首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Variation,selection and evolution of function-valued traits   总被引:9,自引:0,他引:9  
We describe an emerging framework for understanding variation, selection and evolution of phenotypic traits that are mathematical functions. We use one specific empirical example – thermal performance curves (TPCs) for growth rates of caterpillars – to demonstrate how models for function-valued traits are natural extensions of more familiar, multivariate models for correlated, quantitative traits. We emphasize three main points. First, because function-valued traits are continuous functions, there are important constraints on their patterns of variation that are not captured by multivariate models. Phenotypic and genetic variation in function-valued traits can be quantified in terms of variance-covariance functions and their associated eigenfunctions: we illustrate how these are estimated as well as their biological interpretations for TPCs. Second, selection on a function-valued trait is itself a function, defined in terms of selection gradient functions. For TPCs, the selection gradient describes how the relationship between an organism's performance and its fitness varies as a function of its temperature. We show how the form of the selection gradient function for TPCs relates to the frequency distribution of environmental states (caterpillar temperatures) during selection. Third, we can predict evolutionary responses of function-valued traits in terms of the genetic variance-covariance and the selection gradient functions. We illustrate how non-linear evolutionary responses of TPCs may occur even when the mean phenotype and the selection gradient are themselves linear functions of temperature. Finally, we discuss some of the methodological and empirical challenges for future studies of the evolution of function-valued traits.  相似文献   

2.
Differences in population vulnerability to warming are defined by spatial patterns in thermal adaptation. These patterns may be driven by natural selection over spatial environmental gradients, but can also be shaped by gene flow, especially in marine taxa with high dispersal potential. Understanding and predicting organismal responses to warming requires disentangling the opposing effects of selection and gene flow. We begin by documenting genetic divergence of thermal tolerance and developmental phenotypic plasticity. Ten populations of the widespread copepod Acartia tonsa were collected from sites across a large thermal gradient, ranging from the Florida Keys to Northern New Brunswick, Canada (spanning over 20° latitude). Thermal performance curves (TPCs) from common garden experiments revealed local adaptation at the sampling range extremes, with thermal tolerance increasing at low latitudes and decreasing at high latitudes. The opposite pattern was observed in phenotypic plasticity, which was strongest at high latitudes. No relationship was observed between phenotypic plasticity and environmental variables. Instead, the results are consistent with the hypothesis of a trade‐off between thermal tolerance and the strength of phenotypic plasticity. Over a large portion of the sampled range, however, we observed a remarkable lack of differentiation of TPCs. To examine whether this lack of divergence is the result of selection for a generalist performance curve or constraint by gene flow, we analyzed cytochrome oxidase I mtDNA sequences, which revealed four distinct genetic clades, abundant genetic diversity, and widely distributed haplotypes. Strong divergence in thermal performance within genetic clades, however, suggests that the pace of thermal adaptation can be relatively rapid. The combined insight from the laboratory physiological experiments and genetic data indicate that gene flow constrains differentiation of TPCs. This balance between gene flow and selection has implications for patterns of vulnerability to warming. Taking both genetic differentiation and phenotypic plasticity into account, our results suggest that local adaptation does not increase vulnerability to warming, and that low‐latitude populations in general may be more vulnerable to predicted temperature change over the next century.  相似文献   

3.
Environmental variation and selection on performance curves   总被引:2,自引:1,他引:1  
Many aspects of physiological and organismal performance varywith some continuous environmental variable: e.g., photosyntheticrate as a function of light intensity; growth rate or sprintspeed as a function of temperature. For such ‘performancecurves’, the environment plays two roles: it affects boththe levels of performance expressed, and the relationship betweenperformance and fitness. How does environmental variation withina generation determine natural selection on performance curves?We describe an approach to this question that has three components.First, we quantify natural environmental variation and assessits impact on performance in the field. Second, we develop asimple theoretical model that predicts how fine-grained environmentalvariation determines selection on performance curves. Third,we describe how directional selection on performance curvesmay be estimated and compared to theoretical predictions. Weillustrate these steps using data on performance curves of short-termgrowth rate as a function of temperature (thermal performancecurves) in Pieris caterpillars. We use this approach to explorewhether selection acts primarily on growth rate at specifictemperatures, or on more integrated aspects of growth.  相似文献   

