首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Human norovirus (NoV) is the major causative agent of fresh-produce-related outbreaks of gastroenteritis; however, the ecology and persistence of human NoV in produce systems are poorly understood. In this study, the effects of abiotic and biotic stresses on the internalization and dissemination of two human NoV surrogates (murine norovirus 1 [MNV-1] and Tulane virus [TV]) in romaine lettuce were determined. To induce abiotic stress, romaine lettuce was grown under drought and flood conditions that mimic extreme weather events, followed by inoculation of soil with MNV-1 or TV. Independently, lettuce plants were infected with lettuce mosaic virus (LMV) to induce biotic stress, followed by inoculation with TV. Plants were grown for 14 days, and viral titers in harvested tissues were determined by plaque assays. It was found that drought stress significantly decreased the rates of both MNV-1 and TV internalization and dissemination. In contrast, neither flood stress nor biotic stress significantly impacted viral internalization or dissemination. Additionally, the rates of TV internalization and dissemination in soil-grown lettuce were significantly higher than those for MNV-1. Collectively, these results demonstrated that (i) human NoV surrogates can be internalized via roots and disseminated to shoots and leaves of romaine lettuce grown in soil, (ii) abiotic stress (drought) but not biotic stress (LMV infection) affects the rates of viral internalization and dissemination, and (iii) the type of virus affects the efficiency of internalization and dissemination. This study also highlights the need to develop effective measures to eliminate internalized viruses in fresh produce.  相似文献   

3.
Noroviruses are understudied because these important enteric pathogens have not been cultured to date. We found that the norovirus murine norovirus 1 (MNV-1) infects macrophage-like cells in vivo and replicates in cultured primary dendritic cells and macrophages. MNV-1 growth was inhibited by the interferon-αβ receptor and STAT-1, and was associated with extensive rearrangements of intracellular membranes. An amino acid substitution in the capsid protein of serially passaged MNV-1 was associated with virulence attenuation in vivo. This is the first report of replication of a norovirus in cell culture. The capacity of MNV-1 to replicate in a STAT-1-regulated fashion and the unexpected tropism of a norovirus for cells of the hematopoietic lineage provide important insights into norovirus biology.  相似文献   

4.
Human noroviruses (family Caliciviridae) are the leading cause of nonbacterial gastroenteritis worldwide. Although Human noroviruses are significant enteric pathogens, there exists no reliable vaccine or therapy to treat infected individuals. To date, attempts to cultivate Human noroviruses within the laboratory have met with little success; however, the related murine norovirus mouse norovirus 1 (MNV-1) has provided an ideal model system to study norovirus replication due to the ease with which the virus is cultivated and the ability to infect a small animal model with this virus. Previously we have identified the association between MNV-1 and components of the host secretory pathway and proposed a role for the viral open reading frame 1 proteins in the replication cycle. Here we describe for the first time a role for cytoskeletal components in early MNV-1 replication events. We show that the MNV-1 utilizes microtubules to position the replication complex adjacent to the microtubule organizing center. Chemical disruption of the microtubule network disperses the sites of MNV-1 replication throughout the cell and impairs production of viral protein and infectious virus. Furthermore, we demonstrate the ability of MNV-1 to redistribute acetylated tubulin to the replication complex and that this association is potentially mediated via the MNV-1 major structural protein, VP1. Transient expression of MNV-1 VP1 exhibited extensive colocalization with both α-tubulin and acetylated tubulin and was observed to alter the distribution of acetylated tubulin in transfected cells. This study highlights the role of the cytoskeleton in early virus replication events and demonstrates the importance of this interaction in establishing the intracellular location of MNV-1 replication complexes.  相似文献   

5.
Noroviruses are understudied because these important enteric pathogens have not been cultured to date. We found that the norovirus murine norovirus 1 (MNV-1) infects macrophage-like cells in vivo and replicates in cultured primary dendritic cells and macrophages. MNV-1 growth was inhibited by the interferon-αβ receptor and STAT-1, and was associated with extensive rearrangements of intracellular membranes. An amino acid substitution in the capsid protein of serially passaged MNV-1 was associated with virulence attenuation in vivo. This is the first report of replication of a norovirus in cell culture. The capacity of MNV-1 to replicate in a STAT-1-regulated fashion and the unexpected tropism of a norovirus for cells of the hematopoietic lineage provide important insights into norovirus biology.  相似文献   

