首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Effects of post-harvest application of two plant growth regulators viz., gibberellic acid (GA3) and benzyl adenine (BA) with sucrose in the vase solution on cell membrane stability and vase life of gladiolus were investigated. The vase solution treatment combinations of GA3 and BA with sucrose significantly increased the membrane stability index and enhanced the vase life as compared to the sucrose alone treatments or the controls. Vase solution treatment of GA3 (50 mg l−1), followed by BA (50 mg l−1) with sucrose (50 g l−1) significantly increased solution uptake, fresh weight and dry weight of cut spikes. The same treatments also enhanced the concentration of reducing and non-reducing sugars in gladioli petals 4 days after treatment (DAT). Cut spikes in vase solution enriched with 50 mg l−1 GA3 + 50 g l−1 sucrose showed higher antioxidative enzyme activities of superoxide dismutase (SOD) and glutathione reductase (GR), lower lipoxygenase (LOX) activity and lipid peroxidation (measured as TBARS). Petal membrane stability index was also highest in cut spikes 6 DAT with 50 mg l−1 GA3 + 50 g l−1 sucrose vase solution. Treatment of gladiolus cut spikes with 50 mg l−1 GA3 + 50 g l−1 sucrose vase solution showed two fold increase in vase life and improved flower quality with a higher number of open flower per spike at any one time. These results suggest that post-harvest application of GA3 (50 mg l−1) with sucrose (50 g l−1) maintains higher spike fresh and dry weight, improves anti-oxidative defence, stabilizes membrane integrity leading to a delay in petal cell death.  相似文献   

2.
Cassava flour (CF), a cost-effective source of starch, was employed as a substrate for successful acetone-butanol-ethanol (ABE) production by batch-fermentation with Clostridium beijerinckii. The effect of temperature, initial concentration of CF and chemical/enzymatic hydrolysis were studied in a 23 factorial design. Results revealed that temperature and initial concentration of substrate exert a significant effect on ABE production, as well as interactions of temperature with the other variables. Solvent production was maximized when working at 40°C, 60 g l−1 CF and enzymatic pretreatment. An average of 31.38 g l−1 ABE was produced after 96 h, with a productivity of 0.33 g l−1 h−1. A posterior randomized block design (3 × 2) showed that enzymatic hydrolysis (with saccharification periods of 6 h at 60°C) enhances both reducing sugar and solvent production if compared to chemical pretreatments. Average ABE production in this case was 27.28 g l−1, with a productivity of 0.28 g l−1 h−1. Results suggest that CF may be a suitable substrate for industrial ABE production.  相似文献   

3.
The effects of three periods of incubation (10, 20 and 30 min) at different levels of bleomycin (0, 0.1, 0.2, 0.3, 0.4 and 0.5 μg ml−1), as well as three periods of exposure (12, 24 and 48 h) to different levels of the anti-auxin p-chlorophenoxyisobutyric acid (PCIB), including 1, 2, 3, 4 and 5 mg l−1, on microspore embryogenesis of rapeseed cv. ‘Amica’ were investigated. Microspore embryogenesis was significantly enhanced following 20 min treatment with 0.2 μg ml−1 bleomycin compared with untreated cultures. Highest embryo yield (163 embryos Petri dish−1) was observed with 24 h treatment of 4 mg l−1 PCIB. The highest percentage of secondary embryogenesis was observed on B5 medium containing 0.15 mg l−1 of gibberellic acid (GA3) and 0.2 mg l−1 6-benzyladenine (BA) in 4–6 mm microspore-derived embryos (MDEs). Most callus formed on B5 medium containing 0.15 mg l−1 GA3, 0.1 mg l−1 BA and 0.1 mg l−1 indole-3-acetic acid (IAA) when 4–6 mm embryos were used. Regeneration was highest on B5 medium containing 0.05 mg l−1 GA3 or 0.1 mg l−1 BA and 0.2 mg l−1 IAA with 2–4 mm embryos. Microspore embryogenesis and plant regeneration could be improved by both bleomycin and PCIB when the appropriate MDE length and phytohormone level were selected.  相似文献   

