首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Tree species that produce resources for fauna are recommended for forest restoration plantings to attract pollinators and seed dispersers; however, information regarding the flowering and fruiting of these species during early growth stages is scarce. We evaluated the reproductive phenology of animal‐dispersed tree species widely used in Atlantic Forest restoration. We marked 16 animal‐dispersed tree species in 3‐ to 8‐year‐old forest restoration plantings in Itu‐São Paulo, southeast Brazil. We noted the age of the first reproductive event, flowering and fruiting seasonality, percentage of trees that reached reproductive stages, and intensity of bud, flower, and fruit production for each species. Flowering and fruiting are seasonal for most species; only two, Cecropia pachystachya and Ficus guaranitica, exhibited continuous flowering and fruiting throughout the year; we also identified Schinus terebinthifolia and Dendropanax cuneatus fruiting in the dry season during resource scarcity. Therefore, we recommend all as framework species, that is, species that are animal‐dispersed with early flowering and fruiting potential, for forest restoration. Further, we recommend identifying and planting similar animal‐dispersed tree species that produce fruits constantly or in the dry season to maximize fauna resource availability throughout the year in tropical forest restoration plantings. Abstract in Portuguese is available with online material  相似文献   

2.
In Monteverde, Costa Rica, the vulnerable Three‐wattled Bellbird (Procnias tricarunculatus) feeds primarily upon the fruit of Lauraceae species during its reproductive and post‐reproductive seasons. To understand and advance appropriate conservation measures, this study identified the bellbird's foraging challenges in its search for a temporally and spatially fluctuating resource. Although there are at least 96 species of Lauraceae found in the five life zones of Monteverde, the distinct distributions of tree species both among and within life zones require the bellbirds to track seasonal fruiting across the various zones. In this 6‐year study, we monitored the fruiting of tree species and bellbird abundance in 24 study plots within its post‐reproductive life zone, the Premontane Wet forest, to identify preferred bellbird food resources and how the fruiting of these species drives the spatial distribution of the bellbird. Our research revealed phenological patterns of annual, biennial, and triennial fruiting with high levels of fruiting synchrony within several identified key fruit species. Of critical conservation importance is that no single species of Lauraceae produced a consistent food supply for bellbirds each year. Therefore, even within life zones, the bellbird's survival depends on its mobility to search for and obtain fruit, as well as the availability of fruits of multiple tree species. The conservation implications include focused attention on multiple core areas within given life zones, protection of existing forest and remnant trees, and forest restoration with plantings of multiple tree species. We suspect that other tropical frugivorous species face similar conservation challenges.  相似文献   

3.
Gabriela S. Adamescu  Andrew J. Plumptre  Katharine A. Abernethy  Leo Polansky  Emma R. Bush  Colin A. Chapman  Luke P. Shoo  Adeline Fayolle  Karline R. L. Janmaat  Martha M. Robbins  Henry J. Ndangalasi  Norbert J. Cordeiro  Ian C. Gilby  Roman M. Wittig  Thomas Breuer  Mireille Breuer‐Ndoundou Hockemba  Crickette M. Sanz  David B. Morgan  Anne E. Pusey  Badru Mugerwa  Baraka Gilagiza  Caroline Tutin  Corneille E. N. Ewango  Douglas Sheil  Edmond Dimoto  Fidèle Baya  Flort Bujo  Fredrick Ssali  Jean‐Thoussaint Dikangadissi  Kathryn Jeffery  Kim Valenta  Lee White  Michel Masozera  Michael L. Wilson  Robert Bitariho  Sydney T. Ndolo Ebika  Sylvie Gourlet‐Fleury  Felix Mulindahabi  Colin M. Beale 《Biotropica》2018,50(3):418-430
We present the first cross‐continental comparison of the flowering and fruiting phenology of tropical forests across Africa. Flowering events of 5446 trees from 196 species across 12 sites and fruiting events of 4595 trees from 191 species across 11 sites were monitored over periods of 6 to 29 years and analyzed to describe phenology at the continental level. To study phenology, we used Fourier analysis to identify the dominant cycles of flowering and fruiting for each individual tree and we identified the time of year African trees bloom and bear fruit and their relationship to local seasonality. Reproductive strategies were diverse, and no single regular cycle was found in >50% of individuals across all 12 sites. Additionally, we found annual flowering and fruiting cycles to be the most common. Sub‐annual cycles were the next most common for flowering, whereas supra‐annual patterns were the next most common for fruiting. We also identify variation in different subsets of species, with species exhibiting mainly annual cycles most common in West and West Central African tropical forests, while more species at sites in East Central and East African forests showed cycles ranging from sub‐annual to supra‐annual. Despite many trees showing strong seasonality, at most sites some flowering and fruiting occurred all year round. Environmental factors with annual cycles are likely to be important drivers of seasonal periodicity in trees across Africa, but proximate triggers are unlikely to be constant across the continent.  相似文献   