6.
7.
Henderson KS 《Lab animal》2008,37(7):314-320
Murine norovirus (MNV), a recently discovered viral agent of laboratory mice, is closely related to human norovirus, a contagious pathogen known to cause gastroenteritis. The prototype strain of MNV (MNV-1) was first isolated and characterized in 2003 as a sporadic, lethal pathogen in certain strains of immunocompromised knockout mice. Serological surveillance data from mouse colonies throughout the US and Canada have since shown that MNV is highly prevalent. Because MNV is unique among norovirus strains in its ability to replicate in cell culture, it serves as the most accessible model to elucidate the mechanisms of infection and replication of human norovirus. The author discusses the genetic diversity of MNV, its prevalence, pathology and potential research implications, as well as techniques for detection and eradication of this virus.  相似文献   

8.
Human noroviruses are a major cause of food-borne illness, accountable for 50% of all-etiologies outbreaks of acute gastroenteritis (in both developing and developed countries). There is no vaccine or antiviral drug for the prophylaxis or treatment of norovirus-induced gastroenteritis. We recently reported the inhibitory effect of 2′-C-methylcytidine (2CMC), a hepatitis C virus polymerase inhibitor, on the in vitro replication of murine norovirus (MNV). Here we evaluated the inhibitory effect of 2CMC on in vitro human norovirus replication through a Norwalk virus replicon model and in a mouse model by using AG129 mice orally infected with MNV. Survival, weight, and fecal consistency were monitored, and viral loads in stool samples and organs were quantified. Intestines were examined histologically. 2CMC reduced Norwalk virus replicon replication in a dose-dependent manner and was able to clear cells of the replicon. Treatment of MNV-infected AG129 mice with 2CMC (i) prevented norovirus-induced diarrhea; (ii) markedly delayed the appearance of viral RNA and reduced viral RNA titers in the intestine, mesenteric lymph nodes, spleen, lungs, and stool; (iii) completely prevented virus-induced mortality; and (iv) resulted in protective immunity against a rechallenge. We demonstrate for the first time that a small-molecule inhibitor of norovirus replication protects from virus-induced disease and mortality in a relevant animal model. These findings pave the way for the development of potent and safe antivirals as prophylaxis and therapy of norovirus infection.  相似文献   

9.
Noroviruses are important human pathogens responsible for most cases of viral epidemic gastroenteritis worldwide. Murine norovirus-1 (MNV-1) is one of several murine noroviruses isolated from research mouse facilities and has been used as a model of human norovirus infection. MNV-1 infection has been shown to require components of innate and adaptive immunity for clearance; however, the initial host protein that recognizes MNV-1 infection is unknown. Because noroviruses are RNA viruses, we investigated whether MDA5 and TLR3, cellular sensors that recognize dsRNA, are important for the host response to MNV-1. We demonstrate that MDA5-/- dendritic cells(DC) have a defect in cytokine response to MNV-1. In addition, MNV-1 replicates to higher levels in MDA5-/- DCs as well as in MDA5-/- mice in vivo. Interestingly, TLR3-/- DCs do not have a defect in vitro, but TLR3-/- mice have a slight increase in viral titers. This is the first demonstration of an innate immune sensor for norovirus and shows that MDA5 is required for the control of MNV-1 infection. Knowledge of the host response to MNV-1 may provide keys for prevention and treatment of the human disease.  相似文献   

10.
Human norovirus infections are the most common cause of acute nonbacterial gastroenteritis in humans worldwide, and glycan binding plays an important role in the susceptibility to these infections. However, due to the lack of an efficient cell culture system or small animal model for human noroviruses, little is known about the biological role of glycan binding during infection. Murine noroviruses (MNV) are also enteric viruses that bind to cell surface glycans, but in contrast to their human counterparts, they can be grown in tissue culture and a small animal host. In this study, we determined glycan-binding specificities of the MNV strains MNV-1 and CR3 in vitro, identified molecular determinants of glycan binding, and analyzed infection in vivo. We showed that unlike MNV-1, CR3 binding to murine macrophages was resistant to neuraminidase treatment and glycosphingolipid depletion. Both strains depended on N-linked glycoproteins for binding, while only MNV-1 attachment to macrophages was sensitive to O-linked glycoprotein depletion. In vivo, CR3 showed differences in tissue tropism compared to MNV-1 by replicating in the large intestine. Mapping of a glycan-binding site in the MNV-1 capsid by reverse genetics identified a region topologically similar to the histo-blood group antigen (HBGA)-binding sites of the human norovirus strain VA387. The recombinant virus showed distinct changes in tissue tropism compared to wild-type virus. Taken together, our data demonstrate that MNV strains evolved multiple strategies to bind different glycan receptors on the surface of murine macrophages and that glycan binding contributes to tissue tropism in vivo.  相似文献   

