首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have used Ca2+-dependent binding to a phospholipid vesicle affinity column to isolate a mixture of three synexin-like proteins from the cytosol of human polymorphonuclear leukocytes (PMN), with relative molecular weights of approximately 67,000, 47,000, and 28,000. Rabbit antibodies raised against bovine liver synexin recognized the 47,000 molecular weight PMN protein. These PMN proteins, like bovine liver synexin, promoted aggregation of isolated PMN specific granules in the presence of Ca2+ and increased the overall rate of Ca2+-induced fusion of liposomes composed of phosphatidate (PA)/phosphatidylethanolamine (PE) (1:3) and phosphatidylserine/PE (1:3), but decreased the rate of spermine-induced fusion of PA/PE (1:3) liposomes. Using fluorescent lipid probes, rapid fusion of PA/PE liposomes with PMN specific granules (50% maximum signal within a few minutes) was observed when 1 mM Ca2+ was added in the presence of both synexin and free arachidonic acid. Dilution of the aqueous contents of liposomes was also observed under the same conditions. The rate of fusion increased monotonically with Ca2+ and arachidonic acid concentrations, but synexin exhibited an optimum concentration. Lack of any one of the components precluded rapid fusion. These results suggest that PMN contain a protein similar to, or identical with, synexin that may be involved in calcium-dependent fusion of intracellular membranes.  相似文献   

2.
The interaction of spermine with acidic phospholipids was investigated for its possible relevance to membrane fusion. Equilibrium dialysis was used to measure the binding of spermine and calcium to large unilamellar vesicles (liposomes) of phosphatidate (PA) or phosphatidylserine (PS). Spermine bound to isolated PA and PS liposomes with intrinsic association constants of approximately 2 and 0.2 M-1, respectively. Above the aggregation threshold of the liposomes, the binding of spermine increased dramatically, especially for PA. The increased binding upon aggregation of PA liposomes was interpreted as evidence for the formation of a new binding complex after aggregation. Spermine enhanced calcium binding to PA, while it inhibited calcium binding to PS, under the same conditions. This difference explained the small effect of spermine on the overall rate of calcium-induced fusion of PS liposomes as opposed to the large effect on PA liposomes. The rate increase could be modeled by a spermine-induced increase in the liposome aggregation rate. The preference for binding of spermine to PA over PS suggested a preference for accessible monoesterified phosphate groups by spermine. This preference was confirmed by the large effects of spermine on aggregation and overall fusion rates of liposomes containing phosphatidylinositol 4,5-diphosphate. The large spermine effects on these liposomes compared with phosphatidate- or phosphatidylinositol-containing liposomes suggested that spermine has a strong specific interaction with phosphatidylinositol 4,5-diphosphate. Clearly, phosphorylation of phosphatidylinositol can lead to a large change in the spermine sensitivity of membrane fusion.  相似文献   

3.
P Meers  K Hong  D Papahadjopoulos 《Biochemistry》1988,27(18):6784-6794
The effect of free fatty acids on the cation-induced fusion of large unilamellar vesicles (liposomes) was investigated by using fluorescent assays which monitor the mixing of aqueous contents of liposomes. Overall fusion was modeled as a two-step process involving aggregation of vesicles followed by actual fusion. Different experimental conditions were used which favored either aggregation or fusion as the rate-limiting step in the overall process. When phosphatidylserine liposomes were induced to fuse by 4 mM Ca2+ plus 5 mM Mg2+, preincubation with arachidonic acid showed a dramatically increased overall rate of fusion compared to the same liposomes not treated with fatty acid. When fusion was induced by 3 mM Ca2+, arachidonic acid had little effect. These results were interpreted in terms of the action of arachidonic acid only at the fusion step per se and not the aggregation step. Therefore, the enhancement of the overall fusion rate would be observed solely under conditions where the actual fusion of liposomes was rate limiting (Ca/Mg) rather than the aggregation of liposomes (Ca alone). When other liposome systems were tested, the effect of arachidonic acid was observed only under fusion rate-limiting conditions. Arachidonic acid was found to act synergistically with promoters of liposomal aggregation, such as Mg2+, spermine, and synexin, to enhance the overall rate of liposome fusion, as would be expected from action at separate kinetic steps. The dependence of the fusion rates on arachidonic acid concentration demonstrated an apparently cooperative effect. The structure of the fatty acid is of critical importance in determining its effects, as shown by the fact that 16-doxylstearic acid always increased the rate of fusion while 5-doxylstearic acid always decreased the rate of fusion under all conditions tested. A number of different fatty acids, including oleic acid, elaidic acid, 16-doxylstearic acid, myristic acid, and stearic acid, were effective at increasing the fusion rate to varying extents. In general, unsaturated fatty acids were more effective than saturated ones, either due to partitioning into the membrane or because of structural requirements for promotion of fusion.  相似文献   