4.
The reproductive phenology of seven species of Rubiaceae from the Brazilian Atlantic rain forest was compared to evaluate the occurrence of phylogenetic constraints on flowering and fruiting phenologies. Since phenological patterns can be affected by phylogenetic constraints, we expected that reproductive phenology would be similar among plants within a family or genus, occurring during the same time (or season) of the year. Observations on flowering and fruiting phenology were carried out monthly, from December 1996 to January 1998, at Núcleo Picinguaba, Parque Estadual da Serra do Mar, Ubatuba, S?o Paulo State, Brazil. Nine phenological variables were calculated to characterize, quantify and compare the reproductive phenology of the Rubiaceae species. The flowering patterns were different among the seven species studied, and the Kruskal-Wallis test indicated significant differences in flowering duration first flowering, peak flowering and flowering synchrony. The peaks and patterns of fruiting intensity were different among the Rubiaceae species studied and they differed significantly from conspecifics in the phenological variables fruiting duration, fruiting peak date, and fruiting synchrony (Kruskal-Wallis test). Therefore, we found no evidence supporting the phylogenetic hypotheses, and climate does not seem to constrain flowering and fruiting patterns of the Rubiaceae species in the understory of the Atlantic forest.  相似文献   

5.
BACKGROUND AND AIMS: In the dry tropics, vegetative phenology varies widely with tree characteristics and soil conditions. The present work aims to document the phenological diversity of flowering and fruiting with reference to leafing events in Indian dry-tropical tree species. METHODS: Nine tree species, including one leaf-exchanging and eight deciduous showing varying leafless periods, were studied. Monthly counts of leaves, flowers and fruits were made on 160 tagged twigs on ten individuals of each species for initiation, completion and duration of different phenological events through two annual cycles. KEY RESULTS: Variation in flowering relative to leaf flushing (which occurred just prior to or during a hot, dry summer) revealed five flowering types: summer flowering (on foliated shoots), rainy-season flowering (on foliated shoots following significant rains), autumn flowering (on shoots with mature leaves), winter flowering (on shoots undergoing leaf fall) and dry-season flowering (on leafless shoots). Duration of the fruiting phenophase was shortest (3-4 months) in dry-season and winter-flowering species, 6-9 months in rainy-and autumn-flowering species, and maximum (11 months) in summer-flowering species. A wide range of time lag (<1 to >8 months) between the start of vegetative (first-leaf flush) and reproductive (first-visible flower) phases was recorded in deciduous species; this time lag was correlated with the extent of the leafless period. A synthesis of available phenological information on 119 Indian tropical trees showed that summer-flowering species were most abundant (56 % of total species) amongst the five types recognized. CONCLUSIONS: The wide diversity of seasonal flowering and fruiting with linkages to leaf flush time and leafless period reflect the fact that variable reproductive and survival strategies evolved in tree species under a monsoonic bioclimate. Flowering periodicity has evolved as an adaptation to an annual leafless period and the time required for the fruit to develop. The direct relationship between leafless period (inverse of growing period) and time lag between onset of vegetative and reproductive phases reflects the partitioning of resource use for supporting these phases. Predominance of summer flowering coupled with summer leaf flushing seems to be a unique adaptation in trees to survive under a strongly seasonal tropical climate.  相似文献   

