首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  完全免费   3篇
  2018年   3篇
  2014年   2篇
  2010年   1篇
  2009年   2篇
排序方式: 共有8条查询结果,搜索用时 46 毫秒
1
1.
Growth defense tradeoff theory predicts that plants in low-resource habitats invest more energy in defense mechanisms against natural enemies than growth, whereas plants in high-resource habitats can afford higher leaf loss rates. A less-studied defense against herbivores involves the synchrony of leaf production, which can be an effective defense strategy if leaf biomass production exceeds the capacity of consumption by insects. The aim of this study was to determine whether leaf synchrony varied across habitats with different available resources and whether insects were able to track young leaf production among tree habitat specialists in a tropical forest of French Guiana. We predicted that high-resource habitats would exhibit more synchrony in leaf production due to the low cost and investment to replace leaf tissue. We also expected closer patterns of leaf synchrony and herbivory within related species, assuming that they shared herbivores. We simultaneously monitored leaf production and herbivory rates of five pairs of tree species, each composed of a specialist of terra firme or white-sand forests within the same lineage. Our prediction was not supported by the strong interaction of habitat and lineage for leaf synchrony within individuals of the same species; although habitat specialists differed in leaf synchrony within four of five lineages, the direction of the effect was variable. All species showed short time lags for the correlation between leaf production and herbivory, suggesting that insects are tightly tracking leaf production, especially for the most synchronous species. Leaf synchrony may provide an important escape defense against herbivores, and its expression appears to be constrained by both evolutionary history and environmental factors.  相似文献
2.
Question: How does habitat degradation affect recruitment limitation and its components (seed limitation versus establishment limitation) of woody plant communities in a Mediterranean landscape? Location: 1600‐1900 m a.s.l. in the Sierra Nevada National Park, southern Spain. The landscape is a mosaic composed of native forest and two degraded landscape units: reforestation stands and shrubland. Methods: We evaluated fruit production, seed rain, seedling emergence and seedling survival in two consecutive years with contrasting rainfall patterns. Seed and seedling data were used to calculate values of seed and establishment limitation. Results: In general, the woody community was both severely seed‐ and establishment‐limited. Species were less seed‐limited in the landscape units with higher adult density (i.e. shrub species in shrubland, Pinus spp. in reforestation stands). In contrast, degradation did not exacerbate establishment limitation, which was severe in all landscape units. This general pattern was modulated by the biogeographical distribution, dispersal type, and life form of the species. Boreo‐alpine species were more limited in establishment than species with a typical Mediterranean distribution. Zoochorous species were less seed‐limited in the landscape units preferred by dispersers (i.e. native forest). Tree species were more establishment‐limited than shrub species, irrespective of the landscape unit. Seed limitation, and especially establishment limitation, varied among years, with establishment being almost nil in the very dry year. Conclusion: In the case of Mediterranean landscapes, when degradation from human impact involves a reduction in the adult abundance of the woody plant community (trees and shrubs), seed limitation increases, although establishment limitation is generally high in all landscape units, especially for boreo‐alpine species. Conservation and restoration strategies should take into account our results showing that tree species were unable to recruit in an extremely dry year, because more aridity is expected under a climatic change scenario in Mediterranean ecosystems.  相似文献
3.
There is still little information on effects of habitat degradation on post-dispersal seed predation at the landscape scale. The aim of this study was to determine the influence of habitat degradation and seed species on the variability of post-dispersal seed-predation rate. Experimental seed removal was investigated in six Mediterranean woody plant species, four trees (Pinus sylvestris, Quercus ilex, Acer opalus ssp. granatense, and Sorbus aria) and two shrubs (Berberis vulgaris and Crataegus monogyna), in an extensively used mosaic landscape on the Sierra Nevada massif (SE Spain). Seed depots were distributed over 2 years in five differently degraded landscape units, each one with three plots: shrubland; native forest; and dense, cleared and fenced reforestation stands. Predation was the highest in native forest, shrubland, and fenced reforestation, and the lowest in dense and cleared reforestation stands, being partially due to a positive correlation between shrub cover and post-dispersal seed predation. However, the main factors driving post-dispersal seed predation were intrinsic to seeds, as species preference explained most of the variance in our model for predation. The plant-species ranking was Quercus > Pinus > Sorbus > Berberis > Acer > Crataegus, the dominant tree species being the most depredated. These findings are novel because they suggest for the first time that species-selection patterns by post-dispersal seed predators tended to remain constant through both study years in all habitats comprising a mosaic landscape, whether native forest, reforestation stands or successional shrubland.  相似文献
4.
We retrace the development of tropical phenology research, compare temperate phenology study to that in the tropics and highlight the advances currently being made in this flourishing discipline. The synthesis draws attention to how fundamentally different tropical phenology data can be to temperate data. Tropical plants lack a phase of winter dormancy and may grow and reproduce continually. Seasonal patterns in environmental parameters, such as rainfall, irradiance or temperature, do not necessarily coincide temporally, as they do in temperate climes. We review recent research on the drivers of phenophase cycles in individual trees, species and communities and highlight how significant innovations in biometric tools and approaches are being driven by the need to deal with circular data, the complexity of defining tropical seasons and the myriad growth and reproductive strategies used by tropical plants. We discuss how important the use of leaf phenology (or remotely‐sensed proxies of leaf phenophases) has become in tracking biome responses to climate change at the continental level and how important the phenophase of forests can be in determining local weather conditions. We also highlight how powerful analyses of plant responses are hampered at many tropical sites by a lack of contextual data on local environmental conditions. We conclude by arguing that there is a clear global benefit in increasing long term tropical phenology data collection and improving empirical collection of local climate measures, contemporary to the phenology data. Directing more resources to research in this sector will be widely beneficial.  相似文献
5.
