首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thioredoxin glutathione reductase from Schistosoma mansoni (SmTGR) catalyzes the reduction of both thioredoxin and glutathione disulfides (GSSG), thus playing a crucial role in maintaining redox homeostasis in the parasite. In line with this role, previous studies have demonstrated that SmTGR is a promising drug target for schistosomiasis. To aid in the development of efficacious drugs that target SmTGR, it is essential to understand the catalytic mechanism of SmTGR. SmTGR is a dimeric flavoprotein in the glutathione reductase family and has a head-to-tail arrangement of its monomers; each subunit has the components of both a thioredoxin reductase (TrxR) domain and a glutaredoxin (Grx) domain. However, the active site of the TrxR domain is composed of residues from both subunits: FAD and a redox-active Cys-154/Cys-159 pair from one subunit and a redox-active Cys-596'/Sec-597' pair from the other; the active site of the Grx domain contains a redox-active Cys-28/Cys-31 pair. Via its Cys-28/Cys-31 dithiol and/or its Cys-596'/Sec-597' thiol-selenolate, SmTGR can catalyze the reduction of a variety of substrates by NADPH. It is presumed that SmTGR catalyzes deglutathionylation reactions via the Cys-28/Cys-31 dithiol. Our anaerobic titration data suggest that reducing equivalents from NADPH can indeed reach the Cys-28/Cys-31 disulfide in the Grx domain to facilitate reductions effected by this cysteine pair. To clarify the specific chemical roles of each redox-active residue with respect to its various reactivities, we generated variants of SmTGR. Cys-28 variants had no Grx deglutathionylation activity, whereas Cys-31 variants retained partial Grx deglutathionylation activity, indicating that the Cys-28 thiolate is the nucleophile initiating deglutathionylation. Lags in the steady-state kinetics, found when wild-type SmTGR was incubated at high concentrations of GSSG, were not present in Grx variants, indicating that this cysteine pair is in some way responsible for the lags. A Sec-597 variant was still able to reduce a variety of substrates, albeit slowly, showing that selenocysteine is important but is not the sole determinant for the broad substrate tolerance of the enzyme. Our data show that Cys-520 and Cys-574 are not likely to be involved in the catalytic mechanism.  相似文献   

2.
The redox enzyme phospholipid hydroperoxide glutathione peroxidase (PHGPx) has emerged as one of the most significant selenoenzymes in mammals, corroborated by early embryonic lethality of PHGPx null mice. PHGPx is one of five selenium-dependent glutathione peroxidases and the second glutathione peroxidase to be discovered in 1982. PHGPx has a particular position within this family owing to its peculiar structural and catalytic properties, its multifaceted roles during male gametogenesis, and its necessity for early mouse development. Interestingly, mice devoid of endogenous glutathione die at the same embryonic stage as PHGPx-deficient mice compatible with the hypothesis that a similar phenotype of embryonic lethality may be provoked by PHGPx deficiency and lack of its reducing substrate glutathione. Various gain- and loss-of-function approaches in mice have provided some insights into the physiological functions of PHGPx. These include a protective role for PHGPx in response to irradiation, increased resistance of transgenic PHGPx mice to toxin-induced liver damage, a putative role in various steps of embryogenesis, and a contribution to sperm chromatin condensation. The expression of three forms of PHGPx and early embryonic lethality call for more specific studies, such as tissue-specific disruption of PHGPx, to precisely understand the contribution of PHGPx to mammalian physiology and under pathological conditions.  相似文献   

3.
《Free radical research》2013,47(5-6):343-361
The primary structure of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was partially elucidated by sequencing peptides obtained by cyanogen bromide cleavage and tryptic digestion and by isolating and sequencing corresponding cDNA fragments covering about 75% of the total sequence. Based on these data PHGPx can be rated as a selenoprotein homologous, but poorly related to classical glutathione peroxidase (GPx). Peptide loops constituting the active site in GPx are, however, strongly conserved in PHGPx. This suggests that the mechanism of action involving an oxidation/reduction cycle of a selenocysteine residue is essentially identical in PHGPx and GPx.  相似文献   

