首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
Lee HC  Yin PH  Yu TN  Chang YD  Hsu WC  Kao SY  Chi CW  Liu TY  Wei YH 《Mutation research》2001,493(1-2):67-74
Accumulation of mitochondrial DNA (mtDNA) mutations in human tissues has been associated with intrinsic aging and environmental insult. Recently, mtDNA mutations have been detected in various tumors, including head and neck tumors. However, the factors affecting the occurrence and accumulation of mtDNA deletions in tumor tissues are poorly understood. In Taiwan, betel quid chewing is a major risk factor for oral cancer. Using polymerase chain reaction (PCR) techniques, we examined large-scale deletions of mtDNA in 53 pairs of tumor and non-tumor oral tissues from the patients with or without betel quid chewing history. The results revealed that irrespective of the history of betel quid chewing, the incidences of the 4977bp deletion and other deletions of mtDNA were lower in the tumor portion as compared with the non-tumor portion. The average proportions of the 4977bp deleted mtDNA in the tumor tissues of the betel quid chewers and non-betel quid chewers were 13- and 5-fold, respectively, lower than those in the corresponding non-tumor tissues. Moreover, the average proportion of 4977bp deleted mtDNA was significantly higher (P<0.05) in the non-tumor oral tissues of the patients with betel quid chewing history than that of the patients without the history of betel quid chewing. These results suggest that betel quid chewing may increase mtDNA mutation in human oral tissues and that accumulation of mtDNA deletions and subsequent cytoplasmic segregation of these mutations during cell division could be an important contributor to the early phase of oral carcinogenesis.  相似文献   

2.
Mitochondrial DNA alterations as ageing-associated molecular events.   总被引:7,自引:0,他引:7  
Y H Wei 《Mutation research》1992,275(3-6):145-155
Mitochondrial DNA (mtDNA) is a naked double-stranded circular extrachromosomal genetic element continuously exposed to the matrix that contains great amounts of reactive oxygen species and free radicals. The age-dependent decline in the capability and capacity of mitochondria to dispose these oxy-radicals will render mtDNA more vulnerable to mutations during the ageing process. During the past 3 years, more than 10 different types of deletions have been identified in the mtDNA of various tissues of old humans. Some of them were found only in a certain tissue but some others appeared in more than one organ or tissue. The 4977-bp deletion is the most prevalent and abundant one among these deletions. Skeletal muscle is the target tissue of most ageing-associated mtDNA deletions and has often been found to carry multiple deletions. The onset age of the various deletions in mtDNA varies greatly with individual and type of the deletion. The 4977-bp deletion has been independently demonstrated to occur in the mtDNA of various tissues of the human in the early third decade of life. However, the 7436-bp deletion was only detected in the heart mtDNA of human subjects in their late thirties. The others appeared only in older humans over 40 years old. No apparent sex difference was found in the onset age of these ageing-associated mtDNA deletions. The various ageing-associated deletions could be classified into two groups. Most of the deletions belong to the first group, in which the 5'- and 3'-end breakpoints of the deletion are flanked by 4-bp or longer direct repeats. The deletion in the second group occurs less frequently and shows no distinct repeat sequences flanking the deletion sites. These two groups of mtDNA deletions may occur by different mechanisms. The first group is most probably caused by internal recombination or slippage mispairing during replication of mtDNA by the D-loop mechanism. The deleted mtDNA and the deleted DNA fragment may be further degraded or escape from the mitochondria and get translocated into the nucleus. The latter route has been substantiated by many observations of inserted mtDNA sequences in the nuclear DNA. Thus, the fragments of migrating mtDNA may change the information content and expression level of certain nuclear genes and thereby promote the ageing process or cause cancer. Similar ageing-associated alterations of mtDNA have also been observed in aged animals and plants. I suggest that mtDNA deletions and other mutations to be discovered are molecular events generally associated with the ageing process.  相似文献   