6.
The study of phenological aspects of plants involves the observation, recording and interpretation of the timing of their life history events. This review considers the phenology of leafing, flowering and fruit production in a range of species and communities. The selective forces (both abiotic and biotic) that influence the timing of these events are discussed. Within the limits imposed by phylogenetic constraints, the phenological patterns (timing, frequency, duration, degree of synchrony, etc.) of each phase are probably the result of a compromise between a variety of selective pressures, such as seasonal climatic changes, resource availability, and the presence of pollinators, predators and seed dispersers. Many studies on flowering times stress the role of interactions between plant species which share pollinators or predators. The timing of fruiting plays a key role in controlling the abundance and variety of obligate frugivores in many tropical communities. The importance of long-term recording is stressed, particularly in species which fruit irregularly. An understanding of the phenology of plants is crucial to the understanding of community function and diversity.  相似文献   

7.
The timing and quantity of fruit production are major determinants of the functioning of a forest community, but simultaneous analyses of both are rare. We analyzed a ten‐year dataset (2001–2011) of fruit production for 45 tree and liana species from the Nouragues rain forest, French Guiana. We developed a hierarchical Bayesian approach to determine variation in the timing and quantity of fruit production. Our analysis accommodates missing censuses and quantifies variation at seasonal and inter‐annual scales. The fruiting peak of 22 of 45 species occurred during the peak of the rainy season, which is typical for central and eastern Amazon. The timing and quantity of fruit production varied substantially across years in most species, with greater variation in quantity than in timing. The timing of fruit production varied from continuously fruiting species to mast fruiting species that had two or more consecutive years without fruit production. Fully 40% of species were mast fruiting species. The seasonal timing and inter‐annual variation in fruiting were unrelated to seed dispersal mode across species. We saw no evidence for directional change in the level of fruit production, the timing of fruit production, or their variances; however, 10 yr is a short record for such analyses.  相似文献   

8.
Decreases in rainfall have been proposed to have a negative impact on tropical rain forests, and West Africa is currently experiencing a decline in rainfall at the multi‐decadal scale. Here, we present analyses of a long‐term dataset on the plant fruiting status from individuals of 44 species of the tropical rain forest of Taï National Park, Côte d'Ivoire. This study includes records of 1401 individuals collected at monthly intervals for over 12 yr, 984 of which survived throughout the entire study period. The aims of this study were to: (1) quantitate inter‐annual trends in species and forest scale fruit presence; and (2) test the importance of rainfall in explaining inter‐annual fruit presence variability. Long‐term upward trends in the expected proportion of individuals with fruits were found for the majority of species, while no significant downward trends were detected, driving a significant upward trend at the community level. Peak production months of the upward trending species were not associated with the dry or wet season. Significant rainfall correlations with the total proportion of individuals showing fruit were generally negative, with only five species showing significant positive correlations. Taken together, these results suggest that the observed inter‐annual trends and variability of fruit abundance are currently not associated with rainfall. We discuss several parsimonious and complex alternative explanations.  相似文献   

