首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 289 毫秒
1.
干旱和湿润生境中主要优势树种叶片功能性状的比较   总被引:1,自引:0,他引:1  
以云南南部的沟谷雨林(湿润生境)和干热河谷萨瓦纳(savanna)稀树灌丛(干旱生境)中共31种主要优势木本植物为材料,研究了叶片主要功能性状单位面积叶干重(LMA)、单位干重氮含量(Nmass)和单位干重最大净光合速率(Amass)在2个生境中的差异及各性状间的关系。结果表明:在物种水平上,干旱和湿润生境中各树种的LMA值分别为46.88~178.63和45.35~93.16g·m-2;Amass值分别为48.12~176.65和71.38~265.76nmol·g-1·s-1;Nmass值分别为11.8~36.71和12.98~31.78mg·g-1;在群落水平上,干旱生境中LMA显著高于湿润生境,而Amass显著低于湿润生境,Nmass在2个生境中差异不显著;在群落尺度上,干旱生境中LMA与Nmass和Amass均呈显著负相关;在2生境中Nmass与Amass均呈显著正相关。同一生境下不同植物对环境的适应策略有差异,但各性状间的相关关系具有趋同性;从湿润到干旱生境,植物由快速生长转向以提高资源利用效率为主的适应策略。  相似文献   

2.
北热带喀斯特森林木本植物花性状及其生境分异   总被引:1,自引:0,他引:1  
植物花性状的多样化是植物长期进化及自然选择的结果, 不同植物种间花性状的变异与生境存在一定的相关性。北热带喀斯特季节性雨林具有生境异质性强、群落结构复杂、特有成分丰富等特点, 分析该森林植物性状的变化特征及其与生境的关联性, 有助于理解物种共存、协同进化过程和对生境的适应, 可为阐明喀斯特植物的生态适应性、理解生物多样性维持机理提供依据。本研究在弄岗15 ha森林动态监测样地木本植物开花相对集中的时间段进行, 记录并分析了21个物种花性状的变化。根据物种空间分布及其与生境的关联特性, 将21个物种分成偏好谷底、山坡、山顶的3种类型, 分析了这3种类型植物的花性状差异; 另外又根据花性状对21个物种进行聚类分析, 探讨了聚类分组结果和根据偏好生境分组结果的异同。结果表明: 花大小、花色鲜艳度均与物种优势度存在显著的负相关关系, 花小而不鲜艳的物种在群落中更有优势, 表现出更好的适应性; 不同偏好生境的植物花色明度有显著差异, 其他的花性状差异不显著; 聚类分组与根据偏好生境的分组有较好的一致性, 反映出物种的花性状变化响应了生境的变化。综上结果, 我们认为北热带喀斯特季节性雨林植物花性状与物种的优势度及生境条件有密切联系, 在该区域中生境对花性状的影响可能比传粉者更为深刻。  相似文献   

3.
Plant ecology of tropical and subtropical karst ecosystems   总被引:1,自引:0,他引:1  
Substantial areas of tropical forests, including those within nine tropical biodiversity hotspots, contain karst landscapes that have developed on soluble carbonate rocks. Here, we review how the ecology of karst forest trees is influenced by hydrological, edaphic, and topographic factors that exhibit fine spatial heterogeneity. Comparative analysis of drought tolerance traits including wood density contributes to the assessment of whether karst tree species are more drought‐tolerant compared to non‐karst trees. Although karst ecosystems are generally considered to have low phosphorus availability, foliar nitrogen‐to‐phosphorus ratios exhibit wide variation across karst regions without a clear difference from non‐karst ecosystems. According to the analyses of leaf phenology, stem water storage, and isotopic signatures from xylem sap, water use strategies of karst trees can be classified into five types: (a) soil water dependent, (b) epikarst water dependent (mainly use water stored in fine pores and gaps within the epikarst rock during the dry season), (c) groundwater dependent, (d) fog water dependent, and (e) drought‐deciduous (shed leaves during the dry season). Overall, published data suggest that only a subset of karst tree species are exclusively distributed within karst hilltops where water availability is limited. The diverse resource acquisition and utilization strategies of karst plants across edaphic habitats must be considered when developing effective strategies to conserve and restore biodiversity in karst landscapes, which are under increasing anthropogenic pressure.  相似文献   