4.
Detached leaves of tomato (Lycopersicon esculentum Mill.) experienced photoinhibition associated with sharp reductions in net photosynthetic rate (Pn), quantum efficiency of PSII (ΦPSII) and photochemical quenching (qP) even though they were exposed to mild light intensity (400 μmol m−2 s−1 PPFD) at 28°C. Photoinhibition and the reduction in Pn, ΦPSII and qP, however, were significantly alleviated by 1 mg l−1 ABA, 0.1 mg l−1 N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and 0.01 mg l−1 24-epibrassinolide (EBR). Higher concentrations, however, reduced the effects or even exacerbated the occurrence of photoinhibition. Superoxide dismutase and ascorbate peroxidase activity in leaves increased with the increases in ABA concentration within 1–100 mg l−1, CPPU concentration within 0.1–10 mg l−1 and EBR concentration within 0.01–1.0 mg l−1. Catalase and guaiacol peroxidase activity also increased with the increase in EBR concentration but CPPU and ABA treatments at higher concentrations caused a decrease. Malondialdehyde (MDA) content decreased with the increase in CPPU concentration. ABA and EBR, however, decreased MDA concentration only at 1 and 0.01 mg l−1, respectively. In conclusion, detached leaves had increased sensitivity to PSII photoinhibition. Photoinhibition-induced decrease in photosynthesis, however, was significantly alleviated by EBR, CPPU and ABA at a proper concentration.  相似文献   

5.
A two-stage two-stream chemostat system and a two-stage two-stream immobilized upflow packed-bed reactor system were used for the study of lactic acid production by Lactobacillus casei subsp casei. A mixing ratio of D 12/D 2 = 0.5 (D = dilution rate) resulted in optimum production, making it possible to generate continuously a broth with high lactic acid concentration (48 g l−1) and with a lowered overall content of initial yeast extract (5  g l−1), half the concentration supplied in the one-step process. In the two-stage chemostat system, with the first stage at pH 5.5 and 37 °C and a second stage at pH 6.0, a temperature change from 40 °C to 45 °C in the second stage resulted in a 100% substrate consumption at an overall dilution rate of 0.05 h−1. To increase the cell mass in the system, an adhesive strain of L. casei was used to inoculate two packed-bed reactors, which operated with two mixed feedstock streams at the optimal conditions found above. Lactic acid fermentation started after a lag period of cell growth over foam glass particles. No significant amount of free cells, compared with those adhering to the glass foam, was observed during continuous lactic acid production. The extreme values, 57.5 g l−1 for lactic acid concentration and 9.72 g l−1 h−1 for the volumetric productivity, in upflow packed-bed reactors were higher than those obtained for free cells (48 g l−1  and 2.42 g l−1 h−1) respectively and the highest overall l(+)-lactic acid purity (96.8%) was obtained in the two-chemostat system as compared with the immobilized-cell reactors (93%). Received: 4 December 1997 / Received revision: 23 February 1998 / Accepted: 14 March 1998  相似文献   

6.
Naphthenic acids are a complex mixture of organic compounds which naturally occur in crude oil. Low molecular weight components of the naphthenic acids are known to be toxic in aquatic environments and there is a need to better understand the factors controlling the kinetics of their biodegradation. In this study, a relatively low molecular weight naphthenic acid compound (trans-isomer of 4-methyl-1-cyclohexane carboxylic acid) and a microbial culture developed in our laboratory were used to study the biodegradation of this naphthenic acid and to evaluate the kinetics of the process in batch cultures. The initial concentration of trans-4-methyl-1-cyclohexane carboxylic acid (50–750 mg l−1) did not affect the maximum specific growth rate of the bacteria at 23°C (0.52 day−1) to the maximum biodegradable concentration (750 mg l−1). The maximum yield observed at this temperature and at a neutral pH was 0.21 mg of biomass per milligram of substrate. Batch experiments indicated that biodegradation can be achieved at low temperatures; however, the biodegradation rate at room temperature (23°C) and neutral pH was 5 times faster than that observed at 4°C. Biodegradation at various pH conditions indicated a maximum specific growth rate of 1.69 day−1 and yield (0.41 mg mg−1) at a pH of 10.  相似文献   