11.
Norovirus is one of the most common causes of acute viral gastroenteritis. The virus is spread via the fecal-oral route, most commonly from infected food and water, but several outbreaks have originated from contamination of surfaces with infectious virus. In this study, a close surrogate of human norovirus causing gastrointestinal disease in mice, murine norovirus type 1 (MNV-1), retained infectivity for more than 2 weeks following contact with a range of surface materials, including Teflon (polytetrafluoroethylene [PTFE]), polyvinyl chloride (PVC), ceramic tiles, glass, silicone rubber, and stainless steel. Persistence was slightly prolonged on ceramic surfaces. A previous study in our laboratory observed that dry copper and copper alloy surfaces rapidly inactivated MNV-1 and destroyed the viral genome. In this new study, we have observed that a relatively small change in the percentage of copper, between 70 and 80% in copper nickels and 60 and 70% in brasses, had a significant influence on the ability of the alloy to inactivate norovirus. Nickel alone did not affect virus, but zinc did have some antiviral effect, which was synergistic with copper and resulted in an increased efficacy of brasses with lower percentages of copper. Electron microscopy of purified MNV-1 that had been exposed to copper and stainless steel surfaces suggested that a massive breakdown of the viral capsid had occurred on copper. In addition, MNV-1 that had been exposed to copper and treated with RNase demonstrated a reduction in viral gene copy number. This suggests that capsid integrity is compromised upon contact with copper, allowing copper ion access to the viral genome.  相似文献   

12.
Nonstructural protein σ1s is a critical determinant of hematogenous dissemination by type 1 reoviruses, which reach the central nervous system (CNS) by a strictly blood-borne route. However, it is not known whether σ1s contributes to neuropathogenesis of type 3 reoviruses, which disseminate by both vascular and neural pathways. Using isogenic type 3 viruses that vary only in σ1s expression, we observed that mice survived at a higher frequency following hind-limb inoculation with σ1s-null virus than when inoculated with wild-type virus. This finding suggests that σ1s is essential for reovirus virulence when inoculated at a site that requires systemic spread to cause disease. Wild-type and σ1s-null viruses produced comparable titers in the spinal cord, suggesting that σ1s is dispensable for invasion of the CNS. Although the two viruses ultimately achieved similar peak titers in the brain, loads of wild-type virus were substantially greater than those of the σ1s-null mutant at early times after inoculation. In contrast, wild-type virus produced substantially higher titers than the σ1s-null virus in peripheral organs to which reovirus spreads via the blood, including the heart, intestine, liver, and spleen. Concordantly, viral titers in the blood were higher following infection with wild-type virus than following infection with the σ1s-null mutant. These results suggest that differences in viral brain titers at early time points postinfection are due to limited virus delivery to the brain by hematogenous pathways. Transection of the sciatic nerve prior to hind-limb inoculation diminished viral spread to the spinal cord. However, wild-type virus retained the capacity to disseminate to the brain following sciatic nerve transection, indicating that wild-type reovirus can spread to the brain by the blood. Together, these results indicate that σ1s is not required for reovirus spread by neural mechanisms. Instead, σ1s mediates hematogenous dissemination within the infected host, which is required for full reovirus neurovirulence.  相似文献   

13.
Sequences and structures within the terminal genomic regions of plus-strand RNA viruses are targets for the binding of host proteins that modulate functions such as translation, RNA replication, and encapsidation. Using murine norovirus 1 (MNV-1), we describe the presence of long-range RNA-RNA interactions that were stabilized by cellular proteins. The proteins potentially responsible for the stabilization were selected based on their ability to bind the MNV-1 genome and/or having been reported to be involved in the stabilization of RNA-RNA interactions. Cell extracts were preincubated with antibodies against the selected proteins and used for coprecipitation reactions. Extracts treated with antibodies to poly(C) binding protein 2 (PCBP2) and heterogeneous nuclear ribonucleoprotein (hnRNP) A1 significantly reduced the 5′-3′ interaction. Both PCBP2 and hnRNP A1 recombinant proteins stabilized the 5′-3′ interactions and formed ribonucleoprotein complexes with the 5′ and 3′ ends of the MNV-1 genomic RNA. Mutations within the 3′ complementary sequences (CS) that disrupt the 5′-3′-end interactions resulted in a significant reduction of the viral titer, suggesting that the integrity of the 3′-end sequence and/or the lack of complementarity with the 5′ end is important for efficient virus replication. Small interfering RNA-mediated knockdown of PCBP2 or hnRNP A1 resulted in a reduction in virus yield, confirming a role for the observed interactions in efficient viral replication. PCBP2 and hnRNP A1 induced the circularization of MNV-1 RNA, as revealed by electron microscopy. This study provides evidence that PCBP2 and hnRNP A1 bind to the 5′ and 3′ ends of the MNV-1 viral RNA and contribute to RNA circularization, playing a role in the virus life cycle.  相似文献   