4.
Understanding variation in key functional traits across gradients in high diversity systems and the ecology of community changes along gradients in these systems is crucial in light of conservation and climate change. We examined inter‐ and intraspecific variation in leaf mass per area (LMA) of sun and shade leaves along a 3330‐m elevation gradient in Peru, and in sun leaves across a forest–savanna vegetation gradient in Brazil. We also compared LMA variance ratios (T‐statistics metrics) to null models to explore internal (i.e., abiotic) and environmental filtering on community structure along the gradients. Community‐weighted LMA increased with decreasing forest cover in Brazil, likely due to increased light availability and water stress, and increased with elevation in Peru, consistent with the leaf economic spectrum strategy expected in colder, less productive environments. A very high species turnover was observed along both environmental gradients, and consequently, the first source of variation in LMA was species turnover. Variation in LMA at the genus or family levels was greater in Peru than in Brazil. Using dominant trees to examine possible filters on community assembly, we found that in Brazil, internal filtering was strongest in the forest, while environmental filtering was observed in the dry savanna. In Peru, internal filtering was observed along 80% of the gradient, perhaps due to variation in taxa or interspecific competition. Environmental filtering was observed at cloud zone edges and in lowlands, possibly due to water and nutrient availability, respectively. These results related to variation in LMA indicate that biodiversity in species rich tropical assemblages may be structured by differential niche‐based processes. In the future, specific mechanisms generating these patterns of variation in leaf functional traits across tropical environmental gradients should be explored.  相似文献   

5.
Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical‐subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water‐use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence.  相似文献   

6.
Tropospheric ozone is considered the most detrimental air pollutant for vegetation at the global scale, with negative consequences for both provisioning and climate regulating ecosystem services. In spite of recent developments in ozone exposure metrics, from a concentration‐based to a more physiologically relevant stomatal flux‐based index, large‐scale ozone risk assessment is still complicated by a large and unexplained variation in ozone sensitivity among tree species. Here, we explored whether the variation in ozone sensitivity among woody species can be linked to interspecific variation in leaf morphology. We found that ozone tolerance at the leaf level was closely linked to leaf dry mass per unit leaf area (LMA) and that whole‐tree biomass reductions were more strongly related to stomatal flux per unit leaf mass (r2 = 0.56) than to stomatal flux per unit leaf area (r2 = 0.42). Furthermore, the interspecific variation in slopes of ozone flux–response relationships was considerably lower when expressed on a leaf mass basis (coefficient of variation, CV = 36%) than when expressed on a leaf area basis (CV = 66%), and relationships for broadleaf and needle‐leaf species converged when using the mass‐based index. These results show that much of the variation in ozone sensitivity among woody plants can be explained by interspecific variation in LMA and that large‐scale ozone impact assessment could be greatly improved by considering this well‐known and easily measured leaf trait.  相似文献   

7.
Trait variation in plant communities is thought to be constrained by two opposing community assembly processes operating at discrete spatial scales: habitat filtering and limiting similarity between coexisting species. Filtering processes cause convergence in ecological strategy as species are excluded from unsuitable sites, whilst limiting similarity leads to the divergence of trait values between co‐occurring species in order to alleviate competition for finite resources. Levels of alpha (within‐site) and beta (among‐site) trait variation can be indicative of the strength of these community assembly processes. We used trait‐gradient analysis to explicitly compare evidence of community assembly patterns in lianas (woody vines) and trees. These two growth forms exhibit striking differences in carbon capture and regeneration strategies, yet trait‐based mechanisms that maintain their coexistence remain understudied. Using data for four functional traits – leaf mass per area, leaf nitrogen content (Nmass), leaf area and seed mass – we partitioned interspecific trait variation in lianas and trees into alpha and beta components. Our three key findings were: 1) lianas and trees exhibit divergent patterns of trait‐based habitat filtering, due to differences in the relationship between leaf size and the other three traits examined (LMA, Nmass and seed mass), 2) on average, liana species possess smaller seeds, lower LMA and higher Nmass than do trees, but there was no clear difference in leaf area between the two growth forms, and 3) soil fertility was correlated with trait variation (leaf area, seed mass) at the site‐level in trees, but not in lianas. These results provide evidence that dominant growth forms can be filtered into the same habitat on the basis of different combinations of traits. Our findings have important implications for community assembly and co‐existence theory and for more pragmatic matters such as using trait‐based principles to inform community restoration.  相似文献   