7.
Results of this study describe the feasibility of anaerobic treatment of highly concentrated phenol synthetic wastewater using an anaerobic fluidized bed reactor (AFBR) in both continuous and batch modes. Wastewater with a maximum load of 2,100 mg C·l−1 was prepared using phenol (maximum concentration of 1,600 mg C·l−1) as substrate and a mixture of acetic, propionic and butyric acids (500 mg C·l−1) as co-substrate. AFBR reached total organic carbon (TOC) and phenol removal efficiency over 95% treating the highest organic loading rate (OLR) containing phenol studied for this kind of reactor (5.03 g C·l−1·d−1). The phenol loading rate rise caused volumetric biogas rate increase up to 4.4 l·l−1·d−1 (average yield of 0.28 l CH4·g−1 CODremoved) as well as variation in the biogas composition; the CO2 percentage increased while the CH4 percentage decreased. Morphological examination of the bioparticles at 4.10 g C·l−1·d−1, revealed significant differences in the biofilm structure, microbial colonization and bacterial morphological type development. The five batch assays showed that phenol degradation may be favoured by the presence of volatile fatty acids (VFAs) (co-metabolism), whereas VFAs degradation may be inhibited by phenol. AFBR reached initial phenol degradation velocity of 0.25 mg C·l−1·min−1.  相似文献   

8.
The denitrification performance of a lab-scale anoxic rotating biological contactor (RBC) using landfill leachate with high nitrate concentration was evaluated. Under a carbon to nitrogen ratio (C/N) of 2, the reactor achieved N-NO3 removal efficiencies above 95% for concentrations up to 100 mg N-NO3  l−1. The highest observed denitrification rate was 55 mg N-NO3  l−1 h−1 (15 g N-NO3  m−2 d−1) at a nitrate concentration of 560 mg N-NO3  l−1. Although the reactor has revealed a very good performance in terms of denitrification, effluent chemical oxygen demand (COD) concentrations were still high for direct discharge. The results obtained in a subsequent experiment at constant nitrate concentration (220 mg N-NO3  l−1) and lower C/N ratios (1.2 and 1.5) evidenced that the organic matter present in the leachate was non-biodegradable. A phosphorus concentration of 10 mg P-PO4 3− l−1 promoted autotrophic denitrification, revealing the importance of phosphorus concentration on biological denitrification processes.  相似文献   

9.
The optimal reaction conditions for the conversion of oleic acid to 10-hydroxystearic acid by whole cells of Stenotrophomonas nitritireducens were: pH 7.5, 35°C, 0.05% (w/v) Tween 80, 20 g cells l−1, and 30 g oleic acid l−1 in an anaerobic atmosphere. Under these conditions, the cells produced 31.5 g 10-hydroxystearic acid l−1 over 4 h with a conversion yield of 100% (mol/mol) and a productivity of 7.9 g l−1 h−1, indicating that oleic acid was converted completely to 10-hydroxystearic acid, with no detectable byproduct. This is the highest concentration, productivity, and yield of 10-hydroxystearic acid from oleic acid reported thus far.  相似文献   

10.
Succinic acid, a four-carbon diacid, has been the focus of many research projects aimed at developing more economically viable methods of fermenting sugar-containing natural materials. Succinic acid fermentation processes also consume CO2, thereby potentially contributing to reductions in CO2 emissions. Succinic acid could also become a commodity used as an intermediate in the chemical synthesis and manufacture of synthetic resins and biodegradable polymers. Much attention has been given recently to the use of microorganisms to produce succinic acid as an alternative to chemical synthesis. We have attempted to maximize succinic acid production by Actinobacillus succinogenes using an experimental design methodology for optimizing the concentrations of the medium components. The first experiment consisted of a 24−1 fractional factorial design, and the second entailed a Central Composite Rotational Design so as to achieve optimal conditions. The optimal concentrations of nutrients predicted by the model were: NaHCO3, 10.0 g l−1; MgSO4, 3.0 g l−1; yeast extract, 2.0 g l−1; KH2PO4. 5.0 g l−1; these were experimentally validated. Under the best conversion conditions, as determined by statistical analysis, the production of succinic acid was carried out in an instrumented bioreactor using sugarcane bagasse hemicellulose hydrolysate, yielding a concentration of 22.5 g l−1.  相似文献   