14.
Human postmortem studies of natural dengue virus (DENV) infection have reported systemically distributed viral antigen. Although it is widely accepted that DENV infects mononuclear phagocytes, the sequence in which specific tissues and cell types are targeted remains uncharacterized. We previously reported that mice lacking alpha/beta and gamma interferon receptors permit high levels of DENV replication and show signs of systemic disease (T. R. Prestwood et al., J. Virol. 82:8411–8421, 2008). Here we demonstrate that within 6 h, DENV traffics to and replicates in both CD169+ and SIGN-R1+ macrophages of the splenic marginal zone or draining lymph node, respectively, following intravenous or intrafootpad inoculation. Subsequently, high levels of replication are detected in F4/80+ splenic red pulp macrophages and in the bone marrow, lymph nodes, and Peyer''s patches. Intravenously inoculated mice begin to succumb to dengue disease 72 h after infection, at which time viral replication occurs systemically, except in lymphoid tissues. In particular, high levels of replication occur in CD68+ macrophages of the kidneys, heart, thymus, and gastrointestinal tract. Over the course of infection, proportionately large quantities of DENV traffic to the liver and spleen. However, late during infection, viral trafficking to the spleen decreases, while trafficking to the liver, thymus, and kidneys increases. The present study demonstrates that macrophage populations, initially in the spleen and other lymphoid tissues and later in nonlymphoid tissues, are major targets of DENV infection in vivo.  相似文献   

15.
Lochridge VP  Hardy ME 《Journal of virology》2007,81(22):12316-12322
Noroviruses cause epidemic outbreaks of acute viral gastroenteritis worldwide, and the number of reported outbreaks is increasing. Human norovirus strains do not grow in cell culture. However, murine norovirus (MNV) replicates in the RAW 264.7 macrophage cell line and thus provides a tractable model to investigate norovirus interactions with host cells. Epitopes recognized by monoclonal antibodies (MAbs) against the human norovirus strains Norwalk virus and Snow Mountain virus (SMV) identified regions in the P domain of major capsid protein VP1 important for interactions with putative cellular receptors. To determine if there was a relationship between domains of MNV VP1 and VP1 of human norovirus strains involved in cell binding, epitope mapping by phage display was performed with an MNV-1-neutralizing MAb, A6.2.1. A consensus peptide, GWWEDHGQL, was derived from 20 third-round phage clones. A synthetic peptide containing this sequence and constrained through a disulfide linkage reacted strongly with the A6.2.1 MAb, whereas the linear sequence did not. Four residues in the A6.2.1-selected peptide, G327, G333, Q334, and L335, aligned with amino acid residues in the P2 domain of MNV-1 VP1. This sequence is immediately adjacent to the epitope recognized by anti-SMV MAb 61.21. Neutralization escape mutants selected with MAb A6.2.1 contained a leucine-to-phenylalanine substitution at position 386 in the P2 domain. The predicted location of these residues on VP1 suggests that the phage peptide and the mutation in the neutralization-resistant viruses may be in close proximity to each other and to residues reported to be important for carbohydrate binding to VP1 of human norovirus strains.  相似文献   

16.
Luker GD  Prior JL  Song J  Pica CM  Leib DA 《Journal of virology》2003,77(20):11082-11093
Herpes simplex virus type 1 (HSV-1) can produce disseminated, systemic infection in neonates and patients with AIDS or other immunocompromising diseases, resulting in significant morbidity and mortality in spite of antiviral therapy. Components of host immunity that normally limit HSV-1 to localized epithelial and neuronal infection remain incompletely defined. We used in vivo bioluminescence imaging to determine effects of type I and II interferons (IFNs) on replication and tropism of HSV-1 infection in mice with genetic deficiency of type I, type II, or both type I and II IFN receptors. Following footpad or ocular infection of mice lacking type I IFN receptors, HSV-1 spread to parenchymal organs, including lung, liver, spleen, and regional lymph nodes, but mice survived. Deletion of type I and II IFN receptors produced quantitatively greatest and most widespread dissemination of virus to visceral organs and the nervous system, and these mice invariably died after ocular or footpad infection. Type II receptor knockout and wild-type mice had comparable viral replication and localization, with no systemic spread of HSV-1 or lethality. Therefore, while isolated deficiency of type II IFN receptors did not affect pathogenesis, loss of these receptors in combination with genetic deletion of type I receptors had a profound effect on susceptibility to HSV-1. These data demonstrate different effects of type I and II IFNs in limiting systemic dissemination of HSV-1 and further validate the use of bioluminescence imaging for studies of viral pathogenesis.  相似文献   

