首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
水分胁迫使两个抗旱性不同的春小麦 (Triticum aestivum L.) 品种"8139"(抗旱性较弱)和"504"(抗旱性较强)叶片 ACC 和 MACC 含量于胁迫初期下降后期升高,ACC 合酶活性持续升高,乙烯释放量在 8139 中下降而在 504 中先大幅升高而后下降.两种作用效果相反的抑制剂 MGBG (抑制SAMDC 活性)和 AOA (抑制 ACC 合酶活性) 均明显影响了两品种春小麦叶片以上各指标的变化.结果表明,水分胁迫下作物乙烯的释放量并不与其合成直接前体 ACC 的量成正相关;胁迫乙烯在抗性品种中于胁迫初期的升高可能是植物胁迫信号传导的响应之一,是一种干旱适应现象,可能与作物的干旱忍耐形成有关,而 MACC 具有调节胁迫乙烯释放的特殊生理作用.  相似文献   

2.
干旱期间春小麦叶片多胺含量与作物抗旱性的关系   总被引:8,自引:0,他引:8  
使用两种抑制剂MCBG(抑制SAMDC活性)和AOA(抑制ACC合成酶活性)研究了干旱期间两个春小麦品种8139(抗旱性较弱)和504(抗旱性较强)叶片多胺(Put、Spd和Spm)含量、RWC水平、SOD和POD活性以及MDA含量的变化,并由此探讨了不同类别多胺与作物抗旱性的关系以及多胺与乙烯在作物对干旱胁迫响应过程中对共同前体SAM的竞争趋向及其生理意义。  相似文献   

3.
干旱期间春小麦叶片多胺含量与作物抗旱性的关系   总被引:28,自引:1,他引:27  
使用两种抵制剂MGBG(抑制SAMDC活性)和AOA(抑制ACC合成酶活性)研究了干旱期间两个春小麦品种8139(抗旱性较弱)和504(抗旱性较强)叶片多胺(Put、Spd和Spm)含量、RWC水平、SOD和POD活性以及MDA含量的变化,并由此探讨了不同类别多胺与作物抗旱性的关系以及多胺与乙烯在作物对干旱胁迫响应过程中对共同前体SAM的竞争趋向及其生理意义。  相似文献   

4.
春小麦不同发育阶段抗氧化系统对田间缓慢干旱的响应   总被引:1,自引:0,他引:1  
研究了两种抗旱性不同的春小麦(Triticum aestivum L.)品种定西24(抗旱性较强)和品种8139(抗旱性较弱)不同发育阶段体内抗氧化系统对田间缓慢干旱的响应情况。结果表明,在田间自然干旱条件下,随着土壤水分含量的逐渐降低,两品种小麦叶片水势和含水量均缓慢降低,叶片色素及可溶性蛋白含量也于幼苗期显著降低,植株生长受抑。叶片抗氧化酶系统如SOD、:POD、CAT以及GSH—ASC循环中的两种关键酶APX和GR活性,均在小麦发育前期如幼苗期和拔节期显著升高而于后期下降。主要抗氧化物质ASC含量也表现出相似的变化趋势。虽然抗氧化系统在两春小麦品种不同发育阶段对田间干旱的响应行为大体相同,而且干旱较敏感品种8139各物质对干旱的响应强于干旱较耐受品种定西24,但后者减轻干旱导致的氧化损伤的效率高于前者。试验还表明,在作物的不同发育阶段,抗氧化系统对田间缓慢干旱响应的策略不同,前期如幼苗期和拔节期主要表现为积极应对,后期如抽穗期和灌浆期主要表现为被动忍耐。  相似文献   