11.
A yeast strain Kluyveromyces sp. IIPE453 (MTCC 5314), isolated from soil samples collected from dumping sites of crushed sugarcane bagasse in Sugar Mill, showed growth and fermentation efficiency at high temperatures ranging from 45°C to 50°C. The yeast strain was able to use a wide range of substrates, such as glucose, xylose, mannose, galactose, arabinose, sucrose, and cellobiose, either for growth or fermentation to ethanol. The strain also showed xylitol production from xylose. In batch fermentation, the strain showed maximum ethanol concentration of 82 ± 0.5 g l−1 (10.4% v/v) on initial glucose concentration of 200 g l−1, and ethanol concentration of 1.75 ± 0.05 g l−1 as well as xylitol concentration of 11.5 ± 0.4 g l−1 on initial xylose concentration of 20 g l−1 at 50°C. The strain was capable of simultaneously using glucose and xylose in a mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1, achieving maximum ethanol concentration of 38 ± 0.5 g l−1 and xylitol concentration of 14.5 ± 0.2 g l−1 in batch fermentation. High stability of the strain was observed in a continuous fermentation by feeding the mixture of glucose concentration of 75 g l−1 and xylose concentration of 25 g l−1 by recycling the cells, achieving maximum ethanol concentration of 30.8 ± 6.2 g l−1 and xylitol concentration of 7.35 ± 3.3 g l−1 with ethanol productivity of 3.1 ± 0.6 g l−1 h−1 and xylitol productivity of 0.75 ± 0.35 g l−1 h−1, respectively.  相似文献   

12.
The influence of increasing concentrations (0.1, 1.0 and 5.0 mg l−1) of fluoranthene (FLT) on growth, endogenous abscisic acid (ABA) level and primary photosynthetic processes in 21-day-old pea plants (Pisum sativum L.) in vitro was investigated. Murashige and Skoog’s (MS) medium, with or without FLT, was enriched with indole-3-acetic acid (IAA; 0.1 mg l−1) or a combination of IAA (0.1 mg l−1) plus N6-benzyladenine (BA; 0.1 mg l−1). The level of endogenous ABA significantly increased with increasing FLT concentrations in the presence of both IAA and IAA plus BA. An increased level of endogenous ABA was observed in plants treated with IAA alone. The growth of shoot, callus and the content of photosynthetic pigments (chlorophyll a and b, carotenoids), in both IAA- and IAA plus BA-treated plants, were significantly stimulated by FLT at its lowest concentration (0.1 mg l−1) assayed in this study. However, FLT at higher concentrations (1.0 and 5.0 mg l−1) significantly inhibited all these parameters. Chlorophyll fluorescence imaging showed that FLT only at the highest concentration (5.0 mg l−1) in the presence of IAA (0.1 mg l−1) significantly increased F0, but decreased FV/FM and ΦII.  相似文献   

13.
The objective of the present work was selection of cultivar and suitable medium for regenerating shoots from leaf segments of non-heading Chinese cabbage. We evaluated six types of supplemented media with 2.0, 5.0 and 10.0 mg l−1 6-BA; 1.0 and 2.0 mg l−1 TDZ; 0.1, 0.3, 0.5, 0.8 and 1.0 mg l−1NAA; 3.0, 5.0 and 7.5 mg l−1AgNO3; 0.01 mg l−1 2–4, D and 4.0 mg l−1 KT for shoot regeneration and six cultivars “Sanchidaye”, “Liuchuandasuomian”, “Qingyou 4”, “Liangbaiye”, “AiKang 5” and “Hanxiao F3”, furthermore for root formation three types of supplemented media with 0.2, 0.3, 0.5 mg l−1 NAA, and for survival rate two types of base media: turf + vermiculite + manure (1:2:0.2) and soil + vermiculite (1:2). Culturing leaf segments on MS medium supplemented with 2 mg l−1 TDZ; 0.5 mg l−1 NAA and 7.5 mg l−1 AgNO3 gave the highest number of shoots per leaf segment (66) while roots were best formed on the medium supplemented with 0.2 mg l−1 NAA. Survival rate was highest (61.6%) in the turf: vermiculite: manure (1:2:0.2) medium. The highest percentage of responding leaf segments, number of shoots per leaf segment, rooting percentage and survival rate were observed in “Liuchuandasuomian”. The plantlets were transferred to the soil and grown into mature plants in pots. These results could be used for preliminary selections of cultivars to transfer disease resistance (Bt) gene through agrobacterium in non-heading Chinese cabbage.  相似文献   