4.
The position and shape of thermal performance curves (TPCs, the functions relating temperature to physiological performance) for ecologically relevant functions will directly affect the fitness of ectotherms and therefore should be under strong selection. However, thermodynamic considerations predict that relationships between the different components of the TPC will confound its evolutionary optimization. For instance, the “jack-of-all-temperatures” hypothesis predicts a trade-off between the breadth of the TPC and the maximal performance capacity; the “warmer is better” hypothesis suggests that low thermal optima will come with low absolute performances. Semi-aquatic organisms face the additional challenge of having to adjust their TPCs to two environments that are likely to differ in mean temperature and thermal variability. In this paper, we examine how parameters of the TPCs for maximal running and swimming speed have co-evolved in the semi-aquatic newt genus Triturus. We consider evolutionary relationships between the width and the height of the TPCs, the optimal temperatures and maximal performance. Phylogenetic comparative analyses reveal that in Triturus, swimming and running differ substantially in the (co-)variation of TPC parameters. Whereas evolutionary changes in the TPC for swimming primarily concern the shape of the curve (generalist versus specialist), most interspecific variation in running speed TPCs involves shifts in overall performance across temperatures.  相似文献   

5.
Thermal performance curves (TPCs) are continuous reaction norms that describe the relationship between organismal performance and temperature and are useful for understanding trade‐offs involved in thermal adaptation. Although thermal trade‐offs such as those between generalists and specialists or between hot‐ and cold‐adapted phenotypes are known to be genetically variable and evolve during thermal adaptation, little is known of the genetic basis to TPCs – specifically, the loci involved and the directionality of their effects across different temperatures. To address this, we took a multivariate approach, mapping quantitative trait loci (QTL) for locomotor activity TPCs in the fly, Drosophila serrata, using a panel of 76 recombinant inbred lines. The distribution of additive genetic (co)variance in the mapping population was remarkably similar to the distribution of mutational (co)variance for these traits. We detected 11 TPC QTL in females and 4 in males. Multivariate QTL effects were closely aligned with the major axes genetic (co)variation between temperatures; most QTL effects corresponded to variation for either overall increases or decreases in activity with a smaller number indicating possible trade‐offs between activity at high and low temperatures. QTL representing changes in curve shape such as the ‘generalist–specialist’ trade‐off, thought key to thermal adaptation, were poorly represented in the data. We discuss these results in the light of genetic constraints on thermal adaptation.  相似文献   

6.
When comparing somatic growth thermal performance curves (TPCs), higher somatic growth across experimental temperatures is often observed for populations originating from colder environments. Such countergradient variation has been suggested to represent adaptation to seasonality, or shorter favourable seasons in colder climates. Alternatively, populations from cold climates may outgrow those from warmer climates at low temperature, and vice versa at high temperature, representing adaptation to temperature. Using modelling, we show that distinguishing between these two types of adaptation based on TPCs requires knowledge about (i) the relationship between somatic growth rate and population growth rate, which in turn depends on the scale of somatic growth (absolute or proportional), and (ii) the relationship between somatic growth rate and mortality rate in the wild. We illustrate this by quantifying somatic growth rate TPCs for three populations of Daphnia magna where population growth scales linearly with proportional somatic growth. For absolute somatic growth, the northern population outperformed the two more southern populations across temperatures, and more so at higher temperatures, consistent with adaptation to seasonality. In contrast, for the proportional somatic growth TPCs, and hence population growth rate, TPCs tended to converge towards the highest temperatures. Thus, if the northern population pays an ecological mortality cost of rapid growth in the wild, this may create crossing population growth TPCs consistent with adaptation to temperature. Future studies within this field should be more explicit in how they extrapolate from somatic growth in the lab to fitness in the wild.  相似文献   

