首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
LamB protein is involved in the transport of maltose across the outer membrane and constitutes the receptor for phage lambda. In this study we characterized six previously described anti-LamB monoclonal antibodies (mAbs). Four of these, the E-mAbs, recognized determinants that were exposed at the cell surface, whereas the other two, the I-mAbs, recognized determinants which were not exposed. Competition experiments demonstrated that the domains recognized by these two classes of mAbs were completely distinct. In addition, the E-mAbs prevented LamB from neutralizing phage lambda in vitro and protected LamB against proteolytic degradation, whereas the I-mAbs had no such effects. The E-mAbs have been shown previously to constitute two classes: some E-mAbs inhibit maltose transport in vivo, and others do not. Immunoelectron microscopy demonstrated that the I-mAbs also define at least two types of determinants. One of these, which is accessible in membrane fragments from a mutant (lpp) devoid of lipoprotein but not in membrane fragments from an lpp+ strain, probably corresponds to a region of LamB that is involved in the interactions with peptidoglycan. The other determinant, which is fully accessible in LamB-peptidoglycan complexes and in LamB-containing phospholipid vesicles but only slightly accessible in membrane fragments from an lpp mutant, is probably located very close to the inner surface of the outer membrane. LamB also contains at least one additional determinant, which (i) is exposed at the inner surface of the membrane, (ii) is accessible to antibodies in membrane fragments from an lpp+ strain, and (iii) may be involved in the interaction of LamB with the periplasmic maltose-binding protein.  相似文献   

2.
Monoclonal antibodies which recognize the cell surface-exposed part of outer membrane protein PhoE of Escherichia coli were used to select for antigenic mutants producing an altered PhoE protein. The selection procedure was based on the antibody-dependent bactericidal action of the complement system. Using two distinct PhoE-specific monoclonal antibodies, seven independent mutants with an altered PhoE protein were isolated. Among these seven mutants, five distinct binding patterns were observed with a panel of 10 monoclonal antibodies. DNA sequence analysis revealed the following substitutions in the 330-residue-long PhoE protein: Arg-201----His (three isolates), Arg-201----Cys, Gly-238----Ser, Gly-275----Ser and Gly-275----Asp. It is argued that amino acid residues 201, 238, and 275 are most likely directly involved in antibody binding and, therefore, exposed at the cell surface. Together with Arg-158, which was previously shown to be cell surface exposed as it is changed in phage TC45-resistant phoE mutants, these four positions show a remarkably regular spacing, being approximately 40 residues apart. A model is suggested in which the PhoE polypeptide repeatedly traverses the outer membrane in an antiparallel beta-pleated sheet structure, exposing eight areas to the outside which are all separated by approximately 40 residues.  相似文献   

3.
Genetic mapping of antigenic determinants on a membrane protein   总被引:9,自引:0,他引:9  
The antigenic determinants recognized by two monoclonal antibodies were mapped on LamB, an outer membrane protein of Escherichia coli. The procedure consisted of performing immunoprecipitation experiments with extracts of strains which produced truncated fragments of LamB, either in a free form (deletion and nonsense mutants) or fused to another polypeptide (malK-lamB and lamB-lacZ fusion strains). The conclusion is that the two antigenic determinants are located within 70 residues from the COOH-terminal end of LamB, which contains a total of 421 amino acids. Since these two antigenic sites were previously demonstrated to be exposed at the cell surface, it follows that a COOH-terminal portion of LamB must be located on the outer surface of the outer membrane.  相似文献   