14.
In the fed-batch culture of glycerol using a metabolically engineered strain of Escherichia coli, supplementation with glucose as an auxiliary carbon source increased lycopene production due to a significant increase in cell mass, despite a reduction in specific lycopene content. l-Arabinose supplementation increased lycopene production due to increases in cell mass and specific lycopene content. Supplementation with both glucose and l-arabinose increased lycopene production significantly due to the synergistic effect of the two sugars. Cell growth by the consumption of carbon sources was related to endogenous metabolism in the host E. coli. Supplementation with l-arabinose stimulated only the mevalonate pathway for lycopene biosynthesis and supplementation with both glucose and l-arabinose stimulated synergistically only the mevalonate pathway. In the fed-batch culture of glycerol with 10 g l−1 glucose and 7.5 g l−1 l-arabinose, the cell mass, lycopene concentration, specific lycopene content, and lycopene productivity after 34 h were 42 g l−1, 1,350 mg l−1, 32 mg g cells−1, and 40 mg l−1 h−1, respectively. These values were 3.9-, 7.1-, 1.9-, and 11.7-fold higher than those without the auxiliary carbon sources, respectively. This is the highest reported concentration and productivity of lycopene.  相似文献   

15.
Dysosma versipellis (Hance) M. Cheng is an endangered plant due to overharvesting for the extraction of podophyllotoxin. Thus, the in vitro technique is valuable for the propagation of this species. When the explants of rhizome buds were cultured on Murashige and Skoog’s (MS) medium with 6-benzyladenine (BA) (1.0 mg l−1), gibberellic acid (GA3) (0.5 mg l−1) and zeatin (Zea) (0.5 mg l−1), multiple buds were regenerated directly on the explants without callusing within 6 weeks. Callus was induced from the leaf segment cultures on MS basal medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) (0.5 mg l−1) and BA (0.2 mg l−1) within 4 weeks. The adventitious buds were differentiated when the calli were subcultured on MS medium supplemented with BA (1.0 mg l−1) and thidiazuron (TDZ) (0.2 mg l−1) within 6 weeks. The adventitious buds obtained from callus and the rhizome-buds rooted with a frequency of 100% on half strength MS medium fortified with indole-3-butyric acid (IBA) 0.5 mg l−1 and activated charcoal (AC) 0.5 g l−1 for 4 weeks. The rooted shoots were successfully transplanted from a mixture of vermiculite:soil (1:1 v/v) to the field with a survival rate of 85%. Podophyllotoxin production in calli, cultured rhizomes, rhizomes of transplanting plants from the garden and rhizomes in the wild field was confirmed by high-performance liquid chromatography (HPLC) analysis. Our results suggest that calli, cultured rhizomes and rhizomes of transplanting plants would be the potential sources of podophyllotoxin.  相似文献   

16.
Toxic at low concentrations, phenol is one of the most common organic pollutants in air and water. In this work, phenol biodegradation was studied in extreme conditions (80°C, pH = 3.2) in a 2.7 l bioreactor with the thermoacidophilic archaeon Sulfolobus solfataricus 98/2. The strain was first acclimatized to phenol on a mixture of glucose (2000 mg l−1) and phenol (94 mg l−1) at a constant dissolved oxygen concentration of 1.5 mg l−1. After a short lag-phase, only glucose was consumed. Phenol degradation then began while glucose was still present in the reactor. When glucose was exhausted, phenol was used for respiration and then for biomass build-up. After several batch runs (phenol < 365 mg l−1), specific growth rate (μX) was 0.034 ± 0.001 h−1, specific phenol degradation rate (qP) was 57.5 ± 2 mg g−1 h−1, biomass yield (YX/P) was 52.2 ± 1.1 g mol−1, and oxygen yield factor ( \textY\textX/\textO 2 ) \left( {{\text{Y}}_{{{\text{X}}/{\text{O}}_{ 2} }} } \right) was 9.2 ± 0.2 g mol−1. A carbon recovery close to 100% suggested that phenol was exclusively transformed into biomass (35%) and CO2 (65%). Molar phenol oxidation constant ( \textY\textO 2 /\textP ) \left( {{\text{Y}}_{{{\text{O}}_{ 2} /{\text{P}}}} } \right) was calculated from stoichiometry of phenol oxidation and introducing experimental biomass and CO2 conversion yields on phenol, leading to values varying between 4.78 and 5.22 mol mol−1. Respiratory quotient was about 0.84 mol mol−1, very close to theoretical value (0.87 mol mol−1). Carbon dioxide production, oxygen demand and redox potential, monitored on-line, were good indicators of growth, substrate consumption and exhaustion, and can therefore be usefully employed for industrial phenol bioremediation in extreme environments.  相似文献   