17.
Open reading frame 73 (ORF 73) is conserved among the gamma-2-herpesviruses (rhadinoviruses) and, in Kaposi's sarcoma-associated herpesvirus (KSHV) and herpesvirus saimiri (HVS), has been shown to encode a latency-associated nuclear antigen (LANA). The KSHV and HVS LANAs have also been shown to be required for maintenance of the viral genome as an episome during latency. LANA binds both the viral latency-associated origin of replication and the host cell chromosome, thereby ensuring efficient partitioning of viral genomes to daughter cells during mitosis of a latently infected cell. In gammaherpesvirus 68 (gammaHV68), the role of the LANA homolog in viral infection has not been analyzed. Here we report the construction of a gammaHV68 mutant containing a translation termination codon in the LANA ORF (73.STOP). The 73.STOP mutant virus replicated normally in vitro, in both proliferating and quiescent murine fibroblasts. In addition, there was no difference between wild-type (WT) and 73.STOP virus in the kinetics of induction of lethality in mice lacking B and T cells (Rag 1(-/-)) infected with 1000 PFU of virus. However, compared to WT virus, the 73.STOP mutant exhibited delayed kinetics of replication in the lungs of immunocompetent C57BL/6 mice. In addition, the 73.STOP mutant exhibited a severe defect in the establishment of latency in the spleen of C57BL/6 mice. Increasing the inoculum of 73.STOP virus partially overcame the acute replication defected observed in the lungs at day 4 postinfection but did not ameliorate the severe defect in the establishment of splenic latency. Thus, consistent with its proposed role in replication of the latent viral episome, LANA appears to be a critical determinant in the establishment of gammaHV68 latency in the spleen post-intranasal infection.  相似文献   

18.
Gamma irradiation is a nonthermal processing technology that has been used for the preservation of a variety of food products. This technology has been shown to effectively inactivate bacterial pathogens. Currently, the FDA has approved doses of up to 4.0 kGy to control food-borne pathogens in fresh iceberg lettuce and spinach. However, whether this dose range effectively inactivates food-borne viruses is less understood. We have performed a systematic study on the inactivation of a human norovirus surrogate (murine norovirus 1 [MNV-1]), human norovirus virus-like particles (VLPs), and vesicular stomatitis virus (VSV) by gamma irradiation. We demonstrated that MNV-1 and human norovirus VLPs were resistant to gamma irradiation. For MNV-1, only a 1.7- to 2.4-log virus reduction in fresh produce at the dose of 5.6 kGy was observed. However, VSV was more susceptible to gamma irradiation, and a 3.3-log virus reduction at a dose of 5.6 kGy in Dulbecco's modified Eagle medium (DMEM) was achieved. We further demonstrated that gamma irradiation disrupted virion structure and degraded viral proteins and genomic RNA, which resulted in virus inactivation. Using human norovirus VLPs as a model, we provide the first evidence that the capsid of human norovirus has stability similar to that of MNV-1 after exposure to gamma irradiation. Overall, our results suggest that viruses are much more resistant to irradiation than bacterial pathogens. Although gamma irradiation used to eliminate the virus contaminants in fresh produce by the FDA-approved irradiation dose limits seems impractical, this technology may be practical to inactivate viruses for other purposes, such as sterilization of medical equipment.  相似文献   

19.
20.
ABSTRACT: Background Crimean Congo hemorrhagic fever (CCHF) is a tick-borne hemorrhagic zoonosis associated with high mortality. Pathogenesis studies and the development of vaccines and antivirals against CCHF have been severely hampered by the lack of suitable animal model. We recently developed and characterized a mature mouse model for CCHF using mice carrying STAT1 knockout (KO). Findings Given the importance of interferons in controlling viral infections, we investigated the expression of interferon pathway-associated genes in KO and wild-type (WT) mice challenged with CCHF virus. We expected that the absence of the STAT1 protein would result in minimal expression of IFN-related genes. Surprisingly, the KO mice showed high levels of IFN-stimulated gene expression, beginning on day 2 post-infection, while in WT mice challenged with virus the same genes were expressed at similar levels on day 1. Conclusions We conclude that CCHF virus induces similar type I IFN responses in STAT1 KO and WT mice, but the delayed and dysregulated response in the KO mice permits rapid viral dissemination and fatal illness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号