5.
接触二氧化硫后小麦叶片中逆境乙烯的生物合成   总被引:2,自引:0,他引:2  
AVG和AOA强烈抑制二氧化硫处理小麦叶片中乙烯产生和ACC合成,对MACC的形成也有一定的抑制作用。CoGl_2明显抑制乙烯产生,而ACC大量积累,MACC含量则未因ACC增加而相应增加。DNP和CCCP也抑制乙烯产生,但前者引起ACC大量积累,后者引起ACC含量下降。CHI对乙烯产生和ACC形成均显示强烈的抑制作用,同时也明显抑制MACC形成。这表明小麦叶片接触SO_2引起的逆境乙烯也是循蛋氨酸→SAM→ACC→乙烯途径。  相似文献   

6.
不同花生品种响应干旱胁迫后叶片内ABA与AhNCED1的分布   总被引:1,自引:0,他引:1  
以粤油7号和汕优523两个不同抗旱性品种为材料,研究响应干旱胁迫后叶片ABA(abscisic acid,脱落酸)和AhNCED1(Arachis hypogaea nine-cis-epoxycarotenoid dioxygenase)的分布以及含量变化。结果表明,两种花生品种响应干旱胁迫后叶片的维管组织中ABA分布增强且含量增加,AhNCED1蛋白分布也增强;且在水分胁迫初期粤油7号花生AhNCED1蛋白分布强于汕优523,其体内ABA分布水平也高于汕优523;经ABA生物合成抑制剂Naproxen处理后,两种花生叶片ABA分布减弱,但粤油7号叶片维管组织中ABA分布水平仍高于汕优523。结果表明维管组织是干旱胁迫下花生叶片中ABA和AhNCED1分布的主要区域,且粤油7号花生抗旱性强可能与其体内AhNCED1和ABA的分布量较高有关。  相似文献   

7.
以两种不同抗旱性小麦品种幼苗为试验材料,采用PEG模拟干旱胁迫处理,探究干旱胁迫及复水对小麦幼苗叶片与根系脯氨酸累积及关键酶活性的影响。结果显示:(1)PEG胁迫下抗旱品种‘普冰143’根长和根干重下降不大,而水敏感品种‘郑引1号’根长和根干重下降显著;且于胁迫处理36h时‘普冰143’根系脯氨酸含量增加(75.0%)显著大于‘郑引1号’(37.7%),复水24h后均恢复至对照水平。(2)PEG胁迫下‘普冰143’叶片中谷氨酸合成途径关键酶P5CS和鸟氨酸合成途径关键酶δ-OAT活性均显著增加,且‘普冰143’叶片脯氨酸两条合成途径关键酶活性均得以加强;PEG胁迫处理36h时,‘郑引1号’叶片中P5CS活性增加显著,δ-OAT活性变化较小,且‘郑引1号’叶片脯氨酸合成可能以谷氨酸途径为主;但在PEG胁迫下两个不同抗旱性品种的根中P5CS、δ-OAT活性均变化较小。(3)PEG胁迫处理36h时‘普冰143’叶片脯氨酸降解酶PDH活性显著下降,而‘郑引1号’叶片PDH活性显著增加,复水后抗旱品种叶片该酶活性显著增加,水敏感品种恢复至对照水平;但PEG胁迫处理下两个不同抗旱性品种的根中PDH活性均显著下降。研究表明,PEG胁迫下小麦叶片是合成脯氨酸的主要部位,抗旱品种‘普冰143’根系脯氨酸持续积累与叶片中高的脯氨酸合成关键酶活性及脯氨酸转运有关。  相似文献   

8.
分别对抗旱小麦8139和干旱敏感小麦甘麦8号的幼苗进行两周的水分胁迫和NaCl胁迫,并对其叶片中一些生理指标的变化进行了研究,结果表明,水分胁迫下8139中O2^-和H2O2的含量及膜脂过氧化程度均低于敏感品种,胁迫后第七天与第十四天其中SOD与CAT活性明显高于甘麦8号,盐胁迫下两种小麦中的H2O2,MDA含量及SOD,POX酶活性在各时期均无明显差别,水分胁迫下,8139中多胺(腐胺Put,亚精胺Spd,精胺Spm)含量显著高于甘麦8号,盐胁迫下,两品种中多胺含量有胁迫7d后才表现出差异,由此可见,水分胁迫下两品种清除自由基的能力明显不同。而在盐胁迫下则差别不大。表现在生长上,水分胁迫下8139地上部分干物质的累积量高于甘麦8号,而在NaCl胁迫下两者之间差别不大,该结果表明植物抗旱与抗盐的生理保护机理是不一样的。  相似文献   