7.
Interpreting Geographic Variation in Life-History Traits   总被引:11,自引:1,他引:10  
The geographic variation in the length of the larval periodand the size at metamorphosis of the wood frog,Rana sylvatica,is examined for populations in the tundra of Canada, the mountainsof Virginia, and the lowlands of Maryland. We argue that theobserved differences in developmental plasticity, heriisbilitiesand genetic covariances of traits among localities result fromdifferential selection pressures in each environment, and arerelated to the physiological constraints inherent in developmentand to the degree of compromise between the timing and sizeat metamorphosis allowed in each environment. In Maryland populationsfitness has been maximized by evolutionary changes in size alone;body size in this population is canalized, has low heritabilityand is highly correlated with juvenile survival relative todevelopmental time. In Canada, minimum developmental time yieldsmaximum fitness; the length of the larval period in this populationis canalized and genetically monomorphic relative to body size.In contrast, fitness in the Virginia populations has been determinedby correlated and pleiotropic effects of genes on both developmentaltime and larval body size, and both traits are equally canalized,affect juvenile survivorship equally and display moderate heritabilities.These results stress the importance of interpreting variationin life-history traits relative to constraints inherent in developmentand those imposed by the environment. Heritability and survivorshipdata support the general notion that fitness traits should havelow levels of additive genetic variation, but also suggest thatantagonistic pleiotropy may act to preserve genetic variationin fitness traits under simultaneous selection, and cautionagainst inferring evolutionary importance of individual traitswithout considering the possible presence of pleiotropy.  相似文献   

8.
Theoretical models predict that selection on reaction norms should depend on the relative frequency of environmental states experienced by a population. We report a laboratory experimental test of this prediction for thermal performance curves of larval growth rate in Pieris rapae in relation to their thermal environment. We measured short-term relative growth rate (RGR) for each individual at a series of five temperatures, and then we assigned individuals randomly to warm or cool selection treatments, which differ in the frequency distributions of environmental temperatures. Selection gradient analyses of two independent experiments demonstrated significant positive selection for increasing RGR, primarily through its effects on survival to adulthood and on development rate. In both the warm and cool selection treatments, the magnitude of directional selection on RGR was consistently greater at lower (suboptimal) temperatures than at higher temperatures; differences in selection between the treatments did not match model predictions. The temporal order and duration of environmental conditions may affect patterns of selection on thermal performance curves and other continuous reaction norms, complicating the connections between variation in environment, phenotype, and fitness.  相似文献   

9.
Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions.  相似文献   

10.
High levels of gene flow among partially isolated populations can overwhelm selection and limit local adaptation. This process, known as “gene swamping,” can homogenize genetic diversity among populations and reduce the capacity of a species to withstand rapid environmental change. We studied brown anole lizards (Anolis sagrei) distributed across seven islands in The Bahamas. We used microsatellite markers to estimate gene flow among islands and then examined the correlation between thermal performance and island temperature. The thermal optimum for sprint performance was correlated with both mean and maximum island temperature, whereas performance breadth was not correlated with any measure of temperature variation. Gene flow between islands decreased as the difference between mean island temperatures increased, even when those islands were adjacent to one another. These data suggest that phenotypic variation is the result of either (1) local genetic adaptation with selection against immigrants maintaining variation in the thermal optimum, (2) irreversible forms of adaptive plasticity such that immigrants have reduced fitness, or (3) an interaction between fixed genetic differences and plasticity. In general, the patterns of gene flow we observed suggest that local thermal environments represent important ecological filters that can mediate gene flow on relatively fine geographic scales.  相似文献   

11.
The expression of phenotypic plasticity may differ among life stages of the same organism. Age-dependent plasticity can be important for adaptation to heterogeneous environments, but this has only recently been recognized. Whether age-dependent plasticity is a common outcome of local adaptation and whether populations harbor genetic variation in this respect remains largely unknown. To answer these questions, we estimated levels of additive genetic variation in age-dependent plasticity in six species of damselflies sampled from 18 populations along a latitudinal gradient spanning 3600 km. We reared full sib larvae at three temperatures and estimated genetic variances in the height and slope of thermal reaction norms of body size at three points in time during ontogeny using random regression. Our data show that most populations harbor genetic variation in growth rate (reaction norm height) in all ontogenetic stages, but only some populations and ontogenetic stages were found to harbor genetic variation in thermal plasticity (reaction norm slope). Genetic variances in reaction norm height differed among species, while genetic variances in reaction norm slope differed among populations. The slope of the ontogenetic trend in genetic variances of both reaction norm height and slope increased with latitude. We propose that differences in genetic variances reflect temporal and spatial variation in the strength and direction of natural selection on growth trajectories and age-dependent plasticity. Selection on age-dependent plasticity may depend on the interaction between temperature seasonality and time constraints associated with variation in life history traits such as generation length.  相似文献   