4.
Lamellar bodies of lung epithelial type II cells undergo fusion with plasma membrane prior to exocytosis of surfactant into the alveolar lumen. Since synexin from adrenal glands promotes aggregation and fusion of chromaffin granules, we purified synexin-like proteins from bovine lung cytosolic fraction, and evaluated their effect on the fusion of isolated lamellar bodies and plasma membrane fractions. Synexin activity, which co-purified with an approx. 47 kDa protein (pI 6.8), was assessed by following calcium-dependent aggregation of liposomes prepared from a mixture of phosphatidylcholine:phosphatidylserine (PC:PS, 3:1, mol/mol). Lung synexin caused aggregation of liposomes approximating lung surfactant lipid-like composition, isolated lamellar bodies, or isolated plasma membrane fraction. Lung synexin promoted fusion only in the presence of calcium. It augmented fusion between lamellar bodies and plasma membranes, lamellar bodies and liposomes, or between two populations of liposomes. However, selectivity with regard to synexin-mediated fusion was observed as synexin did not promote fusion between plasma membrane and liposomes, or between liposomes of surfactant lipid-like composition and other liposomes. These observations support a role for lung synexin in membrane fusion between the plasma membrane and lamellar bodies during exocytosis of lung surfactant, and suggest that such fusion is dependent on composition of interacting membranes.  相似文献   

5.
We have studied the effect of the polyamines (spermine, spermidine, and putrescine) on the aggregation and fusion of large (approximately 100 nm in diameter) unilamellar liposomes in the presence of 100 mM NaCl, pH 7.4. Liposome fusion was monitored by the Tb/dipicolinic acid fluorescence assay for the intermixing of internal aqueous contents, and the release of contents was followed by carboxyfluorescein fluorescence. Spermine and spermidine at physiological concentrations aggregated liposomes composed of pure phosphatidylserine (PS) or phosphatidate (PA) and mixtures of PA with phosphatidylcholine (PC) but did not induce any fusion. However, liposomes composed of mixtures of acidic phospholipids, cholesterol, and a high mole fraction of phosphatidylethanolamine could be induced to fuse by spermine and spermidine in the absence of divalent cations. Putrescine alone in the physiological concentration range was ineffective for both aggregation and fusion of these liposomes. Liposomes made of pure PC did not aggregate in the presence of polyamines. Addition of aggregating concentrations of spermine caused a drastic increase in the rate of Ca(2+)-induced fusion of PA liposomes and a large decrease in the threshold Ca(2+) concentration required for fusion. This effect was less pronounced in the case of PS or PA/PC vesicles. Preincubation of PA vesicles with spermine before the addition of Ca(2+) resulted in a 30-fold increase in the initial rate of fusion. We propose that polyamines may be involved in the regulation of membrane fusion phenomena accompanying cell growth, cell division, exocytosis, and fertilization.  相似文献   