4.
The relationships between the bacteriophage lambda binding site, the starch binding site and the pore formed by maltoporin (LamB protein, lambda receptor protein) were investigated. Bacteria with single amino acid substitutions in the maltoporin sequence, which were previously shown to be strongly reduced in phage lambda sensitivity, were assayed for maltose- (and maltodextrin) selective pore functions. Maltose transport assays was performed at low substrate concentrations, under conditions where LamB is limiting for transport. It revealed three classes of mutants. Class A is composed of mutants with no effect on transport (substitutions at amino acid residues 154, 155, 259, 382 and 401); class B corresponds to mutants with a significant but variable reduction in transport (sites 148, 151, 152, 163, 164, 245, 247 and 250); class C is represented by a single mutant for which transport is almost completely abolished (site 18). Starch binding was assayed by two different methods that gave compatible results. In class A mutants, binding was normal, while no binding was observed in the class C mutant. Binding was impaired to various extents in category B mutants. There was a correlation between the level of impairment of starch binding and impairment of maltose transport, consistent with the notion that the residues influencing starch binding are inside, or in close proximity to, the pore. These results, together with previous data on starch-binding mutants that were not affected in phage binding (substitutions at residues 8, 74, 82, 118 and 121), suggest that the binding sites for starch and phage lambda overlap but are distinct. Mutations affecting transport and starch binding are located in the first third of the protein and in the region of residues 245 to 250. Mutations affecting phage adsorption are located mainly in the last two-thirds of the protein. The topological constraints suggested by the results with the available mutants altered in the lamB gene were used to propose a revised model of maltoporin folding across the outer membrane as well as to define the outlines of footprints of macromolecular binding sites (phage, starch and monoclonal antibodies) on the surface of the protein.  相似文献   

5.
We present the DNA sequence alterations due to seven lamB missense mutations yielding resistance to phages lambda and K10. They reveal five different amino acid positions in the LamB protein. Three positions (245, 247 and 249) define a new region required for phage adsorption. The two other positions (148 and 152) belong to a region where mutations to phage resistance has already been detected. These two regions are hydrophilic and could belong to turns of the protein located at the surface of the cell. All the missense mutational alterations to phage resistance sequenced in the LamB protein correspond to 10 sites located in four different segments of the polypeptide chain. We discuss their location in terms of the notion of phage receptor site and of a working model for the organization of this protein in the outer membrane of Escherichia coli.  相似文献   

6.
When Triton X-100/EDTA extracts of the outer membrane of Escherichia coli K12 were passed through a column containing maltose-binding protein covalently linked to Sepharose 6MB beads, the phage lambda receptor protein or LamB protein was quantitatively and specifically adsorbed to the column and was eluted with a solution containing 1 M NaCl, but not with that containing 0.5 M maltose. The binding did not take place when columns containing inactivated Sepharose beads alone, or Sepharose bound to histidine-binding protein of Salmonella typhimurium, were used. This interaction is consistent with the hypothesis that the periplasmic maltose-binding protein interacts with the part of the LamB protein exposed on the inner surface of the outer membrane, thereby increasing the specificity of the solute penetration process through the LamB channel.  相似文献   

7.
Eight independently derived monoclonal antibodies directed against the LamB protein were produced and characterized. By using these antibodies as probes, we identified four distinct topological and functional regions in the LamB molecule. Four monoclonal antibodies recognize antigenic determinants of the protein exposed on the outer side of the membrane. Two of these have their binding sites located in a region involved in maltose transport. One monoclonal antibody presumably binds to a determinant which is normally hidden in the membrane and three monoclonal antibodies recognize determinants facing the periplasmic space.  相似文献   

8.
In one malE mutant known to be deficient in the transport of maltose and maltodextrins across the outer membrane, the altered MalE protein was shown to be defective in its interaction with the phage lambda receptor, or LamB protein, of the outer membrane.  相似文献   