12.
Directional selection for plant traits associated with resistance to herbivory tends to eliminate genetic variation in such traits. On the other hand, balancing selection arising from trade-offs between resistance and growth or spatially variable selection acts against the elimination of genetic variation. We explore both the amount of genetic variation and variability of natural selection for growth and concentration of phenolic secondary compounds, phlorotannins, in the brown alga Fucus vesiculosus. We measured variation in selection at two growing depths and two levels of nutrient availability in algae that had faced two kinds of past growing environments. Genetic variation was low for growth but high for phlorotannins. The form and strength of selection for both focal traits depended on the past growing environment of the algae. We found strong directional selection for growth rate in algae previously subjected to higher ultraviolet radiation, but not in algae previously subjected to higher nutrient availability. Stabilizing selection for growth occurred especially in the deep growing environment. Selection for phlorotannins was generally weak, but in some past-environment-current-environment combinations we detected either directional selection against phlorotannins or stabilizing selection. Thus, phlorotannins are not selectively neutral but affect the fitness of F. vesiculosus. In particular, there may be a fitness cost of producing phlorotannins, but the realization of such a cost varies from one environment to another. Genetic correlations between selective environments were high for growth but nonexistent for phlorotannins, emphasizing the high phenotypic plasticity of phlorotannin production. The highly heterogeneous selection, including directional, stabilizing, and spatially variable selection as well as temporal change in selection due to responses to past environmental conditions, probably maintains a high amount of genetic variation in phlorotannins. Such variation provides the potential for rapid evolutionary response of phlorotannins under directional selection.  相似文献   

13.
The niche variation hypothesis is an adaptive explanation forvariation within populations and for, the differences in variationbetween populations in morphological, physiological or behavioraltraits. It has received only partial support from empiricaltests and has been criticized on theoretical grounds. Recentquantitative genetic models have made an advance by exploringthe effects of mutation, migration, mating pattern and selectionon phenotypic variance. These models are reviewed and theirmost important features are integrated in a new model. In thismodel population variation is in a state of balance betweenthe opposing forces of mutation and immigration, which tendto elevate variation, and selection and possibly genetic drifttending to decrease it. Populations exhibiting different levelsof variation are interpereted as having different equilibriumpoints, and it is the task of empirical studies to determinethe relative magnitudes of the opposing factors. An exampleis given from studies of Darwin's finches. Geospiza fortis variesmore than G. scandens on Isla Daphne Major, Galápagos,in several morphological traits including beak and body size.This is explained, assuming equal mutation rates in the twospecies, as the result of more frequent genetic input to theG. fortis population, through occasional hybridization withimmigrant G. fuliginosa, and relaxed stabilizing selection.Stabilizing selection is less intense on G.fortis than on G.scandens because the G. fortis population has a broader niche;there is both a within-phenotype and betweenphenotype componentto the broad niche of G. fortis. The success of theory in explainingpopulation variation is discussed, and it is concluded thatempirical studies lag far behind theory.  相似文献   

14.
Genetic Analysis of Growth in Tomato: the F1 generation   总被引:2,自引:0,他引:2  
Some aspects of the genetic control of plant development wereinvestigated by combining the methods of growth analysis withthose of quantitative genetics. Four varieties of Lycopersiconesculentum and one of L. pimpinellifolium were included in adiallel cross and the growth of parents and hybrids were followedover a IO-week period. Whole plants and plants with side-shootsremoved were studied. Significant differences in growth-ratewere found between varieties and between the reciprocal inter-specifichybrids; the latter difference followed from the maternal variationin seed size. The growth-rate was reduced by removing the side-shoots.A diallel analysis showed that the control of log fruit weightand number was largely additive but similar analysis of dryweight and leaf-area data showed considerable variation withtime. Extreme caution is, therefore, necessary in generalizingfrom a genetic analysis made at only one point of time. Thisdifficulty was largely overcome and much more information concerningthe inheritance of factors influencing plant development providedby carrying out a genetic analysis of the measured growth-rates.  相似文献   