6.
Fusogenic capacities of divalent cations and effect of liposome size   总被引:3,自引:0,他引:3  
J Bentz  N Düzgüne? 《Biochemistry》1985,24(20):5436-5443
The initial kinetics of divalent cation (Ca2+, Ba2+, Sr2+) induced fusion of phosphatidylserine (PS) liposomes, LUV, is examined to obtain the fusion rate constant, f11, for two apposed liposomes as a function of bound divalent cation. The aggregation of dimers is rendered very rapid by having Mg2+ in the electrolyte, so that their subsequent fusion is rate limiting to the overall reaction. In this way the fusion kinetics are observed directly. The bound Mg2+, which by itself is unable to induce the PS LUV to fuse, is shown to affect only the aggregation kinetics when the other divalent cations are present. There is a threshold amount of bound divalent cation below which the fusion rate constant f11 is small and above which it rapidly increases with bound divalent cation. These threshold amounts increase in the sequence Ca2+ less than Ba2+ less than Sr2+, which is the same as found previously for sonicated PS liposomes, SUV. While Mg2+ cannot induce fusion of the LUV and much more bound Sr2+ is required to reach the fusion threshold, for Ca2+ and Ba2+ the threshold is the same for PS SUV and LUV. The fusion rate constant for PS liposomes clearly depends upon the amount and identity of bound divalent cation and the size of the liposomes. However, for Ca2+ and Ba2+, this size dependence manifests itself only in the rate of increase of f11 with bound divalent cation, rather than in any greater intrinsic instability of the PS SUV. The destabilization of PS LUV by Mn2+ and Ni2+ is shown to be qualitatively distinct from that induced by the alkaline earth metals.  相似文献   

7.
T Stegmann  S Nir  J Wilschut 《Biochemistry》1989,28(4):1698-1704
Fusion of influenza virus with liposomes composed of negatively charged phospholipids differs from fusion with biological membranes or zwitterionic liposomes with ganglioside receptors [Stegmann, T., Hoekstra, D., Scherphof, G., & Wilschut, J. (1986) J. Biol. Chem. 261, 10966-10969]. In this study, we investigated how the kinetics and extent of fusion of influenza virus, monitored with a fluorescence resonance energy-transfer assay, are influenced by the surface charge and the presence of receptors on liposomal membranes. The results were analyzed in terms of mass action kinetic model, providing separate rate constants for the initial virus-liposome adhesion, or aggregation, and for the actual fusion reaction. Incorporation of increasing amounts of cardiolipin (CL) or phosphatidylserine (PS) into otherwise zwitterionic phosphatidylcholine (PC)/phosphatidylethanolamine (PE) vesicles results in a gradual shift of the pH threshold of fusion to neutral, relative to the pH threshold obtained with PC/PE vesicles containing the ganglioside GD1a, while also the rate of fusion increases. This indicates the emergence of a fusion mechanism not involving the well-documented conformational change in the viral hemagglutinin (HA). However, only with pure CL liposomes this nonphysiological fusion reaction dominates the overall fusion process; with pure PS or with zwitterionic vesicles containing CL or PS, the contribution of the nonphysiological fusion reaction is small. Accordingly, preincubation of the virus alone at low pH results in a rapid inactivation of the viral fusion capacity toward all liposome compositions studied, except pure CL liposomes. The results of the kinetic analyses show that with pure CL liposomes the rates of both virus-liposome adhesion and fusion are considerably higher than with all other liposome compositions studied.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Fusion of chromaffin granule ghosts was induced by synexin at pH 6, 37 degrees C, in the presence of 10(-7) M Ca2+. To study the kinetics and extent of this fusion process we employed two assays that monitored continuously mixing of aqueous contents or membrane mixing by fluorescence intensity increases. In both assays chromaffin granule ghosts were either labeled on the membrane or in the included aqueous phase. The ratios of blank to labeled chromaffin granule ghosts were varied from 1 to 10. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of aggregation followed by a first-order fusion reaction. The model calculations gave fare simulations and predictions of the experimental results. The rate constants describing membrane mixing are more than 2-fold larger than those for volume mixing. The analysis also indicated that the initial aggregation and fusion processes, up to dimer formation, were extremely fast. The rate constant of aggregation was close to the limit in diffusion-controlled processes, whereas the fusion rate constant was about the same as found in fastest virus-liposome fusion events at pH 5. A small increase in volume was found to accompany the fusion between chromaffin granule ghosts. Using ratios of synexin to chromaffin granule ghost protein of 0.13, 0.41 and 1.15 indicated that the overall fusion rate was larger for the intermediate (0.41) case. The analysis showed that the main activity of synexin was an enhancement of the rate of aggregation. At intermediate or excessive synexin concentrations it, respectively, promoted moderately, or inhibited the actual fusion step.  相似文献   