3.
Lee HC  Hsu LS  Yin PH  Lee LM  Chi CW 《Mitochondrion》2007,7(1-2):157-163
Somatic mutations in mitochondrial DNA (mtDNA) have been demonstrated in various human cancers. Many cancers have high frequently of mtDNA with homoplasmic point mutations, and carry less frequently of mtDNA with large-scale deletions as compared with corresponding non-cancerous tissue. Moreover, most cancers harbor a decreased copy number of mtDNA than their corresponding non-cancerous tissue. However, it is unclear whether the process of decreasing in mtDNA content would be involved in an increase in the heteroplasmic level of somatic mtDNA point mutation, and/or involved in a decrease in the proportion of mtDNA with large-scale deletion in cancer cells. In this study, we provided evidence that the heteroplasmic levels of variations in cytidine number in np 303-309 poly C tract of mtDNA in three colon cancer cells were not changed during an ethidium bromide-induced mtDNA depleting process. In the mtDNA depleting process, the proportions of mtDNA with 4977-bp deletion in cybrid cells were not significantly altered. These results suggest that the decreasing process of mtDNA copy number per se may neither contribute to the shift of homoplasmic/heteroplasmic state of point mutation in mtDNA nor to the decrease in proportion of mtDNA with large-scale deletions in cancer cells. Mitochondrial genome instability and reduced mtDNA copy number may independently occur in human cancer.  相似文献   

4.
By DNA sequence analysis, we have determined a spectrum of 61 spontaneous mutations occurring in the endogenous tonB gene in the polA1 strain of Escherichia coli. The overall mutation frequency was approximately 2.4-fold higher in the polA1 strain and this was attributable to enhanced rates of deletion and frameshift mutations. Among 39 deletions, a hot spot (17 mutations) was detected: a 13-bp deletion presumably directed by a 3-bp repeated sequence at its end points. The remaining 22 were distributed among 19 different mutations either flanked (16/19) or not flanked (3/19) by repeated sequences. Single-base frameshifts accounted for 8 mutations of either repeated (3/8) or nonrepeated (5/8) bases among which 6 were minus one frameshift. In contrast to previous reports, we did not frequently observe a 5'-GTGG-3' sequence in the vicinity of the deletions and frameshifts. The results presented here indicated an anti-deletion and anti-frameshift role for DNA polymerase I.  相似文献   

5.
Quantitative information on the cell-to-cell distribution of all possible mitochondrial DNA (mtDNA) mutations in young and aged tissues is needed to assess the relevance of these mutations to the aging process. In the present study, we used PCR amplification of full-length mitochondrial genomes from single cells to scan human cardiomyocytes for all possible large deletions in mtDNA. Analysis of more than 350 individual cells that were derived from three middle-aged and four centenarian donors demonstrates that while most of the cells contain no deletions, in certain cardiomyocytes a significant portion of the mtDNA molecules carried one particular deletion. Different affected cells contained different deletions. Although similar numbers of cells were screened for each donor, these deletion-rich cells were found only in the hearts of old donors, where they occurred at a frequency of up to one in seven cells. These initial observations demonstrate the efficiency of the method and indicate that mitochondrial mutations have the potential to play an important role in human myocardial aging.  相似文献   

6.
Mitochondrial DNA (mtDNA) deletion mutations cause many human diseases and are linked to age-induced mitochondrial dysfunction. Mapping the mutation spectrum and quantifying mtDNA deletion mutation frequency is challenging with next-generation sequencing methods. We hypothesized that long-read sequencing of human mtDNA across the lifespan would detect a broader spectrum of mtDNA rearrangements and provide a more accurate measurement of their frequency. We employed nanopore Cas9-targeted sequencing (nCATS) to map and quantitate mtDNA deletion mutations and develop analyses that are fit-for-purpose. We analyzed total DNA from vastus lateralis muscle in 15 males ranging from 20 to 81 years of age and substantia nigra from three 20-year-old and three 79-year-old men. We found that mtDNA deletion mutations detected by nCATS increased exponentially with age and mapped to a wider region of the mitochondrial genome than previously reported. Using simulated data, we observed that large deletions are often reported as chimeric alignments. To address this, we developed two algorithms for deletion identification which yield consistent deletion mapping and identify both previously reported and novel mtDNA deletion breakpoints. The identified mtDNA deletion frequency measured by nCATS correlates strongly with chronological age and predicts the deletion frequency as measured by digital PCR approaches. In substantia nigra, we observed a similar frequency of age-related mtDNA deletions to those observed in muscle samples, but noted a distinct spectrum of deletion breakpoints. NCATS-mtDNA sequencing allows the identification of mtDNA deletions on a single-molecule level, characterizing the strong relationship between mtDNA deletion frequency and chronological aging.  相似文献   