15.
The geographic ranges of closely related species can vary dramatically, yet we do not fully grasp the mechanisms underlying such variation. The niche breadth hypothesis posits that species that have evolved broad environmental tolerances can achieve larger geographic ranges than species with narrow environmental tolerances. In turn, plasticity and genetic variation in ecologically important traits and adaptation to environmentally variable areas can facilitate the evolution of broad environmental tolerance. We used five pairs of western North American monkeyflowers to experimentally test these ideas by quantifying performance across eight temperature regimes. In four species pairs, species with broader thermal tolerances had larger geographic ranges, supporting the niche breadth hypothesis. As predicted, species with broader thermal tolerances also had more within‐population genetic variation in thermal reaction norms and experienced greater thermal variation across their geographic ranges than species with narrow thermal tolerances. Species with narrow thermal tolerance may be particularly vulnerable to changing climatic conditions due to lack of plasticity and insufficient genetic variation to respond to novel selection pressures. Conversely, species experiencing high variation in temperature across their ranges may be buffered against extinction due to climatic changes because they have evolved tolerance to a broad range of temperatures.  相似文献   

16.
We offer the thesis that environmental physiologists and evolutionarybiologists can find fertile common ground in the study of howindividual variation in physiological phenotypes originatesand develops. The sources of such individual variation are oftencomplex; the consequences affect how natural selection willact on a suite of traits, of which some may seem, at first glance,far removed from the usual domain of environmental physiology.We illustrate our thesis in two ways. First, we offer two examplesdrawn from studies of thermal tolerance in the poeciliid fishHeterandria formosa. We show how fitness variation can be acomplex function of the gestational temperature and thermaltolerance and how these effects can produce environmentallyinduced variation among populations in thermal tolerance thatmimics a pattern of adaptive variation. Second, we review twocase studies that illuminate how environmental effects on amultivariate phenotype can channel the action of natural selection.The phenotypic plasticity of male life history in Poecilia latipinnain response to temperature embraces a spectrum of traits; theeffects of each one upon fitness will influence the abilityof selection to mold the response of any one of them to temperature.The phenotypic covariances in thermal tolerance and life-historytraits in Heterandria formosa differ slightly between populationsfrom different parts of the species range, apparently becauseof differences between them in thermal sensitivity; this differenceinsures that the multivariate nature of selection will be correspondinglydifferent in those different populations.  相似文献   

17.
Earth's temperature is increasing due to anthropogenic CO emissions; and organisms need either to adapt to higher temperatures, migrate into colder areas, or face extinction. Temperature affects nearly all aspects of an organism's physiology via its influence on metabolic rate and protein structure, therefore genetic adaptation to increased temperature may be much harder to achieve compared to other abiotic stresses. There is still much to be learned about the evolutionary potential for adaptation to higher temperatures, therefore we studied the quantitative genetics of growth rates in different temperatures that make up the thermal performance curve of the fungal model system Neurospora crassa. We studied the amount of genetic variation for thermal performance curves and examined possible genetic constraints by estimating the G -matrix. We observed a substantial amount of genetic variation for growth in different temperatures, and most genetic variation was for performance curve elevation. Contrary to common theoretical assumptions, we did not find strong evidence for genetic trade-offs for growth between hotter and colder temperatures. We also simulated short-term evolution of thermal performance curves of N. crassa, and suggest that they can have versatile responses to selection.  相似文献   