9.
Dry tropical forest tree species show variations in leafless duration (i.e. deciduousness), stem wood density (SWD), leaf mass area (LMA) and leaf strategy index (LSI, reflecting resource use rate) to overcome water limitations. We investigated the role of these tree traits in the seasonal timing of flowering and subsequent fruiting. Flowering and fruiting time of 24 tree species was recorded over two consecutive annual cycles and their relationships with the abovementioned tree specific traits were examined across the species. In leaf-exchanging species having higher SWD and LMA, low LSI and short deciduousness, flowering coincides with leaf transitional state when vegetative growth is at its minimum, and fruit formation and leaf flushing are both supported at the same time. However, >4-months-deciduous species with lowest SWD and LMA, higher LSI and longer deciduousness showed predominantly dry season flowering, subsequent fruiting on leafless shoots and distinct separation of vegetative and flowering phenophases. In contrast, intermediate species (<2 months-deciduous, 2–4-months-deciduous) showed wider flowering range through summer, rainy, autumn or winter seasons. Fruiting duration varies considerably with variation in the flowering time; ca. 5–14 months in summer flowering species; 7–12 months in rainy flowering species; 6–10 months in autumn flowering species, 4–9 months in dry season flowering and 3–7 months in winter flowering species. In most species, fruit maturation occurred just prior to the onset of rains, ensuring seedling survival. The ability of tree species to withstand (leaf-exchange) or avoid (deciduousness) drought stress and varying seasonal flowering timings appear to be the principal mechanisms for successful survival and reproduction under extremely dry and seasonal climate. Since environmental characteristics affect flowering and fruiting either directly (e.g. through conditions in the habitat) or indirectly (e.g. through deciduousness, LMA, SWD and LSI), the impact of probable global climatic change will have long implications on reproduction of dry tropical trees.  相似文献   

10.
Low-temperature environments interfere with plant reproduction by reducing the frequency of pollinators, and this may favour reproductive strategies such as self-pollination and apomixis. Tibouchina pulchra is a common tree species that occurs at high and low sites of the Brazilian Atlantic rainforest. This study focussed on the pollination biology and breeding system of this species, describing the pollinators and the reproductive success at the two sites of an elevational gradient. Observations were made to determine extent of flowering and fruiting, to identify the richness and abundance of pollinators, and to record data on the floral and reproductive biology at these two sites. Despite more dense flowering at the high site, five visits of bees (two species) were recorded during the observation time (60?h), whereas at the low site there were 948 visits (seven species) during the same period. In contrast with the low site, the flowers of the high site released and received few pollen grains on the stigma. At the high site less fruit was set with fewer seeds as a result of open pollination than at the low site; at that site, however, more seeds were obtained from cross-pollination than at the low site. Tibouchina pulchra is self-compatible; however it is not apomictic and needs pollinators for seed set at both sites. Life-history traits other than the breeding system, for example more dense flowering, advantage of greater fertility in cross-pollination, and multiple reproductive events during the lifetime of the tree may reduce inbreeding depression, increase the hybrid vigour, and balance the lack of pollinators at the high site.  相似文献   

11.
Plant reproductive success is supposedly influenced by phenology and individual size, which may be modified under edge effects. We tested if reproductive success, estimated by fruit set, in Senefeldera verticillata (Euphorbiaceae) is related to flowering synchrony and tree size, including plant height and circumference at breast height. The study was carried out in the interior and in edges of clearings for gas pipelines and electric lines of a lowland rainforest in south‐eastern Brazil. Monthly observations were performed during one reproductive season, of 19 individuals that grew at edges of electric lines and gas pipelines and at forest interior. Reproductive success was significantly higher at forest interior than at gas pipeline area; there was no significant difference between gas pipeline and electric line areas or between forest interior and electric line area. In the forest edges, only plant height was positively related to plant reproductive success. This is probably related to crown exposure to sunlight, which enhances flower production. At forest interior, reproductive success was positively influenced by the synchrony of flowering activity among neighbouring individuals. In contrast, flowering synchrony based on phenophase intensity negatively impacted reproductive success. Senefeldera verticillata shows temporal dioecy and is mainly pollinated by small social bees, and the high degree of flowering synchrony at low intensity may increase the number of mating partners and therefore enhance its reproductive success. Inside the forest fragments, individuals with thicker trunks showed lower reproductive success, which may be related to a loss of reproductive capacity of older individuals. Our results evidenced the complexity of responses experienced by tropical plants subjected to forest fragmentation because of linear clearings.  相似文献   