4.
The primary structure of phospholipid hydroperoxide glutathione peroxidase (PHGPx) was partially elucidated by sequencing peptides obtained by cyanogen bromide cleavage and tryptic digestion and by isolating and sequencing corresponding cDNA fragments covering about 75% of the total sequence. Based on these data PHGPx can be rated as a selenoprotein homologous, but poorly related to classical glutathione peroxidase (GPx). Peptide loops constituting the active site in GPx are, however, strongly conserved in PHGPx. This suggests that the mechanism of action involving an oxidation/reduction cycle of a selenocysteine residue is essentially identical in PHGPx and GPx.  相似文献   

5.
The enhanced reduction of t-butyl hydroperoxide by glutathione peroxidase is accompanied by a decrease in the cellular concentration of both glutathione and NADPH in isolated liver cells, resulting in the release of GSSG (oxidized glutathione) from the perfused rat liver. This phenomenon, first reported by H. Sies, C. Gerstenecker, H. Menzel & L. Flohé (1972) (FEBS Lett. 27, 171-175), can be observed under a variety of conditions, not only with the acceleration of the glutathione peroxidase reaction by organic peroxides, but also during the oxidation of glycollate and benzylamine, during demethylation of aminopyrine in the liver of the phenobarbital-pretreated rat and during oxidation of uric acid in the liver of the starved rat pretreated with 3-amino-1,2,4-triazole. The rate of release of GSSG is altered markedly by changes in the metabolic conditions which affect the rate of hepatic NADPH generation. Thus, regardless of whether achieved by enhanced oxidation of glutathione by glutathione peroxidase or by oxidation of NADPH through other metabolic pathways, an increase in the cellular concentration of GSSG appears to facilitate its release. It has been found that, in addition to the hexose monophosphate shunt, the mitochondrial NADH-NADP+ transhydrogenase reaction plays an important role in supplying reducing equivalents to the glutathione peroxidase reaction and in maintaining the cellular oxidation-reduction state of the nicotinamide nucleotides. Spectrophotometric analysis of the steady-state concentration of the catalase-H2O2 intermediate with simultaneous measurement of the rate of release of GSSG leads to the conclusion that intracellular compartmentation of catalase in the peroxisomes and glutathione peroxidase in the cytosol and mitochondria distinguishes the reactivities of these enzymes one from the other, and facilitates their effective cooperation in hydroperoxide metabolism in the liver.  相似文献   

6.
Tryparedoxin peroxidases (TXNPx) catalyze hydroperoxide reduction by tryparedoxin (TXN) by an enzyme substitution mechanism presumed to involve three catalytic intermediates: (i) a transient oxidation state having C52 oxidized to a sulfenic acid, (ii) the stable oxidized form with C52 disulfide-bound to C173', and (iii) a semi-reduced intermediate with C40 of TXN disulfide-linked to C173' from which the ground state enzyme is regenerated by thiol/disulfide reshuffling. This kinetically unstable form was mimmicked by a dead-end intermediate generated by cooxidation of TXNPx of Trypanosoma brucei brucei with an inhibitory mutein of TXN in which C43 was replaced by serine (TbTXNC43S). Cleavage of the isolated dead-end intermediate by trypsin plus chymotrypsin yielded a fragment that complied in size with the TbTXNC43S sequence 36 to 44 disulfide-linked to the TbTXNPx sequence 169 to 177. The presumed nature of the proteolytic fragment was confirmed by MS/MS sequencing. The results provide direct chemical evidence for the assumption that the reductive part of the catalysis is initiated by an attack of the substrate's solvent-exposed C40 on C173' of the oxidized peroxidase and, thus, confirm the hypothesis on the interaction of 2-Cys-peroxiredoxins with their proteinaceous substrates.  相似文献   