18.
Recently, there has been a dramatic expansion of studies ofmajor histocompatibility complex (MHC) variation aimed at discoveringfunctional differences in immunity across wild populations ofdiverse vertebrate species. Some species with relatively lowgenetic diversity or under strong directional selection by pathogenshave revealed fascinating cases of MHC allelic disease linkage.More generally in genetically diverse species, however, theselinkages may be hard to find. In this paper, we review approachesfor assessing functional variation in MHC and discuss theirpotential use for discovering smaller-scale intraspecific spatialand temporal patterns of MHC variation. Then, we describe andillustrate an approach using the structural model to producea population composite of variation in antigen-binding regionsby mapping population-specific substitutions onto functionalregions of the molecule. We are producing models of variationin major histocompatibility (MH) loci for populations of non-migratoryfish (killifish, Fundulus heteroclitus) resident at sites thatvary dramatically in environmental quality. We discuss the goalof relating MH population variation to functional differencesin disease susceptibility such as those inferred by observationsof parasitic infection and direct measurement of bacterial challengesin the laboratory. Our study has focused on relatively well-studiedkillifish populations, including those resident in a highlydisturbed, chemically contaminated estuary and nearby less contaminatedsites. Population-specific genetic changes at MHC antigen-bindingloci are described, and evidence relevant to functional implicationsof these changes is reviewed. Population-specific patterns ofvariation in antigen-binding regions in combination with a rangeof assessments of immune function will provide a powerful newapproach to reveal functional changes in MHC.  相似文献   

19.
SYNOPSIS. Morphological and physiological plasticity is oftenthought to represent an adaptive response to variable environments.However, determining whether a given pattern of plasticity isin fact adaptive is analytically challenging, as is evaluatingthe degree of and limits to adaptive plasticity. Here we describea general methodological framework for studying the evolutionof plastic responses. This framework synthesizes recent analyticaladvances from both evolutionary ecology and functional biology,and it does so by integrating field experiments, functionaland physiological analyses, environmental data, and geneticstudies of plasticity. We argue that studies of plasticity inresponse to the thermal environment may be particularly valuablein understanding the role of environmental variation in theevolution of plasticity: not only can thermally-relevant traitsoften be mechanistically and physiologically linked to the thermalenvironment, but also the variability and predictability ofthe thermal environment itself can be quantified on ecologicallyrelevant time scales. We illustrate this approach by reviewinga case study of seasonal plasticity in the extent of wing melanizationin Western White Butterflies (Pontia occidentalis). This reviewdemonstrates that 1) wing melanin plasticity is heritable, 2)plasticity does increase fitness in nature, but the effect variesbetween seasons and between years, 3) selection on existingvariation in the magnitude of plasticity favors increased plasticityin one melanin trait that affects thermoregulation, but 4) themarked unpredictability of short-term (within-season) weatherpatterns substantially limits the capacity of plasticity tomatch optimal wing phenotypes to the weather conditions actuallyexperienced. We complement the above case study with a casualreview of selected aspects of thermal acclimation responses.The magnitude of thermal acclimation ("flexibility") is demonstrablymodest rather than fully compensatory. The magnitude of geneticvariation (crucial to evolutionary responses to selection) inthermal acclimation responses has been investigated in onlya few species to date. In conclusion, we suggest that an understandingof selection and evolution of thermal acclimation will be enhancedby experimental examinations of mechanistic links between traitsand environments, of the physiological bases and functionalconsequences of acclimation, of patterns of environmental variabilityand predictability, of the fitness consequences of acclimationin nature, and of potential genetic constraints.  相似文献   

20.
In Tribolium flour beetles and other organisms, individuals migrate between heterogeneous environments where they often encounter markedly different nutritional conditions. Under these circumstances, theory suggests that genotype-by-environment interactions (GEI) may be important in facilitating adaptation to new environments and maintaining genetic variation for male traits subject to directional selection. Here, we used a nested half-sib breeding design with Tribolium castaneum to partition the separate and joint effects of male genotype and nutritional environment on phenotypic variation in a comprehensive suite of life-history traits, reproductive performance measures across three sequential sexual selection episodes, and fitness. When male genotypes were tested across three nutritional environments, considerable phenotypic plasticity was found for male mating and insemination success, longevity and traits related to larval development. Our results also revealed significant additive genetic variation for male mating rate, sperm offence ability (P(2)), longevity and total fitness and for several traits reflecting both larval and adult resource use. In addition, we found evidence supporting GEI for sperm defence ability (P(1)), adult longevity and larval development; thus, no single male genotype outperforms others in every nutritional environment. These results provide insight into the potential roles of phenotypic plasticity and GEI in facilitating Tribolium adaptation to new environments in ecological and evolutionary time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号