12.
  • Flowering and fruiting are key events in the life history of plants, and both are critical to their reproductive success. Besides the role of evolutionary history, plant reproductive phenology is regulated by abiotic factors and shaped by biotic interactions with pollinators and seed dispersers. In Melastomataceae, a dominant Neotropical family, the reproductive systems vary from allogamous with biotic pollination to apomictic, and seed dispersal varies from dry (self‐dispersed) to fleshy (animal‐dispersed) fruits. Such variety in reproductive strategies is likely to affect flowering and fruiting phenologies.
  • In this study, we described the reproductive phenology of 81 Melastomataceae species occurring in two biodiversity hotspots: the Atlantic rain forest and the campo rupestre. We aim to disentangle the role of abiotic and biotic factors defining flowering and fruiting times of Melastomataceae species, considering the contrasting breeding and seed dispersal systems, and their evolutionary history.
  • In both vegetation types, pollinator‐dependent species had higher flowering seasonality than pollinator‐independent ones. Flowering patterns presented phylogenetic signal regardless of vegetation type. Fruiting of fleshy‐fruited species was seasonal in campo rupestre but not in Atlantic rain forest; the fruiting of dry‐fruited species was also not seasonal in both vegetation types. Fruiting showed a low phylogenetic signal, probably because the influence of environment and dispersal agents on fruiting time is stronger than the phylogenetic affinity.
  • Considering these ecophylogenetic patterns, our results indicate that flowering may be shaped by the different reproductive strategies of Melastomataceae lineages, while fruiting patterns may be governed mainly by the seed dispersal strategy and flowering time, with less phylogenetic influence.
  相似文献   

13.
Mast fruiting is a distinctive reproductive trait in trees. This rain forest study, at a nutrient-poor site with a seasonal climate in tropical Africa, provides new insights into the causes of this mode of phenological patterning. At Korup, Cameroon, 150 trees of the large, ectomycorrhizal caesalp, Microberlinia bisulcata, were recorded almost monthly for leafing, flowering and fruiting during 1995-2000. The series was extended to 1988-2004 with less detailed data. Individual transitions in phenology were analysed. Masting occurred when the dry season before fruiting was drier, and the one before that was wetter, than average. Intervals between events were usually 2 or 3 yr. Masting was associated with early leaf exchange, followed by mass flowering, and was highly synchronous in the population. Trees at higher elevation showed more fruiting. Output declined between 1995 and 2000. Mast fruiting in M. bisulcata appears to be driven by climate variation and is regulated by internal tree processes. The resource-limitation hypothesis was supported. An 'alternative bearing' system seems to underlie masting. That ectomycorrhizal habit facilitates masting in trees is strongly implied.  相似文献   

14.
Fruiting, flowering, and leaf set patterns influence many aspects of tropical forest communities, but there are few long‐term studies examining potential drivers of these patterns, particularly in Africa. We evaluated a 15‐year dataset of tree phenology in Kibale National Park, Uganda, to identify abiotic predictors of fruit phenological patterns and discuss our findings in light of climate change. We quantified fruiting for 326 trees from 43 species and evaluated these patterns in relation to solar radiance, rainfall, and monthly temperature. We used time‐lagged variables based on seasonality in linear regression models to assess the effect of abiotic variables on the proportion of fruiting trees. Annual fruiting varied over 3.8‐fold, and inter‐annual variation in fruiting is associated with the extent of fruiting in the peak period, not variation in time of fruit set. While temperature and rainfall showed positive effects on fruiting, solar radiance in the two‐year period encompassing a given year and the previous year was the strongest predictor of fruiting. As solar irradiance was the strongest predictor of fruiting, the projected increase in rainfall associated with climate change, and coincident increase in cloud cover suggest that climate change will lead to a decrease in fruiting. ENSO in the prior 24‐month period was also significantly associated with annual ripe fruit production, and ENSO is also affected by climate change. Predicting changes in phenology demands understanding inter‐annual variation in fruit dynamics in light of potential abiotic drivers, patterns that will only emerge with long‐term data.  相似文献   