9.
The physical stability of six liposome systems designed as platelet substitutes was determined on storage at 4 degrees C over a 3-month period under quiescent conditions. Liposomes used were large unilamellar vesicles. Correlation of the n-average mean diameter, polydispersity, zeta-potential and the presence of aminophospholipid on liposome surface (in those preparations which contain phosphatidylethanolamine (PE) and phosphatidylserine (PS)) led to the conclusion that liposomes that mimicked the composition of platelets were the most stable. When a net charge was present in the vesicles (liposomes with PS), the likelihood of aggregation was extremely low. In the period studied, a proportion of 25% of charged lipid (PS) conferred sufficient electrostatic stabilization to prevent vesicle fusion. An increase in this charge did not modify the stability characteristics. PE-containing liposomes behaved in a particular way: when PE content was 50%, the stability of the preparation was limited to 1 month; whereas if the content was 25%, the zeta-potential rose with time, as did the presence of PE in the liposome surface.  相似文献   

10.
Stilbene disulfonic acids inhibit surfactant secretion from lung epithelial type II cells by an undefined mechanism, and inhibit CD4 mediated cell-cell fusion. We have previously shown that lung synexin promotes in vitro fusion of lamellar bodies and plasma membranes, an obligatory process for surfactant secretion. This study investigates the effect of stilbene disulfonic acids, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), 4-acetamido-4′-isothiocyanatostilbene-2,2′-disulfonic acid (SITS), and 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid (AMDS), on synexin-mediated liposome aggregation and fusion. Structurally, these three stilbene compounds differ in the number of isothiocyano groups present (DIDS = 2, SITS = 1, and AMDS = 0). At 10 μg synexin/ml, DIDS and SITS inhibited synexin-mediated liposome aggregation with an EC50 of 3.5 μM and 148 μM, respectively. In comparison, AMDS was least inhibitory (EC50 > 1 mM). Thus, the inhibitory potency (DIDS > SITS > AMDS) was partly dependent upon the number of isothiocyano groups. The EC50 was also dependent on synexin concentration. Stilbene disulfonic acids were also inhibitory for arachidonic acid-enhanced synexin-mediated liposome fusion. The EC50 for DIDS and SITS for fusion were similar to that for liposome aggregation. Ca2+-induced synexin polymerization, measured by 90° light scattering, was increased by DIDS, suggesting binding of stilbene disulfonic acids to synexin. The binding of DIDS to synexin was dependent on the molar ratio of synexin to DIDS. These results indicate that stilbene disulfonic acids interact directly with synexin to inhibit membrane aggregation and fusion. Our results suggest that such inhibition of synexin activity may contribute towards inhibition of surfactant secretion by DIDS, and support a physiological role for synexin in lung surfactant secretion.  相似文献   

11.
聚乙二醇和金属离子诱导脂质体与细胞的融合   总被引:1,自引:0,他引:1  
用荧光菜振能量转移技术检测PEG和金属离子诱导脂质体和细胞的融合,发现有TEG参与诱导时,虽然Ca^2+对膜融合的促进作用仍专一地依赖于PS的存在,但其对PS的依赖性降低;Mn^2+促进含PS和PE的脂质体与细胞的融合,而Mg^2+无作用。以PC:CL:Chol为0.5:0.5:1的脂质体包埋天花粉蛋白,经PEG诱导与骨髓瘤细胞SP20融合,提高了天花粉蛋白对骨髓瘤细胞的杀伤力。  相似文献   