8.
In seasonally dry tropical forests, tree species can be deciduous, remaining without leaves throughout the dry season, or evergreen, retaining their leaves throughout the dry season. Deciduous and evergreen trees specialize in habitats that differ in water availability (hillside and riparian forest, respectively) and in their exposure to herbivore attack (seasonal and continuous, respectively). We asked whether syndromes of leaf traits in deciduous and evergreen trees were consistent with hypothesized abiotic and biotic selective pressures in their respective habitat. We measured seven leaf traits in 19 deciduous and 11 evergreen tree species in a dry tropical forest in Western Mexico, and measured rates of herbivory on 23 of these species. We investigated the covariance of leaf traits in syndromes related to phenology and associated physiology, and to anti‐herbivory defense. We found evidence for syndromes that separated phenological strategies among four traits: toughness, water content, specific leaf area, and carbon:nitrogen (C:N) ratios. We found a trade‐off between two other traits: trichomes and latex. Overall, evergreen species exhibited lower rates of herbivory than deciduous species. Lower rates of herbivory were explained by a syndrome of higher toughness, lower water content, and higher C:N ratios, which are traits representative of evergreen trees. Phenology and trait syndromes did not exhibit significant phylogenetic signal, consistent with the hypothesis of evolutionary convergence among phenologies and associated leaf‐trait syndromes. Our results suggest that deciduous and evergreen trees could respond to differential water availability and herbivory in their respective habitats by converging on distinct leaf‐trait syndromes. Abstract in Spanish is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

9.
Aims Both dominance distribution of species and the composition of the dominant species determine the distribution of traits within community. Leaf carbon (C) and nitrogen (N) isotopic composition are important leaf traits, and such traits of dominant species are associated with ecosystem C, water and N cycling. Very little is known how dominant species with distinct traits (e.g. N-fixing leguminous and non-leguminous trees) mediate resource utilization of the ecosystems in stressful environment.Methods Leaves of 81 dominant leguminous and non-leguminous trees were collected in forest (moist semi-deciduous and dry semi-deciduous ecosystems) and savanna (costal savanna, Guinean savanna and west Sudanian savanna ecosystems) areas and the transitional zone (between the forest and the savanna) along the transect from the south to the north of Ghana. We measured leaf traits, i.e. leaf δ 13 C, leaf δ 15 N, leaf water content, leaf mass per area (LMA) and C and N concentration. Correlation analyses were used to examine trait–trait relationships, and relationships of leaf traits with temperature and precipitation. We used analysis of covariance to test the differences in slopes of the linear regressions between legumes and non-legumes.Important findings Leaf δ 13 C, δ 15 N, leaf water content and LMA did not differ between leguminous and non-leguminous trees. Leaf N concentration and C:N ratio differed between the two groups. Moreover, leaf traits varied significantly among the six ecosystems. δ 13 C values were negatively correlated with annual precipitation and positively correlated with mean annual temperature. In contrast, leaf δ 15 N of non-leguminous trees were positively correlated with annual precipitation and negatively correlated with mean annual temperature. For leguminous trees, such correlations were not significant. We also found significant coordination between leaf traits. However, the slopes of the linear relationships were significantly different between leguminous and non-leguminous trees. Our results indicate that shifts in dominant trees with distinct water-use efficiency were corresponded to the rainfall gradient. Moreover, leguminous trees, those characterized with relative high water-use efficiency in the low rainfall ecosystems, were also corresponded to the relative high N use efficiency. The high proportion of leguminous trees in the savannas is crucial to mitigate nutrient stress.  相似文献   