7.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is unique in the substrate specificity among the glutathione peroxidase family because it can interact with lipophilic substrates, including the peroxidized phospholipids and cholesterol, and reduce these hydroperoxide to hydroxide compounds. However, what kinds of ligand can regulate the PHGPx expression is still unknown. In the present study, we found that sodium arsenite induced downregulation of mRNA, protein expression, and enzyme activity of PHGPx in time- and dose-dependent manners. At the same time, it upregulated mRNA and protein expression of p21(WAF1/CIP1). With the aid of agarose gel electrophoresis, and propidium iodide and annexin-V staining, we found that treatment of 30 microM sodium arsenite for 24 h induced apoptosis in human epidermoid carcinoma A431 cells and EA.hy926 cells. An increase of intracellular peroxide levels was measured by flow cytometry using 2',7'-dichlorofluorescin diacetate (DCFH-DA) after treatment of arsenite. Overexpression of PHGPx prevented arsenite-induced increase of intracellular peroxide levels, downregulation of PHGPx, upregulation of p21(WAF1/CIP1), and apoptosis in A431 cells. N-Acetyl-L-cysteine also significantly prevented arsenite-induced effects in A431 cells. Therefore, we concluded that reactive oxygen species were involved in arsenite-induced downregulation of PHGPx, upregulation of p21(WAF1/CIP1), and apoptosis in A431 cells.  相似文献   

8.
9.
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a selenoprotein which inhibits peroxidation ofmicrosomes. The human enzyme, which may play an important role in protecting the cell from oxidative damage, has not been purified or characterized. PHGPx was isolated from human liver using ammonium sulphate fractionation, affinity chromatography on bromosulphophthalein-glutathione-agarose, gel filtration on Sephadex G-50, anion exchange chromatography on Mono Q resin and high resolution gel filtration on Superdex 75. The protein was purified about 112,000-fold, and 12 μg, was obtained from 140 g of human liver with a 9% yield. PHGPx was active on hydrogen peroxide, cumene hydroperoxide, linoleic acid hydroperoxide and phosphatidylcholine hydroperoxide. The molecular weight, as estimated from non-denaturing gel filtration, was 16,100. The turnover number (37°C, pH 7.6) on (β-(13-hydroperoxy-cis-9, trans-11-octadecadienoyl)-γ-palmitoyl)-l-α-phosphatidylcholine was 91 mol mo−1 s−1. As reported for pig PHGPx, activity of the enzyme from human liver on cumene hydroperoxide and on linoleic acid hydroperoxide was inhibited by deoxycholate. In the presence of glutathione, the enzyme was a potent inhibitor of ascorbate/Fe induced lipid peroxidation in microsomes derived from human B lymphoblastic AHH-1 TK ± CHol cells but not from human liver microsomes. Human cell line microsomes contained no detectable PHGPx activity. However, microsomes prepared from human liver contained 0.009 U/mg of endogenous PHGPx activity, which is 4–5 times the activity required for maximum inhibition of lipid peroxidation when pure PHGPx was added back to human lymphoblastic cell microsomes. PHGPx from human liver exhibits similar properties to previously described enzymes with PHGPx activity isolated from pig and rat tissues, but does not inhibit peroxidation of human liver microsomes owing to a high level of PHGPx activity already present in these microsomes.  相似文献   

10.
11.
The translation of mammalian selenoprotein mRNAs requires the 3' untranslated region that contains a selenocysteine insertion sequence (SECIS) element necessary for decoding an in-frame UGA codon as selenocysteine (Sec). Selenoprotein biosynthesis is inefficient, which may be due to competition between Sec insertion and termination at the UGA/Sec codon. We analyzed the polysome distribution of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, a member of the glutathione peroxidase family of selenoproteins, in rat hepatoma cell and mouse liver extracts. In linear sucrose gradients, the sedimentation velocity of PHGPx mRNA was impeded compared to CuZn superoxide dismutase (SOD) mRNA, which has a coding region of similar size. Selenium supplementation increased the loading of ribosomes onto PHGPx mRNA, but not CuZn SOD mRNA. To determine whether the slow sedimentation velocity of PHGPx mRNA is due to a block in elongation, we analyzed the polysome distribution of wild-type and mutant mRNAs translated in vitro. Mutation of the UGA/Sec codon to UGU/cysteine increased ribosome loading and protein synthesis. When UGA/Sec was replaced with UAA or when the SECIS element core was deleted, the distribution of the mutant mRNAs was similar to the wild-type mRNA. Addition of SECIS-binding protein SBP2, which is essential for Sec insertion, increased ribosome loading and translation of wild-type PHGPx mRNA, but had no effect on the mutant mRNAs. These results suggest that elongation is impeded at UGA/Sec, and that selenium and SBP2 alleviate this block by promoting Sec incorporation instead of termination.  相似文献   