9.
外源精胺对水分胁迫下小麦幼苗保护酶活性的影响   总被引:3,自引:0,他引:3  
通过营养液培养试验,研究了水分胁迫下外源精胺(Spm)对抗旱性不同的小麦品种幼苗叶片质膜相对透性及保护酶活性的影响.结果表明:水分胁迫下,小麦叶片的质膜相对透性、M DA含量增加、SOD、CAT和POD活性上升,外源精胺处理可延缓水分胁迫下小麦叶片质膜相对透性和M DA含量上升,提高了SOD、CAT、POD酶活性的上升幅度;并且对抗旱性弱的品种保护酶活性增幅高于抗旱性强的品种.因此,外源精胺处理对抗旱性弱的品种缓解水分胁迫作用大于抗旱性强的品种.  相似文献   

10.
以粤油7号和汕优523两个不同抗旱性品种为材料,研究响应干旱胁迫后叶片ABA(abscisicacid,脱落酸)和AhNCEDl(Arachishypogaeanine-cis-epoxycarotenoiddioxygenase)的分布以及含量变化。结果表明,两种花生品种响应干旱胁迫后叶片的维管组织中ABA分布增强且含量增加,AhNCEDl蛋白分布也增强;且在水分胁迫初期粤油7号花生AhNCEDl蛋白分布强于汕优523,其体内ABA分布水平也高于汕优523;经ABA生物合成抑制剂N印roxen处理后,两种花生叶片ABA分布减弱,但粤油7号叶片维管组织ABA分布水平仍高于汕优523。结果表明维管组织是干旱胁迫下花生叶片中ABA和AhNCEDl分布的主要区域,且粤油7号花生抗旱性强可能与其体内AhNCEDl和ABA的分布量较高有关。  相似文献   

11.
In excised wheat (Triticum aestivum L.) leaves, water-deficit stress resulted in a rapid increase, followed by a decrease, in ethylene production rates and in the levels of 1-aminocyclopropane-1-carboxylic acid (ACC), the immediate precursor of ethylene. However, the level of N-malonyl-ACC (MACC), the major metabolite of ACC, increased gradually, then leveled off. This increase in MACC was much greater than the decrease in ACC level. The MACC levels were positively correlated with severity of water stress. Once established, the MACC levels did not decrease even after the stressed tissues were rehydrated. Administration of labeled ACC and MACC showed that the conjugation of ACC to MACC was essentially irreversible. Repeated wilting treatments following the first wilting and rehydration cycle resulted in no further increase in ethylene production and in the levels of ACC and MACC. However, when benzyladenine was supplied during the preceding rehydration process, subsequent wilting treatment resulted in a rise in MACC level and a rapid rise followed by a decline in ethylene production rates and in the level of ACC. The magnitude of these increases was, however, smaller in these rewilted tissues than that observed in the first wilting treatment. Since MACC accumulates with water stress and is not appreciably metabolized, the MACC level is a good indicator of the stress history in the detached leaves used.  相似文献   

12.
Changes in ethylene production and in the contents of 1-aminocydopropane-1-carboxylic acid (ACC), 1-(malonylamin6)-cyclopropane-1-carboxylic acid (MACC), abscisic acid (ABA) and L-proline were determined after 40 days of cold hardening at 4°C in three wheat cultivars differing in frost resistance. Proline and especially ABA accumulated with hardening in all varieties in parallel with the degree of frost resistance, e.g. proline and ABA increases in the non-resistant cv. Slávia were 2x and 5x, whilst in the resistant cv. Mironovská 808 increases were 4X and 20X. Ethylene production and MACC level showed no significant changes with hardening in any of the cultivars after 40 d, but ACC levels did increase with hardening. The production of ethylene, ACC and MACC was studied during hardening. Ethylene production decreased sharply at low temperature and rose rapidly (within 1 day) on return to normal temperature, while ACC production reacted in the opposite direction. MACC levels rose rapidly during the first 4 days of cold, then more slowly for about 2 weeks, thereafter decreasing again steadily. The only varietal differences occurring at maximum levels were correlated with the degree of frost resistance.  相似文献   