15.
Dioecy, the segregation of male and female structures among individuals, is widespread in tropical plants, encompassing 10–30 percent of species in some sites. In many cases, interindividual sex separation is not complete, as individual plants, although nominally dioecious, may produce both types of reproductive structures. A common form of this sexual variation is the production of female structures in otherwise male individuals, commonly referred to as fruiting males. Here we report the existence of fruiting males in the dioecious tropical tree Jacaratia mexicana (Caricaceae). We show that fruiting males can constitute up to 45 percent of all males in some populations of a tropical forest in Southern Mexico. In order to determine the functional significance of fruiting males for the breeding system of J. mexicana , we compared the relative performance of male- and female-borne seeds. Our results show that seeds from fruiting males are three times less likely to germinate and survive than seeds from female trees. Based on relative seed fitness data, and sex ratios in natural populations, we estimate that 6–15 percent of the genes contributed by fruiting males to the next generation are transmitted via ovules, meaning that morphological variation in gender is at least partially accompanied by functional gender variation. Finally, our seed fitness estimates for fruiting males suggest that fruiting males will not replace female plants in natural populations.
Abstract in Spanish is available at http://www.blackwell-synergy.com/loi/btp .  相似文献   

16.
《植物生态学报》2017,41(7):716
Aims Diversity of climbing seed plants and their reproductive habits and characteristics are central for the understanding of community structure and dynamics of forests and hence are important for forest protection. However, little is known about the climbing seed plants in northern tropical karst seasonal rain forests. Here, using the data of the species diversity and reproductive habits of climbing seed plants in Nonggang, Guangxi, China, we aim to 1) explore the species diversity and distribution of climbing seed plants in northern tropical karst seasonal rain forests, 2) study the flowering and fruiting phenology and 3) the associations of reproductive characteristics to the environment. Methods Species composition, preferred habitat, flowering time, fruiting time and fruit types of climbing seed plants were surveyed. The seasonality of flowering and fruiting were analyzed by concentration ratio and circular distribution. Climbing seed plants were divided into three groups according to their growth forms and places in spatial forest structure: bush ropes, herbaceous vines and lianas. Monthly flowering ratios, fruiting ratios, fruit types and their ratios in different groups were determined. These relationships of flowering ratio, fruiting ratio, fruit type and its ratio to meteorological factors were investigated using Pearson correlation analysis. Important findings There were a total of 333 species of climbing seed plants in Nonggang karst seasonal rain forest, belonging to 145 genera and 56 families. Bush ropes, herbaceous vines and lianas contained 119, 88 and 126 species, respectively. At species level, herbaceous vines were more abundance in valleys, while bush ropes and lianas were more abundance on slopes. Flowering and fruiting of climbing seed plants occurred seasonally, with flowering peaking in April to September, while fruiting peaking in July to December. The seasonality of flowering and fruiting in bush ropes was weaker than in herbaceous vines and lianas. Flowering ratio was significantly positively correlated with rainfall and air temperature, which suggest that flowering peaks in monsoon season. Peak time for fruiting was about three months later than the peak time of flowering, around the end of monsoon season. The ratio of samara species to all fruiting species in lianas was significantly positively correlated with wind speed, but negatively correlated with rainfall and air temperature. It showed that samara in lianas tended to occur in dry season with high wind speed. In conclusion, species diversity and the seasonal features of reproduction of climbing seed plants in Nonggang karst seasonal rain forest were closely related to the spatial and temporal variations of habitat resources.  相似文献   

17.
Reproductive patterns of tropical and temperate plants are usually associated with climatic seasonality, such as rainfall or temperature, and with their phylogeny. It is still unclear, however, whether plant reproductive phenology is influenced by climatic factors and/or phylogeny in aseasonal subtropical regions. The plant reproductive phenology of a subtropical rain forest in northern Taiwan (24°45′ N, 121°35′ E) was monitored at weekly intervals during a 7‐yr period (2002–2009). The flowering patterns of 46 taxa and fruiting patterns of 26 taxa were examined and evaluated in relation to climatic seasonality, phylogenetic constraints, and different phenophases. Our results indicated that most of the studied species reproduced annually. Additionally, both community‐wide flowering and fruiting patterns exhibited distinct annual rhythms and varied little among years. The community flowering peak matched seasonal changes in day length, temperature, and irradiance; while the community fruiting peak coincided with an increase in bird richness and the diet‐switching of resident omnivorous birds. In addition, phylogenetically closely related species tended to reproduce during the same periods of a year. Neither the mean flowering dates nor seasonal variation in solar radiation, however, was related to the fruit development times. Our results indicate the importance of abiotic, biotic, and evolutionary factors in determining the reproductive phenology in this subtropical forest.  相似文献   