12.
Reactive oxygen species (ROS) are known mediators of intracellular signal cascades. Excessive production of ROS may lead to oxidative stress, loss of cell function, and cell death by apoptosis or necrosis. Lipid hydroperoxides are one type of ROS whose biological function has not yet been clarified. Phospholipid hydroperoxide glutathione peroxidase (PHGPx, GPx4) is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide in mammalian cells. This contrasts with most antioxidant enzymes, which cannot reduce intracellular phospholipid hydroperoxides directly. In this review, we focus on the structure and biological functions of PHGPx in mammalian cells. Recently, molecular techniques have allowed overexpression of PHGPx in mammalian cell lines, from which it has become clear that lipid hydroperoxides also have an important function as activators of lipoxygenase and cyclooxygenase, participate in inflammation, and act as signal molecules for apoptotic cell death and receptor-mediated signal transduction at the cellular level.  相似文献   

13.
Selenium deficiency causes a fall in rat cardiac glutathione peroxidase activity. As a consequence, isolated perfused selenium-deficient heart does not release increased amounts of GSSG when hydroperoxide is infused. However, the total amount of glutathione measured as intracellular GSH, intracellular GSSG and GSSG released from the heart when hydroperoxide is infused does not equal the total glutathione measured in these pools in untreated hearts (Xia, Y., Hill, K.E. and Burk, R.F. (1985) J. Nutr. 115, 733-742). GSSG can react with protein sulfhydryl groups to form glutathione-protein mixed disulfides (PrS-SG). PrS-SG were measured in perfused selenium-deficient and control hearts infused with t-butylhydroperoxide and were found to account for the previously unmeasured glutathione. The ability of the selenium-deficient heart to transport GSSG was also examined. GSSG was produced non-enzymatically by infusing diamide. The diamide-treated selenium-deficient heart formed GSSG and released it at the same rate as similarly-treated control heart. Thus although selenium deficiency decreases GSSG formation by glutathione peroxidase, it does not affect cardiac GSSG transport.  相似文献   

14.
Regulation of arachidonate metabolism in human epidermoid carcinoma A431 cells by phospholipid hydroperoxide glutathione peroxidase (PHGPx) and cytosolic glutathione peroxidase (GPx1) was studied. In order to study the effect of reduced glutathione (GSH) on the catalysis regulation of these oxygenation enzymes, diethyl maleate was used to deplete the intracellular GSH. In the presence of 13-hydroperoxyoctadecadienoic acid, the enzymatic catalysis of cyclooxygenase and 12-lipoxygenase was significantly increased in the GSH-depleted cells. In terms of the inhibitory effect on 12-lipoxygenase, PHGPx was more sensitive to GSH concentrations than GPx1. Inhibition of PHGPx activity by the treatment of cells with antisense oligonucleotide of PHGPx mRNA increased the enzymatic catalysis of both cyclooxygenase and 12-lipoxygenase. In conclusion, the results indicate that catalysis of cyclooxygenase and 12-lipoxygenase in A431 cells was regulated by redox-reaction, and PHGPx seems to play an important role in the controlling of these reactions.  相似文献   

15.
The distribution of glutathione reductase (GR), glutathione peroxidase (GPx) and phospholipid hydroperoxide glutathione peroxidase (PHGPx) in isolated rat brain mitochondria was investigated. using a fractionation procedure for the separation of inner and outer membranes, contact sites between the two membranes and a soluble fraction mainly originating from the mitochondrial matrix. The data indicate that GR and GPx are concentrated in the soluble fraction, with a minor portion of the two enzymes being associated with the contact sites. PHGPx is localized largely in the inner membrane. The possible functional significance of these findings is discussed.  相似文献   