13.
Changes in the metabolism of 1-aminocyclopropane-l-carboxylicacid (ACC) during senescence in the light in turgid, water-stressed,and ABA-treated, excised rice leaves were examined. The decreasesin levels of Chl and protein were more rapid in the water-stressedand in the ABA-treated leaves than in the turgid leaves. Inturgid leaves, levels of proline remained very low, but theyincreased considerably as a result of water stress or treatmentwith ABA. The production of ethylene was strongly inhibitedby water stress and by ABA through the inhibition of the synthesisof ACC and/or the conversion of ACC to ethylene. In turgid leaves,the level of 1-(malonylamino)cyclopropane-l-carboxylic acid(MACC) increased with time during incubation in the light. Waterstress resulted in a pattern of accumulation of MACC similarto that in the turgid control. However, ABA blocked the malonylationof ACC. (Received July 27, 1989; Accepted March 12, 1990)  相似文献   

14.
When wheat seedlings were subjected to waterlogging, 1-aminocyelopropane-l-carboxylic acid (ACC), an ethylene precursor, accumulated in large quantity in roots. In shoots, ACC and ethylene production also increased, but declined with the prolonged periods of waterlogging. However, ACC content in roots maintained in high level during the whole period of waterlogging. Drainage caused a drastic drop in both ACC content and ethylene production in waterlogged plants to control level. 1-(malonylamino) cyclopropane-l-carboxylic acid (MACC) level in roots subjected to waterlogging showed little changes. However, MACC content in shoots kept increasing during the 9-days period of waterlogging. At later period of waterlogging (longer than 5 days) when ACC and ethylene production bad dropped, the. level of MACC continued to increase. Draining stopped this increasing, but did not reduced its level. When exogenous ACC was introduced into the leaves via transpiration stream, the ability of leaves of waterlogged plant to convert ACC to MACC was much higher than control. The data presented showed that at the later stage of waterlogging, the conversien of a great quantity of ACC to MACC in waterlogged wheat plants is the cause of the reduction of ethylene production and ACC content. It was suggested that the formation of MACC is another way of regulation in ethylene biosynthesis. Among leaves of different ages, the enhancement of ethylene, ACC and MACC content was more pronounced in older leaves than in younger laves during the waterlogging period. The physiological significance of adaptation to waterlogging stress was discussed.  相似文献   

15.
16.
In preclimacteric apple fruits ( Malus × domestica Borkh. cv. Golden Delicious) ethylene production is controlled by the rates of 1-aminocyclopropane-1-carboxylic acid (ACC) synthesis, and by its metabolism to ethylene by the ethylene-forming enzyme and to 1-(malonylamino)cyclopropane-1-carboxylic acid (MACC) by malonyl CoA-ACC transferase. The onset of the climacteric in ethylene production is associated with an increase in the activity of the ethylene-forming enzyme in the pulp and with a rise in the activity of ACC synthase. Malonyl transferase activity is very high in the skin of immature fruit, decreases sharply before the onset of the climacteric, and remains nearly constant thereafter. More than 40% of the ACC synthesized in the skin and around 5% in the flesh, are diverted to MACC at early climacteric. At the climacteric peak there are substantial gradients in ethylene production between different portions of the tissue, the inner cortical tissues producing up to twice as much as the external tissues. This increased production is associated with, and apparently due to, increased content of ACC synthase. Less than 1% of the synthesized ACC is diverted to MACC in the flesh of climacteric apples. In contrast, the skin contains high activity of malonyl transferase, and correspondingly high levels [1000 nmol (g dry weight)−1] of MACC.  相似文献   