10.
Many plant species exhibit strong association with topographic habitats at local scales. However, the historical biogeographic and physiological drivers of habitat specialization are still poorly understood, and there is a need for relatively easy‐to‐measure predictors of species habitat niche breadth. Here, we explore whether species geographic range, climatic envelope, or intraspecific variability in leaf traits is related to the degree of habitat specialization in a hyperdiverse tropical tree community in Amazonian Ecuador. Contrary to our expectations, we find no effect of the size of species geographic ranges, the diversity of climate a species experiences across its range, or intraspecific variability in leaf traits in predicting topographic habitat association in the ~300 most common tropical tree species in a 25‐ha tropical forest plot. In addition, there was no phylogenetic signal to habitat specialization. We conclude that species geographic range size, climatic niche breadth, and intraspecific variability in leaf traits fail to capture the habitat specialization patterns observed in this highly diverse tropical forest.  相似文献   

11.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

12.
热带雨林木质藤本植物叶片性状及其关联   总被引:2,自引:0,他引:2  
热带雨林中木质藤本植物较为丰富。随着全球气候变化加剧,木质藤本植物的丰富度具有不断增加的趋势,有可能对热带森林的结构、功能和动态产生重要影响。然而,目前对木质藤本响应环境变化的机制所知甚少。本研究以13个科20种热带雨林常见木质藤本植物为材料,测定了冠层叶片的17个形态特征及结构性状,并分析了性状间的相互关系。结果表明,叶片相对含水量的种间变异最小(变异系数为5%),而上表皮厚度的种间变异最大(变异系数为80%),其它性状的种间变异系数为24%~61%。木质藤本植物的叶脉密度、叶片密度均与气孔密度呈显著正相关,叶片干物质含量与比叶面积呈显著负相关。与相同生境的树木相比,木质藤本的叶面积更小、气孔密度和叶片密度更低、比叶面积更高,但两种植物类群的叶片横切面组织结构厚度无显著差异。研究结果对理解木质藤本植物的生态适应性具有重要意义。  相似文献   

13.
? Linking tree diversity to carbon storage can provide further motivation to conserve tropical forests and to design carbon-enriched plantations. Here, we examine the role of tree diversity and functional traits in determining carbon storage in a mixed-species plantation and in a natural tropical forest in Panama. ? We used species richness, functional trait diversity, species dominance and functional trait dominance to predict tree carbon storage across these two forests. Then we compared the species ranking based on wood density, maximum diameter, maximum height, and leaf mass per area (LMA) between sites to reveal how these values changed between different forests. ? Increased species richness, a higher proportion of nitrogen fixers and species with low LMA increased carbon storage in the mixed-species plantation, while a higher proportion of large trees and species with high LMA increased tree carbon storage in the natural forest. Furthermore, we found that tree species varied greatly in their absolute and relative values between study sites. ? Different results in different forests mean that we cannot easily predict carbon storage capacity in natural forests using data from experimental plantations. Managers should be cautious when applying functional traits measured in natural populations in the design of carbon-enriched plantations.  相似文献   

14.
Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (gs) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water‐use‐efficiency), is still limited, particularly in the tropics. Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψleaf), and a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, leaf‐mass‐per‐area (LMA), leaf carboxylation capacity (Vc,max), leaf water content, the degree of isohydry, and predawn Ψleaf. We first investigated how the choice of four commonly used leaf‐level gs models with and without the inclusion of Ψleaf as an additional predictor variable influence the ability to predict gs, and then explored the abiotic (i.e. month, site‐month interaction) and biotic (i.e. tree‐species‐specific characteristics) drivers of slope parameter variation. Our results show that the inclusion of Ψleaf did not improve model performance and that the models that represent the response of gs to vapor pressure deficit performed better than corresponding models that respond to relative humidity. Within each gs model, we found large variation in the slope parameter, and this variation was attributable to the biotic driver, rather than abiotic drivers. We further investigated potential relationships between the slope parameter and the six available plant traits mentioned above, and found that only one trait, LMA, had a significant correlation with the slope parameter (R2 = 0.66, n = 15), highlighting a potential path towards improved model parameterization. This study advances understanding of gs dynamics over seasonal drought, and identifies a practical, trait‐based approach to improve modeling of carbon and water exchange in tropical forests.  相似文献   