17.
Azadirachtin, a well-known biopesticide, is a secondary metabolite extracted from the seeds of Azadirachta indica. In the present study, azadirachtin was produced in hairy roots of A. indica, generated by Agrobacterium rhizogenes-mediated transformation of leaf explants. Liquid cultures of A. indica hairy roots were developed with a liquid-to-flask volume ratio of 0.15. The kinetics of growth and azadirachtin production were established in a basal plant growth medium containing MS medium major and minor salts, Gamborg’s medium vitamins, and 30 g l−1 sucrose. The highest azadirachtin accumulation in the hairy roots (up to 3.3 mg g−1) and azadirachtin production (∼44 mg l−1) was obtained on Day 25 of the growth cycle, with a biomass production of 13.3 g l−1 dry weight. To enhance the production of azadirachtin, a Plackett–Burman experimental design protocol was used to identify key medium nutrients and concentrations to support high root biomass production and azadirachtin accumulation in hairy roots. The optimal nutrients and concentrations were as follows: 40 g l−1 sucrose, 0.19 g l−1 potassium dihydrogen phosphate, 3.1 g l−1 potassium nitrate, and 0.41 g l−1 magnesium sulfate. Concentrations were determined by a central composite design protocol and verified in shake-flask cultivation. The optimized medium composition yielded a root biomass production of 14.2 g l−1 and azadirachtin accumulation of 5.2 mg g−1, which was equivalent to an overall azadirachtin production of 73.84 mg l−1, 68% more than that obtained under non-optimized conditions.  相似文献   

18.
The production of compound K and aglycon protopanaxadiol (APPD) from ginsenoside Rd and ginseng root extract was performed using a recombinant β-glycosidase from Pyrococcus furiosus. The activity for Rd was optimal at pH 5.5 and 95°C with a half-life of 68 h at 95°C. β-Glycosidase converted Rb1, Rb2, Rc, and Rd to APPD via compound K. With increases in the enzyme activity, the productivities of compound K and APPD increased. The substrate concentration was optimal at 4.0 mM Rd or 10% (w/v) ginseng root extract; 4 mM of Rd was converted to 3.3 mM compound K with a yield of 82.5% (mol/mol) and a productivity of 2,010 mg l−1 h−1 at 1 h and was hydrolyzed completely to APPD with 364 mg l−1 h−1 after 5 h. Rb1, Rb2, Rc, and Rd at 3.9 mM in 10% ginseng root extract were converted to 3.1 mM compound K with 79.5% and 1,610 mg l−1 h−1 at 1.2 h and were hydrolyzed completely to APPD with 300 mg l−1 h−1 after 6 h. The concentrations and productivities of compound K and APPD in the present study are the highest ever reported.  相似文献   

19.
A spiral packed-bed bioreactor inoculated with microorganisms obtained from activated sludge was used to conduct a feasibility study for phenol removal. The reactor was operated continuously at various phenol loadings ranging from 53 to 201.4 g m−3 h−1, and at different hydraulic retention times (HRT) in the range of 20–180 min to estimate the performance of the device. The results indicated that phenol removal efficiency ranging from 82.9 to 100% can be reached when the reactor is operated at an HRT of 1 h and a phenol loading of less than 111.9 g m−3 h−1. At an influent phenol concentration of 201.4 g m−3, the removal efficiency increased from 18.6 to 76.9% with an increase in the HRT (20–120 min). For treatment of phenol in the reactor, the maximum biodegradation rate (V m) was 1.82 mg l−1 min−1; the half-saturation constant (K s), 34.95 mg l−1.  相似文献   

20.
A new bacterial strain producing succinic acid was enriched from bovine rumen content. It is facultatively anaerobic, belongs to the family Pasteurellaceae and has similarity to the genus Mannheimia. In batch cultivations with D-glucose or sucrose the strain produced up to 5.8 g succinic acid l−1 with a productivity and a yield of up to 1.5 g l−1 h−1 and 0.6 g g−1, respectively. With crude glycerol up to 8.4 g l−1, 0.9 g l−1 h−1 and 1.2 g g−1 were obtained. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号