7.
Point mutations and deletions in mitochondrial DNA (mtDNA) accumulate as a result of oxidative stress, including ionizing radiation. As a result, dysfunctional mitochondria suffer from a decline in oxidative phosphorylation and increased release of superoxides and other reactive oxygen species (ROS). Through this mechanism, mitochondria have been implicated in a host of degenerative diseases. Associated with this type of damage, and serving as a marker of total mtDNA mutations and deletions, the accumulation of a specific 4977-bp deletion, known as the common deletion (Delta-mtDNA(4977)), takes place. The Delta-mtDNA(4977) has been reported to increase with age and during the progression of mitochondrial degeneration. The purpose of this study was to investigate whether ionizing radiation induces the formation of the common deletion in a variety of human cell lines and to determine if it is associated with cellular radiosensitivity. Cell lines used included eight normal human skin fibroblast lines, a radiosensitive non-transformed and an SV40 transformed ataxia telangiectasia (AT) homozygous fibroblast line, a Kearns Sayre Syndrome (KSS) line known to contain mitochondrial deletions, and five human tumor lines. The Delta-mtDNA(4977) was assessed by polymerase chain reaction (PCR). Significant levels of Delta-mtDNA(4977) accumulated 72 h after irradiation doses of 2, 5, 10 or 20 Gy in all of the normal lines with lower response in tumor cell lines, but the absolute amounts of the induced deletion were variable. There was no consistent dose-response relationship. SV40 transformed and non-transformed AT cell lines both showed significant induction of the deletion. However, the five tumor cell lines showed only a modest induction of the deletion, including the one line that was deficient in DNA damage repair. No relationship was found between sensitivity to radiation-induced deletions and sensitivity to cell killing by radiation.  相似文献   

8.
Mitochondrial DNA (mtDNA) deletions are a common cause of human mitochondrial disease and also occur as part of normal aging. However, it is unknown how the deletions actually occur. To gain further insight, we studied the sequences that flank 263 different human mtDNA deletions. The distribution of deletion breakpoints did not correspond to the basic parameters of wild-type mtDNA that are thought to predispose to deletion formation. But there was a striking correspondence to the position of two 13-bp direct repeats beginning at nucleotides 8470 and 13 447. The vast majority of different mtDNA deletions appear to be related to these two repeats, suggesting a common mechanism related to mtDNA replication.  相似文献   

9.
It is unclear at present whether specific mtDNA point mutations accumulate during normal human aging. In order to address this question, we used quantitative PCR of total DNA isolated from skeletal muscle from normal individuals of various ages to search for the presence and amount of spontaneous mtDNA point mutations in two small regions of the human mitochondrial genome. We observed low levels of somatic mutations above background in both regions, but there was no correlation between the amount of mutation detected and the age of the subject. These results contrasted with our finding of an age-related increase in the amount of the mtDNA "common deletion" in these very samples. Thus, it appears that both somatic mtDNA point mutations and mtDNA deletions can arise at low frequency in normal individuals but that, unlike deletions, there is no preferential amplification or accumulation of specific point mutations in skeletal muscle over the course of the normal human life span.  相似文献   