15.
The ecology of forest and savanna trees species will largely determine the structure and dynamics of the forest–savanna boundaries, but little is known about the constraints to leaf trait variation imposed by selective forces and evolutionary history during the process of savanna invasion by forest species. We compared seasonal patterns in leaf traits related to leaf structure, carbon assimilation, water, and nutrient relations in 10 congeneric species pairs, each containing one savanna species and one forest species. All individuals were growing in dystrophic oxisols in a fire-protected savanna of Central Brazil. We tested the hypothesis that forest species would be more constrained by seasonal drought and nutrient-poor soils than their savanna congeners. We also hypothesized that habitat, rather than phylogeny, would explain more of the interspecific variance in leaf traits of the studied species. We found that throughout the year forest trees had higher specific leaf area (SLA) but lower integrated water use efficiency than savanna trees. Forest and savanna species maintained similar values of predawn and midday leaf water potential along the year. Lower values were measured in the dry season. However, this was achieved by a stronger regulation of stomatal conductance and of CO2 assimilation on an area basis (A area) in forest trees, particularly toward the end of the dry season. Relative to savanna trees, forest trees maintained similar (P, K, Ca, and Mg) or slightly higher (N) leaf nutrient concentrations. For the majority of traits, more variance was explained by phylogeny, than by habitat of origin, with the exception of SLA, leaf N concentration, and A area, which were apparently subjected to different selective pressures in the savanna and forest environments. In conclusion, water shortage during extended droughts would be more limiting for forest trees than nutrient-poor soils.  相似文献   

16.
润楠属植物属于基部被子植物类群,大部分物种局限分布于热带亚热带森林的潮湿生境,但也有些物种分布范围较广。本研究以润楠属11个物种的幼苗为材料,测定了一系列植物叶片水力学性状和解剖结构,包括:比叶重、叶片密度、气孔密度、叶脉密度、膨压丧失点水势、栅栏组织和海绵组织厚度等。结果表明:与其它分布在热带亚热带地区的被子植物相比,润楠属植物的叶脉密度较低,推测叶脉密度受强烈的进化限制;该属植物叶脉密度与气孔密度、栅栏和海绵组织的比值呈显著的正相关,表明该属植物能够维持叶片水平的水分供需平衡;广布种比狭域种具有更低的叶片膨压丧失点和更高的叶片密度,耐旱能力更强,但是比叶重差异不显著;叶片的膨压丧失点与物种的最大树高呈反比,即更高的物种叶片耐失水能力更强,说明植物叶片耐旱性与植物本身的遗传特性有关。本研究结果显示,叶片水力学性状可以较好地用于解释润楠属植物的地理分布。  相似文献   

17.
Aim We used alien plant species introduced to a botanic garden to investigate the relative importance of species traits (leaf traits, dispersal syndrome) and introduction characteristics (propagule pressure, residence time and distance to forest) in explaining establishment success in surrounding tropical forest. We also used invasion scores from a weed risk assessment protocol as an independent measure of invasion risk and assessed differences in variables between high‐ and low‐risk species. Location East Usambara mountains, Tanzania. Methods Forest transect surveys identified species establishing in disturbed and intact forest. Leaf traits (specific leaf area and foliar nutrient concentrations) were measured from leaves sampled in high‐light environments. Results A leaf traits spectrum was apparent, but species succeeding or failing to establish in either disturbed or intact forest were not located in different parts of the spectrum. Species with high invasion risk did not differ in their location on the leaf trait spectrum compared with low‐risk species but were more likely to be bird/primate‐dispersed. For 15 species establishing in forest quadrats, median canopy cover of quadrats where seedlings were present was correlated with a species value along the leaf trait spectrum. Species establishing in disturbed forest were planted in twice as many plantations and were marginally more likely to be bird‐ or primate‐dispersed than species failing to become established in disturbed forest. Establishment in intact forest was more likely for species planted closer to forest edges. Main conclusions Leaf and dispersal traits appear less important in the colonization of tropical forest than introduction characteristics. It appears, given sufficient propagule pressure or proximity to forest, alien species are much more likely to establish independently of leaf traits or dispersal syndrome in continental tropical forests.  相似文献   