9.
The assembly of newly induced LamB protein (phage lambda receptor) was investigated in an operon fusion strain of Escherichia coli, in which the lamB gene is expressed under lac promoter control. The induction kinetics both for total cellular and for cell surface-exposed LamB protein were studied by immunochemical detection methods, using two distinct antisera directed against detergent-solubilized LamB trimers and completely denatured LamB monomers, respectively. Anti-trimer antibodies recognized both monomers and trimers, whereas anti-monomer antibodies only reacted with monomers. Provided appropriate solubilization conditions were used, both antisera were able to immunoprecipitate intracellular mature LamB protein quantitatively. Following induction, the first LamB antigenic determinants were detected after 60 to 80 seconds; detection of the newly synthesized protein by anti-monomer antibodies slightly preceded that by anti-trimer antibodies, a finding that could be partly explained by the observation that anti-monomer antibodies recognized a larger fraction of nascent LamB than did anti-trimer antibodies. Exposure of antigenic determinants at the cell surface was delayed for 30 to 50 seconds with respect to their synthesis. Therefore, either translocation or conformational changes must be rate-limiting in the series of processes that eventually convert the newly synthesized protein into its mature outer membrane state. LamB protein was found to occur in at least three clearly distinguishable states. State I is the LamB monomer, state II corresponds to a metastable trimer that dissociates in sodium dodecyl sulphate above 60 degrees C, and state III is the state LamB trimer that dissociates in sodium dodecyl sulphate only at temperatures above 90 degrees C. The chase kinetics of these states showed that conversion of newly synthesized LamB monomers to stable LamB trimers occurred in two stages: state I monomers were chased into metastable state II trimers rapidly (t 1/2 = 20 s), whereas stabilization of state II trimers to state III trimers was a relatively slow (t 1/2 = 5.7 min) process. Based on our results, a timing sequence in the assembly of outer membrane LamB protein is proposed.  相似文献   

10.
Proteins destined for either the periplasm or the outer membrane of Escherichia coli are translocated from the cytoplasm by a common mechanism. It is generally assumed that outer membrane proteins, such as LamB (maltoporin or lambda receptor), which are rich in beta-structure, contain additional targeting information that directs proper membrane insertion. During transit to the outer membrane, these proteins may pass, in soluble form, through the periplasm or remain membrane associated and reach their final destination via sites of inner membrane-outer membrane contact (zones of adhesion). We report lamB mutations that slow signal sequence cleavage, delay release of the protein from the inner membrane, and interfere with maltoporin biogenesis. This result is most easily explained by proposing a soluble, periplasmic LamB assembly intermediate. Additionally, we found that such lamB mutations confer several novel phenotypes consistent with an abortive attempt by the cell to target these tethered LamB molecules. These phenotypes may allow isolation of mutants in which the process of outer membrane protein targeting is altered.  相似文献   

11.
To investigate the role of the cell surface-exposed regions of outer membrane protein PhoE of Escherichia coli K12 in the biogenesis of the protein, deletions were generated in two presumed cell surface-exposed regions of the protein. Intact cells expressing these mutant proteins were recognized by PhoE-specific monoclonal antibodies, which recognize conformational epitopes on the cell surface-exposed parts of the protein and/or were sensitive to a PhoE-specific phage. This shows that the polypeptides were normally incorporated into the outer membrane. When the deletions extended four amino acid residues into the seventh presumed membrane-spanning segment, the polypeptides accumulated in the periplasm. In conclusion, exposed regions of PhoE protein apparently do not play an essential role in outer membrane localization, which is consistent with the observation that these regions are hypervariable when PhoE is compared to the related proteins OmpF and OmpC. In contrast, the membrane-spanning segments are essential for the assembly process.  相似文献   

12.
We have analyzed eight new phage-resistant missense mutations in lamB. These mutations identify five new amino acid residues essential for phage lambda adsorption. Two mutations at positions 245 and 382 affect residues which were previously identified, but lead to different amino acid changes. Three mutations at residues 163, 164, and 250 enlarge and confirm previously proposed phage receptor sites. Two different mutations at residue 259 and one at 18 alter residues previously suggested as facing the periplasmic face. The mutation at residue 18 implicates for the first time the amino-terminal region of the LamB protein in phage adsorption. The results are discussed in terms of the topology of the LamB protein.  相似文献   

13.
Except for the main porin proteins OmpC and OmpF there exist the membrane proteins participating in the transport of specific substrates: phosphates, nucleosides, iron, vitamin B12, maltose and maltodextrins, that also play the role of phage receptors. Some phages use as receptors the porins determined by the genes of lambdoid prophages. LamB protein that serves receptor for phage lambda exposes the amino acids sequence on the outer surface of membranes that participates in phage adsorption. The sequence is similar to tetrapeptide of fibronectin responsible for binding with the surface of cellular receptor in eucaryotes.  相似文献   