10.
Zhong Y  Hu YJ  Yang Y  Peng W  Sun Y  Chen B  Huang X  Kong WJ 《Mutation research》2011,712(1-2):11-19
Mitochondrial DNA (mtDNA) mutations, especially deletions, have been suggested to play an important role in aging and degenerative diseases. In particular, the common deletion in humans and rats (4977bp and 4834bp deletion, respectively) has been shown to accumulate with age in post-mitotic tissues with high energetic demands. Among numerous deletions, the common deletion has been proposed to serve as a molecular marker for aging and play a critical role in presbyacusis. However, so far no previous publication has quantified the contribution of common deletion to the total burden of mtDNA deletions in tissues during aging process. In the present study, we established a rat model with various degrees of aging in inner ear induced by three different doses of d-galactose (d-gal) administration. Firstly, multiple mtDNA deletions in inner ear were detected by nested PCR and long range PCR. In addition to the common deletion, three novel mtDNA deletions were identified. All four deletions, located in the major arc of mtDNA, are flanked by direct repeats and involve the cytochrome c oxidase (COX) subunit III gene, encoded by mtDNA. Additionally, absolute quantitative real-time PCR assay was used to detect the level of common deletion and total deletion burden of mtDNA. The quantitative data show that the common deletion is the most frequent type of mtDNA deletions, exceeding 67.86% of the total deletion burden. Finally, increased mtDNA copy number, reduced COX activity and mosaic ultrastructural impairments in inner ear were identified in d-gal-induced aging rats. The increase of mtDNA replication may contribute to the accelerated accumulation of mtDNA deletions, which may result in impairment of mitochondrial function in inner ear. Taken together, these findings suggest that the common deletion may serve as an ideal molecular marker to assess the mtDNA damage in inner ear during aging.  相似文献   

11.
We used a strategy based on long PCR (polymerase chain reaction) for detection and characterization of mitochondrial DNA (mtDNA) rearrangements in two patients with clinical signs suggesting Pearson syndrome and Kearns-Sayre syndrome (KSS), respectively, and one patient with myopathic symptoms of unidentified origin. Mitochondrial DNA rearrangements were detected by amplification of the complete mitochondrial genome (16.6 kb) using long PCR with primers located in essential regions of the mitochondrial genome and quantified by three-primer PCR. Long PCR with deletion-specific primers was used for identification and quantitative estimation of the different forms of rearranged molecules, such as deletions and duplications. We detected significant amounts of a common 7.4-kb deletion flanked by a 12-bp direct repeat in all tissues tested from the patient with Pearson syndrome. In skeletal muscle from the patient with clinical signs of KSS we found significant amounts of a novel 3.7-kb rearrangement flanked by a 4-bp inverted repeat that was present in the form of deletions as well as duplications. In the patient suffering from myopathic symptoms of unidentified origin we did not detect rearranged mtDNA in blood but found low levels of two rearranged mtDNA populations in skeletal muscle, a previously described 7-kb deletion flanked by a 7-bp direct repeat and a novel 6.6-kb deletion with no repeat. These two populations, however, were unlikely to be the cause of the myopathic symptoms as they were present at low levels (10–40 ppm). Using a strategy based on screening with long PCR we were able to detect and characterize high as well as low levels of mtDNA rearrangements in three patients. Received: 10 March 1997 / Accepted: 20 May 1997  相似文献   

12.
The mutation rate of the human mtDNA deletion mtDNA4977.   总被引:3,自引:1,他引:2       下载免费PDF全文
The human mitochondrial mutation mtDNA4977 is a 4,977-bp deletion that originates between two 13-bp direct repeats. We grew 220 colonies of cells, each from a single human cell. For each colony, we counted the number of cells and amplified the DNA by PCR to test for the presence of a deletion. To estimate the mutation fate, we used a model that describes the relationship between the mutation rate and the probability that a colony of a given size will contain no mutants, taking into account such factors as possible mitochondrial turnover and mistyping due to PCR error. We estimate that the mutation rate for mtDNA4977 in cultured human cells is 5.95 x 10(-8) per mitochondrial genome replication. This method can be applied to specific chromosomal, as well as mitochondrial, mutations.  相似文献   