18.
Increases in drought‐induced tree mortality are being observed in tropical rain forests worldwide and are also likely to affect the geographical distribution of tropical vegetation. However, the mechanisms underlying the drought vulnerability and environmental distribution of tropical species have been little studied. We measured vulnerability to xylem embolism (P50) of 13 woody species endemic to New Caledonia and with different xylem conduit morphologies. We examined the relation between P50, along with other leaf and xylem functional traits, and a range of habitat variables. Selected species had P50 values ranging between ?4.03 and ?2.00 MPa with most species falling in a narrow range of resistance to embolism above ?2.7 MPa. Embolism vulnerability was significantly correlated with elevation, mean annual temperature and percentage of species occurrences located in rain forest habitats. Xylem conduit type did not explain variation in P50. Commonly used functional traits such as wood density and leaf traits were not related to embolism vulnerability. Xylem embolism vulnerability stands out among other commonly used functional traits as a major driver of species environmental distribution. Drought‐induced xylem embolism vulnerability behaves as a physiological trait closely associated with the habitat occupation of rain forest woody species.  相似文献   

19.
陕北沙地小叶杨“小老树”的水力适应性   总被引:4,自引:2,他引:2  
陈佳村  李秧秧  左力翔 《生态学报》2014,34(15):4193-4200
以黄土高原"小老树"发生面积最大的树种-小叶杨为例,研究了不同水分生境下(水分相对好的沟道和干旱的梁坡片沙地,分别标记为生境A和生境B)小叶杨的生长、光合、水力学特性等,试图探讨小叶杨"小老树"对干旱生境的适应机制。结果表明:生境B小叶杨树高、地径、1 m树高处直径明显小于生境A,同时其主茎顶端枯枝长度大于生境A;生境B小叶杨叶净光合速率和气孔导度明显低于生境A。两种生境下小叶杨黎明前和正午叶水势无显著差异,生境B小叶杨正午时小枝枝干的比导水率明显低于生境A,但两种生境的比叶导水率则无显著差异,生境B小叶杨的Huber值明显大于生境A。生境B小叶杨枝干的P50(导水率损失50%时所对应的木质部水势)比生境A低约0.76 MPa左右,其气孔关闭的水势比生境A晚0.2 MPa左右,生境B小叶杨水分传输安全距离明显大于生境A。表明干旱生境下小叶杨高Huber值和低气孔导度有助于其叶水分关系维持相对稳定,低光合速率和维持大的水分传输安全距离所需的木质部碳投资增加是小叶杨形成"小老树"的重要原因。  相似文献   

20.
The photosynthesis–nitrogen relationship is significantly different among species. Photosynthetic capacity per unit leaf nitrogen, termed as photosynthetic nitrogen-use efficiency (PNUE), has been considered an important leaf trait to characterise species in relation to their leaf economics, physiology, and strategy. In this review, I discuss (1) relations between PNUE and species ecology, (2) physiological causes and (3) ecological implications of the interspecific difference in PNUE. Species with a high PNUE tend to have high growth rates and occur in disturbed or high productivity habitats, while those with a low PNUE occur in stressful or low productivity habitats. PNUE is an important leaf trait that correlates with other leaf traits, such as leaf mass per area (LMA) and leaf life span, irrespective of life form, phylogeny, and biomes. Various factors are involved in the interspecific difference. In particular, nitrogen allocation within leaves and the mesophyll conductance for CO2 diffusion are important. To produce tough leaves, plants need to allocate more biomass and nitrogen to make thick cell walls, leading to a reduction in the mesophyll conductance and in nitrogen allocation to the photosynthetic apparatus. Allocation of biomass and nitrogen to cell walls may cause the negative relationship between PNUE and LMA. Since plants cannot maximise both PNUE and leaf toughness, there is a trade-off between photosynthesis and persistence, which enables the existence of species with various leaf characteristics on the earth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号