14.
Maltoporin (LamB protein) is a maltodextrin transport protein in the outer membrane of Escherichia coli with binding sites for bacteriophage lambda and maltosaccharides. Binding of starch by bacteria was found to inhibit swarming of Escherichia coli in soft agar plates; the inhibition was dependent on the maltodextrin affinity of maltoporin. On the basis of this observation, chemotactic cell-sorting techniques were developed for the isolation and analysis of mutants with an altered starch-binding phenotype. Fifteen lamB mutations generated by hydroxylamine and linker mutagenesis, as well as spontaneous mutations, were analyzed. The effects of the mutations on starch and lambda-binding, as well as transport specificity, were assayed. Mutations that affect residues near 8 to 18, 74 to 82, and 118 to 121 were found to affect starch binding and maltodextrin-selective functions strongly, confirming and extending previous results with substitutions at these regions. Substitutions and insertions in two previously undefined regions in the protein, in or near residues 194 and 360, also resulted in defects in maltodextrin-specific functions and indicate that C-terminal parts of the protein also contribute to the discontinuous binding and pore domains. There was a detectable transport defect in all binding-affected mutants, and one mutation caused near-total pore blocking towards both maltose and nonmaltoside. The highly discontinuous phage lambda-binding site was affected by mutations near residues 9 and 10 and 194, as well as previously established regions near residues 18, 148 to 165, 245 to 259, and 380 to 400. The significance of these mutations is discussed in the context of a model of the functional topology of maltoporin. The additional role of regions near residues 10 and 120 in maltoporin assembly, as well as starch binding, was suggested by the temperature-sensitive biogenesis of maltoporin in strains with one- or two-codon insertion at these sites.  相似文献   

15.
We are developing a genetic approach to study with a single antibody the folding and topology of LamB, an integral outer membrane protein from Escherichia coli K-12. This approach consists of inserting the same reporter foreign antigenic determinant (the C3 epitope from poliovirus) at different sites of LamB so that the resulting hybrid proteins have essentially kept the in vivo biological properties of LamB and therefore its cellular location and structure; the corresponding sites are called permissive sites. A specific monoclonal antibody can then be used to examine the position of the reporter epitope with respect to the protein and the membrane. We present an improved and efficient procedure that led us to identify eight new permissive sites in LamB. These sites appear to be distributed on both sides of the membrane. At one of them (after residue 253), the C3 epitope was detected on intact bacteria, providing the first direct argument for exposure of the corresponding LamB region at the cell surface. At this site as well as at four others (after residues 183, 219, 236, and 352), the C3 epitope could be detected with the C3 monoclonal antibody at the surface of the extracted trimeric LamB-C3 hybrid proteins. We provide a number of convergent arguments showing that the hybrid proteins are not strongly distorted with respect to the wild-type protein so that the conclusions drawn are also valid for this protein. These conclusions are essentially in agreement with the proposed folding model for the LamB protein. They agree, in particular, with the idea that regions 183 and 352 are exposed to the periplasm. In addition, they suggest that region 236 is buried at the external face of the outer membrane and that region 219 is exposed to the periplasm. Including the 3 sites previously determined, 11 permissive sites are now available in LamB, including 3 at the cell surface and most probably at least 3 in the periplasm. We discuss the nature of such sites, the generalization of this approach to other proteins, and possible applications.  相似文献   

16.
Advanced techniques for observing protein localization in live bacteria show that the distributions are dynamic. For technical reasons, most such techniques have not been applied to outer membrane proteins in Gram-negative bacteria. We have developed two novel live-cell imaging techniques to observe the surface distribution of LamB, an abundant integral outer membrane protein in Escherichia coli responsible for maltose uptake and for attachment of bacteriophage lambda. Using fluorescently labelled bacteriophage lambda tails, we quantitatively described the spatial distribution and dynamic movement of LamB in the outer membrane. LamB accumulated in spiral patterns. The distribution depended on cell length and changed rapidly. The majority of the protein diffused along spirals extending across the cell body. Tracking single particles, we found that there are two populations of LamB--one shows very restricted diffusion and the other shows greater mobility. The presence of two populations recalls the partitioning of eukaryotic membrane proteins between 'mobile' and 'immobile' populations. In this study, we have demonstrated that LamB moves along the bacterial surface and that these movements are restricted by an underlying dynamic spiral pattern.  相似文献   