13.
We investigated the presence and potential role of mitochondrial DNA (mtDNA) deletion mutations in adult cardiac stem cells. Cardiac side population (SP) cells were isolated from 12-week-old mice. Standard polymerase chain reaction (PCR) was used to screen for the presence of mtDNA deletion mutations in (a) freshly isolated SP cells and (b) SP cells cultured to passage 10. When present, the abundance of mtDNA deletion mutation was analyzed in single cell colonies. The effect of different levels of deletion mutations on SP cell growth and differentiation was determined. MtDNA deletion mutations were found in both freshly isolated and cultured cells from 12-week-old mice. While there was no significant difference in the number of single cell colonies with mtDNA deletion mutations from any of the groups mentioned above, the abundance of mtDNA deletion mutations was significantly higher in the cultured cells, as determined by quantitative PCR. Within a single clonal cell population, the detectable mtDNA deletion mutations were the same in all cells and unique when compared to deletions of other colonies. We also found that cells harboring high levels of mtDNA deletion mutations (i.e. where deleted mtDNA comprised more than 60% of total mtDNA) had slower proliferation rates and decreased differentiation capacities. Screening cultured adult stem cells for mtDNA deletion mutations as a routine assessment will benefit the biomedical application of adult stem cells.  相似文献   

14.
Small direct repeats, which are frequent in all genomes, are a potential source of genome instability. To study the occurrence and genetic control of repeat-associated deletions, we developed a system in the yeast Saccharomyces cerevisiae that was based on small direct repeats separated by either random sequences or inverted repeats. Deletions were examined in the LYS2 gene, using a set of 31- to 156-bp inserts that included inserts with no apparent potential for secondary structure as well as two quasipalindromes. All inserts were flanked by 6- to 9-bp direct repeats of LYS2 sequence, providing an opportunity for Lys+ reversion via precise excision. Reversions could arise by extended deletions involving either direct repeats or random sequences and by -1-or +2-bp frameshift mutations. The deletion breakpoints were always associated with short (3- to 9-bp) perfect or imperfect direct repeats. Compared with the POL+ strain, deletions between small direct repeats were increased as much as 100-fold, and the spectrum was changed in a temperature-sensitive DNA polymerase delta pol3-t mutant, suggesting a role for replication. The type of deletion depended on orientation relative to the origin of replication. On the basis of these results, we propose (i) that extended deletions between small repeats arise by replication slippage and (ii) that the deletions occur primarily in either the leading or lagging strand. The RAD50 and RAD52 genes, which are required for the recombinational repair of many kinds of DNA double-strand breaks, appeared to be required also for the production of up to 90% of the deletions arising between separated repeats in the pol3-t mutant, suggesting a newly identified role for these genes in genome stability and possibly replication.  相似文献   

15.
DNA polymerase gamma (pol gamma ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol gamma (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G-->A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol gamma , that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)-deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype.  相似文献   

16.
Endometriosis is a multifactorial gynecological condition characterized by the presence of ectopic endometrial and stromal tissue outside the uterus. Free radicals and Oxidative stress have been proposed to be involved in the pathogenesis of the endometriosis. It has been shown that mitochondrial DNA (mtDNA) is particularly susceptible to oxidative damage and mutations due to the high rate of reactive oxygen species production and limited DNA repair capacity in mitochondria. While a number of deletions can occur, the most commonly studied in human is a 4977-bp deletion that removes all or parts of the genes for NADH dehydrogenase subunits 3, 4, 4L and 5, cytochrome C oxidase subunit III and ATP synthase subunits 6 and 8.” We evaluated whether mtDNA common deletion is related with the susceptibility to endometriosis in northern Iran. In this study 80 endometriosis cases and 100 controls were enrolled. Total DNA was extracted from endometrial tissue samples. The mitochondrial common deletion was determined by Gap- polymerase chain reaction (Gap-PCR). It was found that the mitochondrial common deletion was more likely to be present in patients with endometriosis. Assessing indicate that 60 % of patients and 8 % of controls show mtDNA 4977-bp deletion (Odds Ratio [OR] = 17.25, P < 0.0001, confidence interval [CI] = 5.18–57.36). The mtDNA 4977 deletion may play a role in endometriosis. Further studies with larger numbers of patients are required for further evaluation and confirmation of our finding.  相似文献   

