the MexAB-OprM. Cells with a single mutation in gyrA and producing a wild-type level of the MexAB-OprM efflux pump showed 128 times higher fluoroquinolone resistance than cells lacking the MexAB-OprM. In contrast, a single mutation in gyrA or mexR caused only 4 and 64 times higher resistance, respectively. These findings manifested the interplay between the MexAB-OprM efflux pump and the target mutation in fluoroquinolone resistance.  相似文献   

13.
To study the mechanism of DNA gyrase-mediated illegitimate recombination in Escherichia coli, we isolated temperature-sensitive gyrA mutants that confer spontaneous illegitimate recombination and spontaneous induction of lambda prophage at higher frequencies than that in the wild-type. After reconstruction of single mutations by targeted mutagenesis, we confirmed that two single mutations, gyrAL492P and gyrAL488P, and a double mutation, gyrAI203V+gyrAI205V, show the same properties as those described above. With respect to the phenotypes of hyper-recombination and higher induction of lambda prophage, these mutations were dominant over the wild-type. Analysis of recombination junctions of lambdabio transducing phages formed spontaneously in these mutants showed that the parental E. coli bio and lambda recombination sites have a homologous sequence of only 0. 7 base-pair on average, indicating that homology is not required for this illegitimate recombination. Analysis of nucleotide sequences of mutant gyrA genes revealed that the gyrAL492P and gyrAL488P mutations contain amino acid substitutions of Leu492-->Pro and Leu488-->Pro, respectively, which correspond to the alpha18 helix in the breakage-reunion domain of DNA gyrase A subunit. The gyrAI203V and gyrAI205V mutations contain Ile203-->Val and Ile205-->Val, respectively, which correspond to the alpha10' helix, also in the breakage-reunion domain of DNA gyrase A subunit. Biochemical analysis indicated that the GyrA63 protein that contains the L492P mutation has an apparently normal supercoiling activity, but it also produces a small amount of linear DNA in the absence of DNA gyrase inhibitor during the supercoiling reaction, suggesting that the mutant DNA gyrase may have a defect at the step of religation or a defect in the subunit interaction. These results suggest that the recombination is induced by defects of religation and/or dimer formation in the mutant DNA gyrases, implying that two alpha helices, alpha10' and alpha18, of DNA gyrase A subunit have crucial roles in subunit interaction and/or resealing of DNA.  相似文献   

14.
The gyrA genes isolated from three ciprofloxacin-resistant clinical isolates of Staphylococcus aureus carried codon 84 (serine----leucine) and/or codon 85 (serine----proline) mutations that were absent in pretreatment susceptible strains. These substitutions occur in a region of the gyrase A protein wherein directly analogous mutations of serine 83----leucine and alanine 84----proline in Escherichia coli confer quinolone resistance. Thus, DNA gyrase A subunit mutations are implicated in resistance to ciprofloxacin in S. aureus.  相似文献   

15.
16.
The aim of this study was to investigate the mutations in gyrA gene at Thr-86 position in fluoroquinolone resistant C. jejuni clinical isolates (2003-2005). The change of Thr to Ile at 86 position is associated with high-level resistance to fluoroquinolone in C. jejuni. Thirty five (58%) of 65 C. jejuni strains were found to be resistant to ciprofloxacin using E-test method. PCR-RFLP technique with the RsaI enzyme was used for the identification of mutation in gyrA gene. The primers spanning a part of the fluoroquinolone resistance determining region (QRDR) were designed based on the article of Alonso et al. and the gyrA sequence of C. jejuni (Gen Bank accession number LO4566). One of this primer had mismatch introduced at the second nucleotide from 3' end of the primer what gives an artificial RsaI cleavage site. All of the ciprofloxacin-resistant isolates contained a single)point mutation in the gyrA gene: the replacement of Thr 86 by Ile. The results showed that PCR-RFLP is a rapid and simple method for the detection of the high-level fluoroquinolone resistance in C. jejuni.  相似文献   