The timing and quantity of fruit production are major determinants of the functioning of a forest community, but simultaneous analyses of both are rare. We analyzed a ten‐year dataset (2001–2011) of fruit production for 45 tree and liana species from the Nouragues rain forest, French Guiana. We developed a hierarchical Bayesian approach to determine variation in the timing and quantity of fruit production. Our analysis accommodates missing censuses and quantifies variation at seasonal and inter‐annual scales. The fruiting peak of 22 of 45 species occurred during the peak of the rainy season, which is typical for central and eastern Amazon. The timing and quantity of fruit production varied substantially across years in most species, with greater variation in quantity than in timing. The timing of fruit production varied from continuously fruiting species to mast fruiting species that had two or more consecutive years without fruit production. Fully 40% of species were mast fruiting species. The seasonal timing and inter‐annual variation in fruiting were unrelated to seed dispersal mode across species. We saw no evidence for directional change in the level of fruit production, the timing of fruit production, or their variances; however, 10 yr is a short record for such analyses.  相似文献
6.
Here, we introduce the Special Section (SS) on long‐term monitoring and new analytical methods in tropical phenology. The SS puts together nine original papers plus a synthesis, bringing significant advances and new insights into our understanding of tropical phenology across Africa and tropical America. The papers address environmental cues, methodological shortcomings, and provide innovative analytical approaches, opening new pathways, perspective and applications of tropical phenology for forest management and environmental monitoring. The SS is a substantial step toward a more comprehensive overview of trends in tropical phenology, as seven of nine studies evaluate >10‐yr data sets applying new methods of analysis such as hierarchical Bayesian models, generalized additive models, and Fourier analysis. We argue that it is essential to maintain ongoing monitoring programs and build a tropical phenology network at least for long‐term (>10 yr) study sites, providing the means for national and international financial support. Cross‐continental comparisons are now a primary goal, as we work toward a global vision of trends and shifts in tropical phenology in the Anthropocene.  相似文献
7.
Seed dispersal by Red fox (Vulpes vulpes), Stone marten (Martes foina), and Wild boar (Sus scrofa) was analyzed in an extensively degraded mosaic landscape in Sierra Nevada (SE Spain). The main objective was to determine whether seed dispersal by mammals was related to habitat degradation within a mosaic of adjacent degraded patches mixed with native forest and thereby to determine the potential role of mammals as seed dispersers in degraded landscape units. For three consecutive years, mammal feces were collected in the fruit production period, extracting all seeds of woody species found therein and analyzing their viability. Feces were collected in three different plots for each of five different landscape units: shrubland, native forest, and dense, cleared, and fenced reforestation stands. Seeds from 16 woody species (which represent more than a half of the total fleshy‐fruited woody species available) were recorded, although some agrarian species are also introduced in a low percentage of the scats. Seeds showed a high viability rate for all dispersed species, irrespective of the mammal disperser. No differences in species composition appeared in the overall landscape units or in the seed density between degraded habitats. Due to the small patch size, the high viability of dispersed seeds, and the large home range of the large mammals, these three animal species act as efficient seed dispersers for a diverse assemblage of woody plant species regardless of the habitat type within this degradation framework. This fact has important consequences for the biodiversity recuperation in these degraded habitats, principally in pine plantations.  相似文献
8.
Ecological processes in tropical forests are being affected at unprecedented rates by human activities. Yet, the continuity of ecological functions like seed dispersal is crucial for forest regeneration. It thus becomes increasingly urgent to be able to rapidly assess the health status of these processes in order to take appropriate management measures. We tested a method to rapidly evaluate seed removal rates on two animal‐dispersed tree species, Virola kwatae and V. michelii (Myristicaceae), at three sites in French Guiana with increasing levels of anthropogenic disturbance. We counted fallen fruits, fruit valves, and seeds of each focal fruiting tree in a single 1 m2 quadrat, and calculated two indices: the proportion of seeds removed and the proportion of fruits opened by mammals. They both provide an indirect and rapid assessment of frugivore activity. Our results showed a significant decrease in the proportion of removed seeds (16%) and fruits opened (19%) at the most impacted site in comparison with the other two sites (79% for seeds, 60% and 35% for fruits). This testifies to an increased impoverishment of the primate and toucan communities at the disturbed sites. This standardized protocol provides fast information about the health status of the community of seed dispersers and predators and of their seed removal services. It is time‐ and cost‐effective and is not species‐specific, allowing comparisons among sites or over time. We suggest using it with the pantropical Myristicaceae and any other capsule‐producing family to rapidly assess the health status of seed removal processes across the tropics.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号