12.
A M Haywood  B P Boyer 《Biochemistry》1984,23(18):4161-4166
How the lipid composition of liposomes determines their ability to fuse with Sendai virus membranes was tested. Liposomes were made of compositions designed to test postulated mechanisms of membrane fusion that require specific lipids. Fusion does not require the presence of lipids that can form micelles such as gangliosides or lipids that can undergo lamellar to hexagonal phase transitions such as phosphatidylethanolamine (PE), nor is a phosphatidylinositol (PI) to phosphatidic acid (PA) conversion required, since fusion occurs with liposomes containing phosphatidylcholine (PC) and any one of many different negatively charged lipids such as gangliosides, phosphatidylserine (PS), phosphatidylglycerol, dicetyl phosphate, PI, or PA. A negatively charged lipid is required since fusion does not occur with neutral liposomes containing PC and a neutral lipid such as globoside, sphingomyelin, or PE. Fusion of Sendai virus membranes with liposomes that contain PC and PS does not require Ca2+, so an anhydrous complex with Ca2+ or a Ca2+-induced lateral phase separation is not required although the possibility remains that viral binding causes a lateral phase separation. Sendai virus membranes can fuse with liposomes containing only PS, so a packing defect between domains of two different lipids is not required. The concentration of PS required for fusion to occur is approximately 10-fold higher than that required for ganglioside GD1a, which has been shown to act as a Sendai virus receptor. When cholesterol is added as a third lipid to liposomes containing PC and GD1a, the amount of fusion decreases if the GD1a concentration is low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Synexin, a protein from the cytosol of the adrenal medulla, selectively increases the ability of Ca2+ to aggregate chromaffin granules and other membrane-bound particles. The ability of synexin to self-aggregate in the presence of Ca2+ can be employed in the purification of the protein by monitoring purification with parallel assays that utilize the aggregation of both chromaffin granule membranes and phosphatidylserine liposomes. It is shown that the enhancement of the Ca2+-induced aggregation of both liposomes and chromaffin granule membranes is a property associated with a 47,000 Mr protein. Trypsin inactivated synexin. We found that if granule membranes were well washed after trypsin treatment, they were still excellent substrates for synexin aggregation. This finding cannot be explained by extinction changes owing to synexin self-aggregation. The 47,000 Mr protein enhancement Ca2+ aggregation of phosphatidylserine liposomes containing up to 40% phosphatidylcholine, liposomes made from lipids extracted from chromaffin granule membranes, and trypsin-treated chromaffin granule membranes, thus suggesting that synexin activity in vivo may be independent of specific membrane proteins but dependent on the presence of acidic phospholipids in the membrane.  相似文献   

14.
S Nir  T Stegmann  J Wilschut 《Biochemistry》1986,25(1):257-266
The kinetics and extent of low pH induced fusion between influenza virus and large unilamellar cardiolipin liposomes were investigated with an assay for lipid mixing based on fluorescence resonance energy transfer. The results were analyzed in terms of a mass action kinetic model, which views the overall fusion reaction as a sequence of a second-order process of virus-liposome adhesion or aggregation followed by the first-order fusion reaction itself. The fluorescence development during the course of the fusion process was calculated by numerical integration, employing separate rate constants for the initial aggregation step and for the subsequent fusion reaction. Analytical solutions were found for several limiting cases. Deaggregation of virus--liposome aggregates was explicitly taken into account but was found to be a minor effect under the conditions studied. The calculations gave good simulations and predictions for the kinetics and extent of fusion at different virus/liposome concentrations and ratios. At pH 5.0 and 37 degrees C, very high rate constants for aggregation and fusion were obtained, and essentially all of the virus particles were involved in the fusion process. Experiments at different virus/liposome ratios showed that fusion products may consist of a single virus particle and several liposomes but not of a single liposome and several virus particles. At pH 6.0, the rate constant for aggregation was the same as at pH 5.0, but the rate constant of fusion was about 5-fold lower, and only 25-40% of the virus particles were capable of fusing with the liposomes. The analytical procedure presented enables elucidation of the crucial role of the composition of target membrane vesicles in the initial adhesion and subsequent fusion of the virus at various pH values.  相似文献   