17.
The outer membrane of Escherichia coli was altered as a consequence of lysogeny by bacteriophages P1 and P1 cmts. The predominant change was a reduction in the size of lipopolysaccharide to a heptose-deficient form. P1 cmts lysogens were still sensitive to several bacteriophages but were resistant to lambda vir. Neither whole cells nor solubilized outer membranes from P1 cmts lysogens were able to inactivate lambda vir, and 32P-labeled lambda vir was unable to adsorb to P1 cmts lysogens. P1 cmts lysogens were also affected in maltose transport. The level of periplasmic maltose-binding protein was reduced somewhat, but there was no significant reduction in the level of the outer membrane lambda receptor (LamB). These membrane abnormalities were all corrected in strains cured of P1 cmts. It is suggested that P1 cmts affects lipopolysaccharide biosynthesis by a phage conversion mechanism and consequently the function of the lambda receptor.  相似文献   

18.
Four outer membrane proteins of Escherichia coli were examined for their capabilities and limitations in displaying heterologous peptide inserts on the bacterial cell surface. The T7 tag or multiple copies of the myc epitope were inserted into loops 4 and 5 of the ferrichrome and phage T5 receptor FhuA. Fluorescence-activated cell sorting analysis showed that peptides of up to 250 amino acids were efficiently displayed on the surface of E. coli as inserts within FhuA. Strains expressing FhuA fusion proteins behaved similarly to those expressing wild-type FhuA, as judged by phage infection and colicin sensitivity. The vitamin B(12) and phage BF23 receptor BtuB could display peptide inserts of at least 86 amino acids containing the T7 tag. In contrast, the receptors of the phages K3 and lambda, OmpA and LamB, accepted only insertions in their respective loop 4 of up to 40 amino acids containing the T7 tag. The insertion of larger fragments resulted in inefficient transport and/or assembly of OmpA and LamB fusion proteins into the outer membrane. Cells displaying a foreign peptide fused to any one of these outer membrane proteins were almost completely recovered by magnetic cell sorting from a large pool of cells expressing the relevant wild-type platform protein only. Thus, this approach offers a fast and simple screening procedure for cells displaying heterologous polypeptides. The combination of FhuA, along with with BtuB and LamB, should provide a comprehensive tool for displaying complex peptide libraries of various insert sizes on the surface of E. coli for diverse applications.  相似文献   

19.
Bacteriophage lambda adsorbs to its Escherichia coli K-12 host by interacting with LamB, its cell-surface receptor. We fused C-terminal portions of J, the tail fiber protein of lambda, to maltose-binding protein. Solid-phase binding assays demonstrated that a purified fusion protein comprising only the last 249 residues of J could bind to LamB trimers and inhibited recognition by anti-LamB antibodies. Electron microscopy further demonstrated that the fusion protein could also bind to LamB at the surface of intact cells. This interaction prevented lambda adsorption but affected only partially maltose uptake.  相似文献   

20.
A new strategy for combinatorial mutagenesis was developed and applied to residues 40 through 60 of LamB protein (maltoporin), with the aim of identifying amino acids important for LamB structure and function. The strategy involved a template containing a stop codon in the target sequence and a pool of random degenerate oligonucleotides covering the region. In vitro mutagenesis followed by selection for function (Dex+, ability to utilize dextrins) corrected the nonsense mutation and simultaneously forced incorporation of a random mutation(s) within the region. The relative importance of each residue within the target was indicated by the frequency and nature of neutral and deleterious mutations recovered at each position. Residues 41 through 43 in LamB accepted few neutral substitutions, whereas residues 55 through 57 were highly flexible in this regard. Consistent with this finding was that the majority of defective mutants were altered at residues 41 to 43. Characterization of these mutants indicated that the nature of residues 41 to 43 influenced the amount of stable protein in the outer membrane. These results, as well as the conserved nature of this stretch of residues among outer membrane proteins, suggest that residues 41 to 43 of LamB play an important role in the process of outer membrane localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号