16.
17.
Previous studies of mRNA for classical glutathione peroxidase 1 (GPx1) demonstrated that hepatocytes of rats fed a selenium-deficient diet have less cytoplasmic GPx1 mRNA than hepatocytes of rats fed a selenium-adequate diet. This is because GPx1 mRNA is degraded by the surveillance pathway called nonsense-mediated mRNA decay (NMD) when the selenocysteine codon is recognized as nonsense. Here, we examine the mechanism by which the abundance of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, another selenocysteine-encoding mRNA, fails to decrease in the hepatocytes and testicular cells of rats fed a selenium-deficient diet. We demonstrate with cultured NIH3T3 fibroblasts or H35 hepatocytes transiently transfected with PHGPx gene variants under selenium-supplemented or selenium-deficient conditions that PHGPx mRNA is, in fact, a substrate for NMD when the selenocysteine codon is recognized as nonsense. We also demonstrate that the endogenous PHGPx mRNA of untransfected H35 cells is subject to NMD. The failure of previous reports to detect the NMD of PHGPx mRNA in cultured cells is likely attributable to the expression of PHGPx cDNA rather than the PHGPx gene. We conclude that 1) the sequence of the PHGPx gene is adequate to support the NMD of product mRNA, and 2) there is a mechanism in liver and testis but not cultured fibroblasts and hepatocytes that precludes or masks the NMD of PHGPx mRNA.  相似文献   

18.
The partially purified phospholipid hydroperoxide glutathione peroxidase (PHGPx) from A431 cells was used to systematically compare the inhibitory effect on the enzyme activity of various lipoxygenases and cyclooxygenases. Under the standard assay system, platelet 12-lipoxygenase, 15-lipoxygenase, and cyclooxygenase-2 were the most sensitive to the inhibition by PHGPx. 5-Lipoxygenase and cyclooxygenase-1 were less sensitive to the inhibition by PHGPx than platelet 12-lipoxygenase and cyclooxygenase-2, respectively, and the difference was approximately 10-fold. Reduction of 12(S)-hydroperoxyeicosatetraenoic acid to 12(S)-hydroxyeicosatetraenoic acid by PHGPx was observed in the presence of glutathione (GSH), and the inhibitory effect of PHGPx on 12-lipoxygenase-catalyzed arachidonate metabolism was reversed by the addition of exogenous lipid hydroperoxide. The results indicate that PHGPx directly reduced lipid hydroperoxides and then down-regulated the activity of arachidonate oxygenases. Moreover, a high-level expression of PHGPx mRNA and its 12-lipoxygenase-inhibitory activity was observed in cancer cells and endothelial cells, and these results suggest that PHGPx may play a significant role in the regulation of reactive oxygen species formation in these cells.  相似文献   

19.
We performed experiments to characterize the glutathione-dependent metabolism occurring during tert-butyl hydroperoxide infusion in isolated perfused rat lungs and to examine the effect of selenium deficiency on this metabolism. Selenium deficiency resulted in decreased lung glutathione peroxidase activity but normal glutathione reductase activity and glutathione content. Infusion of the hydroperoxide into control lungs caused a proportional increase in tissue glutathione disulfide (GSSG) concentration and release of GSSG into the perfusate up to an infusion rate of 250 nmol of tert-butyl hydroperoxide X min-1 X 100 g body wt-1. Infusion rates greater than this resulted in continued rise of tissue GSSG concentrations but GSSG release into the perfusate plateaued. Infusion of tert-butyl hydroperoxide into selenium-deficient rat lungs resulted in much lower concentrations of tissue GSSG and GSSG release into the perfusate; however, release in the selenium-deficient rat lung was also found to be saturable at infusion rates of 450 nmol of tert-butyl hydroperoxide X min-1 X 100 g of body wt-1. Selenium deficiency in the rat decreases the rate of reduction of infused tert-butyl hydroperoxide by glutathione and may predispose the lung to free radical damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号