15.
The bilayer phase of dioleoylphosphatidylethanolamine (PE) can be stabilized with palmitoyl-IgG monoclonal antibody to the glycoprotein gD of the herpes simplex virus (HSV). Interactions of PE immunoliposomes with the target virions were characterized by analyzing the kinetics of lipid mixing, by liposomal content release, and by ultrastructural studies. As revealed by a resonance energy transfer assay, lipid mixing between PE immunoliposomes and virions was very rapid, with a second-order rate constant (kapp) of 0.173 (min)-1 (microgram/mL virus)-1. In comparison, content release from PE immunoliposomes was much slower and exhibited multiple-phase, mixed-order kinetics, indicating that liposome destabilization involved fusion of liposomes with HSV. The extent and the apparent rate of liposome destabilization were strongly dependent on liposome concentration. This was evident by the fact that only one to two liposomes were destabilized by each virus particle at low liposome concentration (0.1 microM). For higher liposome concentrations (1-10 microM), this value was 35-104. This finding implies that collision among the virus-bound liposomes is essential for the eventual collapse of PE immunoliposomes to form the hexagonal (HII) equilibrium phase which was observed using freeze-fracture electron microscopy. Studies employing soluble gD, immobilized on latex beads, indicated that a multivalent antigen source is essential for PE immunoliposome destabilization. Immediately after liposome-virus binding, fusion of liposome with the viral membrane then follows. Upon growth of the fusion complexes, which increase to 35-104 liposomes for each virus, an eventual collapse of the structure results, driving PE to its equilibrium structure of HII phase.  相似文献   

16.
Synexin, a soluble adrenal medullary and liver protein which causes calcium-dependent aggregation of isolated chromaffin granules, was isolated and purified according to published procedures. The effects of synexin on the kinetics of membrane fusion were examined. Membrane fusion was assayed by following the mixing of aqueous contents of phospholipid vesicles. Synexin lowers the threshold of CA2+ concentration required for fusion of large unilamellar vesicles of phosphatidylserine and a mixture of phosphatidylserine with phosphatidylethanolamine. synexin also increases drastically the initial rate of fusion. the initial rate of fusion increases with the quantity of synexin present in the reaction mixture. In the presence of 1-2 mM Ca2+ and 50 microM phospholipid, synexin at 20 to 40 micrograms/ml increases the rate of fusion by two orders of magnitude. Mg2+ does not support synexin-induced fusion. With vesicles containing a mixture of phosphatidylserine with phosphatidylcholine, synexin enhances aggregation in the presence of CA2+, without promoting fusion. Synexin may play a role in exocytosis by promoting fusion of membranes containing specific phospholipids in the presence of Ca2+.  相似文献   

17.
The binding of dextran sulfate to phospholipid liposomes was investigated by microelectrophoresis experiments. The polyanion binds to neutral phospholipid liposomes (DMPC and PE) only in the presence of Ca2+. If positively charged stearylamine is incorporated in the vesicles dextran sulfate is bound without Ca2+. Negatively charged phospholipids as PS do not bind dextran sulfate, even in the presence of millimolar concentrations of Ca2+. The adsorption of dextran sulfate results in an aggregation of vesicles due to a bridging mechanism. In all cases the aggregation is followed by a disaggregation toward higher dextran sulfate concentrations. The disaggregation process starts at polymer concentrations smaller than the concentration of the onset of saturation of the adsorption. By use of the probe dilution method a fusion of small DMPC and DMPC/PE vesicles in the presence of Ca2+ and dextran sulfate was found.  相似文献   