17.
E Garí  L Bossi  N Figueroa-Bossi 《Genetics》2001,159(4):1405-1414
A class of gyrase mutants of Salmonella enterica mimics the properties of bacteria exposed to quinolones. These mutants suffer spontaneous DNA breakage during normal growth and depend on recombinational repair for viability. Unlike quinolone-treated bacteria, however, they do not show accumulation of cleavable gyrase-DNA complexes. In recA or recB mutant backgrounds, the temperature-sensitive (ts) allele gyrA208 causes rapid cell death at 43 degrees. Here, we isolated "suppressor-of-death" mutations, that is, secondary changes that allow a gyrA208 recB double mutant to survive a prolonged exposure to 43 degrees and subsequently to form colonies at 28 degrees. In most isolates, the secondary change was itself a ts mutation. Three ts alleles were mapped in genes coding for amino acyl tRNA synthetases (alaS, glnS, and lysS). Allele alaS216 completely abolished DNA breakage in a gyrA208 recA double mutant. Likewise, treating this mutant with chloramphenicol prevented death and DNA damage at 43 degrees. Additional suppressors of gyrA208 lethality include rpoB mutations and, surprisingly, icd mutations inactivating isocitrate dehydrogenase. We postulate that the primary effect of the gyrase alteration is to hamper replication fork movement. Inhibiting DNA replication under conditions of continuing macromolecular synthesis ("unbalanced growth") activates a mechanism that causes DNA breakage and cell death, reminiscent of "thymineless" lethality.  相似文献   

18.
We have developed a cloning vector for use in halophilic archaebacteria which has a novobiocin resistance determinant as a selectable marker. The resistance determinant, which was derived from the genome of a resistant mutant strain, was mapped to a site within a 6.7-kb DNA clone by using a recombination assay and was sequenced. An open reading frame of 1.920 nucleotides (640 amino acids) was identified, with the predicted protein being highly homologous to the DNA gyrase B subunit (i.e., GyrB) of eubacteria. Three mutations were identified in the GyrB protein of the resistant mutant compared with the wild type (at amino acids 82, 122, and 137) which together enable Haloferax cells to grow in concentrations of novobiocin some 1,000 times higher than that possible for cells carrying only the wild-type enzyme. One base beyond the stop codon of gyrB was the start of gyrA, coding for the gyrase A subunit.  相似文献   

19.
The analyze selected fluoroquinolone resistance mechanisms of clinical E. faecalis strains was presented. In the second part of the study of genetic polymorphisms and mutations in the QRDRs of gyrA, gyrB, parC and parE genes were analyzed. The MSSCP technique and DNA sequencing were used. The activity (MICs) of ciprofloxacin, sparfloxacin and moxifloxacin were determined against 180 tested strains. The MSSCP method allows rapid screening of the genetic polymorphisms analyze of gyrA, gyrB, parC i parE genes. The amino acid substitutions of GyrA, GyrB and ParC were observed. The results indicate that mutations present among clinical E. faecalis strains associated with high level resistance to fluoroquinolons.  相似文献   

20.
The letA (ccdA) and letD (ccdB) genes, located just outside the sequence essential for replication of the F plasmid, apparently contribute to stable maintenance of the plasmid. The letD gene product acts to inhibit partitioning of chromosomal DNA and cell division of the host bacteria, whereas the letA gene product acts to suppress the activity of the letD gene product. To identify the target of the letD gene product, temperature-sensitive growth-defective mutants were screened from bacterial mutants that had escaped the letD product growth inhibition that occurs in hosts carrying an FletA mutant. Of nine mutants analysed, three mutants were shown, by phage P1-mediated transduction and complementation analysis, to have mutations in the gyrA gene and the other six in the groE genes. The nucleotide sequence revealed that one of the gyrA mutants has a base change from G to A at position 641 (resulting in an amino acid change from Gly to Glu at position 214) of the gyrA gene. The mutant GyrA proteins produced by these gyrA(ts) mutants were trans-dominant over wild-type GyrA protein for letD tolerance. The wild-type GyrA protein, produced in excess amounts by means of a multicopy plasmid, overcame growth inhibition of the letD gene product. These observations strongly suggest that the A subunit of DNA gyrase is the target of the LetD protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号