17.
18.
The Pearson marrow-pancreas syndrome is a fatal disorder involving the hematopoietic system and the exocrine pancreas in early infancy. We have previously shown that this disease results from a widespread defect of oxidative phosphorylation. Here, we describe deletions of the mitochondrial (mt) genome between repeated 8- to 13-bp sequences as consistent features of the disease. Studying a series of nine unrelated children, including the patient originally reported by H. Pearson, we found five different types of direct repeats at the boundaries of the mtDNA deletions and we provided evidence for conservation of the 3'-repeated sequence in the deletions. In addition, we found a certain degree of homology between the nucleotide composition of the direct repeats and several structures normally involved in mtDNA replication and mtRNA processing. These results are consistent either with the recognition and cleavage of a particular DNA sequence with a factor of still unknown origin or with a homologous recombination between direct-repeat mtDNA sequences in the Pearson syndrome.  相似文献   

19.
Mitochondrial myopathies and encephalopathies can be caused by nucleotide substitutions, deletions or duplications of the mitochondrial DNA (mtDNA). In one such disorder, Kearns-Sayre Syndrome (KSS), large-scale hetero-plasmic mtDNA deletions are often found. We describe a 14-year-old boy with clinical features of KSS, plus some additional features. Analysis of the entire mitochondrial genome by the polymerase chain reaction and Southern blotting revealed a 7864-bp mtDNA deletion, heteroplasmic in its tissue distribution. DNA sequencing established that the deletion was between nucleotides 6238 and 14103, and flanked by a 4-bp (TCCT) direct repeat sequence. Deletions between direct repeats have been hypothesised to occur by a slipped-mismatching or illegitimate recombination event, or following the DNA cleavage action of topoisomerase II. Analysis of the gene sequence in the region surrounding the mtDNA deletion breakpoint in this patient revealed the presence of putative vertebrate topoisomerase II sites. We suggest that direct repeat sequences, together with putative topoisomerase II sites, may predispose certain regions of the mitochondrial genome to deletions.  相似文献   

20.
Jin X  Zhang J  Gao Y  Ding K  Wang N  Zhou D  Jen J  Cheng S 《Mitochondrion》2007,7(5):347-353
Mitochondrial DNA (mtDNA) is known for its high frequencies of polymorphisms and mutations, some of which are related to various diseases, including cancers. However, roles of mutations and polymorphisms in some diseases are among heated debate, especially for cancer. To investigate the possible role of mtDNA mutations in lung cancer, we sequenced complete mtDNA of lung cancer tissues, corresponding normal (i.e., non-cancerous) lung tissues, and peripheral blood samples from 55 lung cancer patients and examined the relationship between mtDNA mutations or polymorphisms and clinical parameters. We identified 56 mutations in 33 (60%) of the 55 patients, including 48 point mutations, four single-nucleotide insertions, and four single-nucleotide deletions. Nineteen of these mutations resulted in amino acid substitution. These missense mtDNA mutations were distributed in 9 of 13 mitochondrial DNA coding genes. Three hundred eighty eight polymorphisms were identified among the 55 patients. Seventy-three polymorphisms resulted in amino acid substitution. There was no association of incidence of specific mtDNA mutation or polymorphism with patients' gender, age at diagnosis, smoking history, tumor type or tumor stage (P>0.05). This study revealed a variety of mtDNA mutations and mtDNA polymorphisms in human lung cancer, some of which might be involved in human lung carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号