17.
Leaves of soybean ( Glyxine max. L., var. Progress) were subjected to desiccation, which brought about varying degree of membrane damage as checked with the conductivity method. Progress of injury up to 30% was associated with promotion of ethylene synthesis and with accumulation of 1-aminocyclopropane-1-carboxylic acid (ACC) and 1-(malonylamino)cyclopropane-l-carboxylic acid (MACC) in the cells, as well as with activation of lipoxygenase, the enzyme which is involved in lipid peroxidation and which is capable of forming activated oxygen. The stress-induced promotion of ethylene synthesis was inhibited by the ACC synthase inhibitor aminooxyacetate (AOA). as well as by n-propyl gallate (PG), a free radical scavenger and inhibitor of lipoxygenase. Pretreatment of non-stressed soybean leaves with different concentrations of PG also resulted in the corresponding inhibition of lipoxygenase activity and ethylene formation, the former effect being less pronounced than the latter one. In the tissues pretreated with propyl gallate, the ACC level was not affected, whereas the MACC substantially increased. In leaves showing 40% membrane damage neither lipoxygenase activity nor ethylene synthesis increased any further, despite a further increase in the ACC and MACC levels. Therefore, we propose that there are two prerequisites for effective in vivo synthesis of stress ethylene: promotion of ACC synthesis and activation of a free radical-generating system, which is responsible for the non-enzymatic conversion of ACC to ethylene. The latter effect seems to be due to the activation of the membrane-associated lipoxygenase, which depends on stress-induced alterations in membrane properties.  相似文献   

18.
Excised wheat (Triticum aestivum L.) leaves, when subjected to drought stress, increased ethylene production as a result of an increased synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and an increased activity of the ethyleneforming enzyme (EFE), which catalyzes the conversion of ACC to ethylene. The rise in EFE activity was maximal within 2 h after the stress period, while rehydration to relieve water stress reduced EFE activity within 3 h to levels similar to those in nonstressed tissue. Pretreatment of the leaves with benzyladenine or indole-3-acetic acid prior to water stress caused further increase in ethylene production and in endogenous ACC level. Conversely, pretreatment of wheat leaves with abscisic acid reduced ethylene production to levels produced by nonstressed leaves; this reduction in ethylene production was accompanied by a decrease in ACC content. However, none of these hormone pretreatments significantly affected the EFE level in stressed or nonstressed leaves. These data indicate that the plant hormones participate in regulation of water-stress ethylene production primarily by modulating the level of ACC.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - BA N6-benzyladenine - EFE ethylene-forming enzyme - IAA indole-3-acetic acid  相似文献   

19.
Preclimacteric avocado (Persea americana Mill.) fruits produced very little ethylene and had only a trace amount of l-aminocyclopropane-1-carboxylic acid (ACC) and a very low activity of ACC synthase. In contrast, a significant amount of l-(malonylamino)cyclopropane-1-carboxylic acid (MACC) was detected during the preclimacteric stage. In harvested fruits, both ACC synthase activity and the level of ACC increased markedly during the climacteric rise reaching a peak shortly before the climacteric peak. The level of MACC also increased at the climacteric stage. Cycloheximide and cordycepin inhibited the synthesis of ACC synthase in discs excised from preclimacteric fruits. A low but measurable ethylene forming enzyme (EFE) activity was detected during the preclimacteric stage. During ripening, EFE activity increased only at the beginning of the climacteric rise. ACC synthase and EFE activities and the ACC level declined rapidly after the climacteric peak. Application of ACC to attached or detached fruits resulted in increased ethylene production and ripening of the fruits. Exogenous ethylene stimulated EFE activity in intact fruits prior to the increase in ethylene production. The data suggest that conversion of S-adenosylmethionine to ACC is the major factor limiting ethylene production during the preclimacteric stage. ACC synthase is first synthesized during ripening and this leads to the production of ethylene which in turn induces an additional increase in ACC synthase activity. Only when ethylene reaches a certain level does it induce increased EFE activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号