18.
Qualitative reproductive traits of 84 plant species belonging to 41 families were studied in tropical dry evergreen forest on the Coromandel coast of India. Majority of species had rotate type, white-coloured, scented flowers, rewarding nectar and pollen and pollinated chiefly by bees. An association between floral traits and pollination spectrum is evident. Bee pollination was prevalent in pollination systems. Among the fruit types, drupe and berry were common in black and red colour respectively, and dispersed by zoochorous mode. Seeds of brown- and green-coloured dry fruits, without any reward were disseminated by wind and explosion. The reproductive phenophase of trees and lianas occurred mostly during the dry period from January to June, which receives rainfall of less than 50 mm a month. However, shrubs showed a peak in flowering and fruiting in wet period. Detailed phenological observations of 22 woody species revealed a seasonal and unimodal pattern in flowering. Although some species were in flower round the year, flowering activity was skewed towards the dry season. The fruiting activity showed a bimodal pattern, one peak in dry season and another in wet season. Many species displayed a temporal aggregation in flowering and fruiting. The significant relation was obtained between reproductive traits and phenology of plants in the tropical dry evergreen forest.  相似文献   

19.
Abstract Normanbya normanbyi (W. Hill) L. H. Bailey (Arecaceae) is a monoecious, arborescent palm with a very small distribution area within the Daintree rainforest in north‐eastern Australia. Our 2‐year study was focused on the reproductive phenology at the individual and population level. At the population level flowering peaked in the dry season, whereas fruiting was confined to the wet season. Each palm can bear up to three inflorescences/infructescences at the same time. Flowering of each inflorescence is separated from each other by a couple of weeks. A single inflorescence consists of about 1900 staminate and 800 pistillate flowers. The flowering of N. normanbyi is protandrous with a staminate phase lasting 40 days and a pistillate phase of approximately 2 weeks. Between both phases is a non‐flowering phase of about 9 days. Fruit ripening takes 21 weeks, with an average of about 280 ripe fruit per tree. Comparison of three study plots revealed a moderate synchrony of flowering and fruiting initiation in this species of palm. The male phase of flowering shows a higher degree of synchrony than the female phase at the population level. Seasonal regularity of flowering and fruiting peaks appears to be predictable. The general flowering and fruiting phenology of N. normanbyi follows a subannual pattern with a strong tendency towards a continual pattern.  相似文献   

20.
The conservation of biodiversity within tropical forest regions does not lie only in the maintenance of natural forest areas, but on conservation strategies directed toward agricultural land types within which they are embedded. This study investigated variations in bird assemblages of different functional groups of forest‐dependent birds in three agricultural land types, relative to distance from the interior of 34 tropical forest patches of varying sizes. Point counts were used to sample birds at each study site visited. Data from counts were used to estimate species richness, species evenness, and Simpson's diversity of birds. Mean species richness, evenness, and diversity were modeled as responses and as a function of agricultural land type, distance from the forest interior and three site‐scale vegetation covariates (density of large trees, fruiting trees, and patch size) using generalized linear mixed‐effect models. Mean observed species richness of birds varied significantly within habitat types. Mean observed species richness was highest in forest interior sites while sites located in farm centers recorded the lowest mean species richness. Species richness of forest specialists was strongly influenced by the type of agricultural land use. Fallow lands, density of large trees, and patch size strongly positively influenced forest specialists. Insectivorous and frugivorous birds were more species‐rich in fallow lands while monoculture plantations favored nectarivorous birds. Our results suggest that poor agricultural practices can lead to population declines of forest‐dependent birds particularly specialist species. Conservation actions should include proper land use management that ensures heterogeneity through retention of native tree species on farms in tropical forest‐agriculture landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号