18.
Low-pH-induced fusion of liposomes with rat liver endoplasmic reticulum was evidenced. Fusion was inactivated by treatment of microsomes with trypsin or EEDQ (N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline), indicating the involvement of a protein. The protein was purified 555-fold by chromatographic steps. The identification and purification to homogeneity was obtained by electroelution from a slab gel, which gave a still active protein of about 50 kDa. The protein promoted the fusion of liposomes; laser light scattering showed an increase of mean radius of vesicles from 60 up to about 340 nm. Fusion was studied as mass action kinetics, describing the overall fusion as a two-step sequence of a second order aggregation followed by a first order fusion of liposomes. For phosphatidylcholine containing liposomes aggregation was not rate-limiting at pH 5.0 and fusion followed first order kinetics with a rate constant of 13 · 10−3 sec−1. For phosphatidylethanolamine/phosphatidic acid liposomes aggregation was rate-limiting; however, the overall fusion was first order process, suggesting that fusogenic protein influences both aggregation and fusion of liposomes. The protein binds to the lipid bilayer of liposomes, independently of pH, probably by a hydrophobic segment. Exposed carboxylic groups might be able to trigger pH-dependent aggregation and fusion. It is proposed that the protein inserted in the lipid bilayer bridges with an adjacent liposome forming a fused doublet. Since at endoplasmic reticulum level proton pumps are operating to generate a low-pH environment, the membrane bound fusogenic protein may be responsible for both aggregation and fusion of neighboring membranes and therefore could operate in the exchange of lipidic material between intracellular membranes. Received: 25 August 1997/Revised: 28 April 1998  相似文献   

19.
K Hong  V D Vacquier 《Biochemistry》1986,25(3):543-549
Lysin, a protein of Mr 16 000 from the acrosome granule of the abalone, is responsible for the dissolution of the egg vitelline layer. The primary structure of this cationic protein projects some hydrophobic domains in the secondary structure. Lysin was found to associate nonselectively with phospholipid bilayers and cause a spontaneous release of encapsulated carboxyfluorescein in liposomes. The association of lysin with phosphatidylcholine liposomes suggests that there is a hydrophobic interaction between lysin and lipid bilayers. Binding of lysin to phospholipid resulted in the aggregation of phosphatidylserine-containing liposomes, but aggregation was not observed in neutral phosphatidylcholine liposomes. Resonance energy transfer and dequenching of fluorescent 1-palmitoyl-2-cis-parinaroylphosphatidylcholine were both used to determine the fusogenic activity of lysin in aggregated liposomes. Results from both assays are consistent. Lysin-induced fusion was observed in all the phosphatidylserine-containing liposomes, and the general trend of fusion susceptibility was phosphatidylserine/phosphatidylcholine (1:2) approximately equal to phosphatidylserine/phosphatidylcholine/phosphatidylethanolamine (1:1:1) greater than phosphatidylserine/phosphatidylethanolamine (1:2). Cholesterol up to 30% did not affect the intrinsic fusion susceptibility. A hydrophobic penetration by protein molecules and the packing of phospholipid bilayers are used to interpret the fusion susceptibility. Lysin-induced liposome aggregation was highly independent of the state of self-association of lysin in ionic medium. However, the fusogenic activity of self-associated lysin was found to be much less than the monodispersed one. Liposomes preincubated with Ca2+ did not fuse initially as readily as those without Ca2+ treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
J Bentz  N Düzgüne?  S Nir 《Biochemistry》1985,24(4):1064-1072
The effect of temperature and divalent cation binding (Ca2+, Sr2+, Ba2+) on the kinetic rate constants of aggregation and fusion of large phosphatidylserine liposomes is measured for the first time. Fusion is monitored by the Tb3+/dipicolinate assay. Fusion rate constants increase with temperature (15-35 degrees C) in a roughly linear fashion. These rate constants are not otherwise sensitive to whether the temperature is above or below the phase transition temperature of the Ba2+ or Sr2+ complex of phosphatidylserine, as measured by differential scanning calorimetry. Hence, the isothermal transition of the acyl chains from liquid-crystalline to gel phase induced by the cations is not the driving force of the initial fusion event. The aggregation rate constants increase with temperature, and it is the temperature dependence of the energetics of close approach of the liposomes which underlies this increase. On the other hand, the aggregation becomes more reversible at higher temperatures, which has also been observed with monovalent cation induced liposome aggregation where there is no fusion. Calculations on several cases show that the potential energy minimum holding the liposome dimer aggregates together is approximately 5-6 kT deep. This result implies that the aggregation step is highly reversible; i.e., if fusion were not occurring, no stable aggregates would form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号