首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The behavior of cell nuclei, mitochondrial nucleoids (mt-nucleoids) and plastid nucleoids (ptnucleoids) was studied in the root apical meristem of Arabidopsis thaliana. Samples were embedded in Technovit 7100 resin, cut into thin sections and stained with 4′-6-diamidino-2-phenylindole for light-microscopic autoradiography and microphotometry. Synthesis of cell nuclear DNA and cell division were both active in the root apical meristem between 0 μm and 300 μm from the central cells. It is estimated that the cells generated in the lower part of the root apical meristem enter the elongation zone after at least four divisions. Throughout the entire meristematic zone, individual cells had mitochondria which contained 1–5 mt-nucleoids. The number of mitochondria increased gradually from 65 to 200 in the meristem of the central cylinder. Therefore, throughout the meristem, individual mitochondria divided either once or twice per mitotic cycle. By contrast, based on the incorporation of [3H]thymidine into organelle nucleoids, syntheses of mitochondrial DNA (mtDNA) and plastid DNA (ptDNA) occurred independently of the mitotic cycle and mainly in a restricted region (i.e., the lower part of the root apical meristem). Fluorimetry, using a videointensified microscope photon-counting system, revealed that the amount of mtDNA per mt-nucleoid in the cells in the lower part of the meristem, where mtDNA synthesis was active, corresponded to more than 1 Mbp. By contrast, in the meristematic cells just below the elongation zone of the root tip, the amount of mtDNA per mt-nucleoid fell to approximately 170 kbp. These findings strongly indicate that the amount of mtDNA per mitochondrion, which has been synthesized in the lower part of the meristem, is gradually reduced as a result of continual mitochondrial divisions during low levels of mtDNA synthesis. This phenomenon would explain why differentiated cells in the elongation zone have mitochondria that contain only extremely small amounts of mtDNA. This work was supported by a Grant-in Aid (T.K.) for Special Research on Priority Areas (Project No. 02242102, Cellular and Molecular Basis for Reproduction Processes in Plants) from the Ministry of Education, Science and Culture of Japan and by a Grant-in Aid (T.K.) for Original and Creative Research Project on Biotechnology from the Research Council, Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

2.
Chloroplast Division and DNA Synthesis in Light-grown Wheat Leaves   总被引:19,自引:11,他引:8       下载免费PDF全文
Light-grown 7-day-old wheat seedlings (Triticum aestivum, var. Maris Dove) showed an increase of 200% in plastids per cell between 1.7 and 4.5 centimeters from the leaf base. This increase was the result of divisions of young chloroplasts at various stages of development, and was well separated in distance, and therefore in time from the region of cell division in the basal meristem. [3H]Thymidine was incorporated into plastid DNA throughout the zone of plastid division, but not above it.  相似文献   

3.
The behavior of organelle nucleoids and cell nuclei was studied in the shoot apical meristem and developing first foliage leaves of Arabidopsis thaliana. Samples were embedded in Technovit 7100 resin, cut into thin sections and stained with 4-6-diamidino-2-phenylindole to observe DNA. Fluorimetry was performed using a video-intensified microscope photon-counting system. The DNA content of individual mitochondria was more than 1 Mbp in the shoot apical meristem and the young leaf primordium, and decreased to approximately 170 kbp in the mature foliage leaf. In contrast, the DNA content of individual plastids was low in the shoot apical meristem and increased until day 7 after sowing. Application of 5-bromo-2-deoxyuridine, an analogue of thymidine, was usesd to investigate DNA synthesis in situ. The activities of DNA synthesis in the mitochondria and plastids changed according to the stage of development. Mitochondrial DNA was actively synthesized in the shoot apical meristem and young leaf primordia. This strongly suggests that the amount of mitochondrial DNA per mitochondrion, which has been synthesized in the shoot apical meristem and young leaf primordium, is gradually reduced due to continual divisions of the mitochondria during low levels of mitochondrial DNA synthesis. Synthesis of DNA in the plastid became active in the leaf primordia following DNA synthesis in the mitochondria, and the small plastids were filled with large plastid nucleotids. This enlargement of the plastid nucleoids occurred before the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase and the development of thylakoids.Abbreviations BrdU 5-bromo-2-deoxyuridine - DAPI 4-6-diamidino-2-phenylindole - DiOC6a 3,3-dihexyloxacarbocyanine - mtDNA mitochondrial DNA - mt-nucleoid mitochondrial nucleoid - ptDNA plastid DNA - pt-nucleoid plastid nucleoid - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase This work was supported by grant No. 2553 to M.F. and Nos. 04454019, 03304005 and 06262204 to T.K. from the Ministry of Education, Science and Culture of Japan, and by a grant for a pioneering research project in biotechnology from the Ministry of Agriculture, Forestry and Fisheries of Japan.  相似文献   

4.
The apical meristem of the short‐day plant Chenopodium rubrum responds to photoperiodic flower induction with specific changes of pH and Ca2+ patterning immediately after the inductive dark span. The red–far‐red reversibility of the pH and Ca2+ patterning in response to night break treatments was measured in order to distinguish between the effect of the prolonged dark span per se and the specific effect of photoperiodic flower induction. In addition, the pH and Ca2+ patterning in C. rubrum was compared with the long‐day plant Chenopodium murale. The pH was visualized using the fluorescent probe carboxy SNARF‐1. Calcium ion concentrations were studied using a combination of Ca2+‐probes Fluo‐3 and Fura Red. It was observed that the specific changes in pH and Ca2+ patterning at the apical meristem of C. rubrum were abolished by the red‐light break. This effect was fully reversed with a subsequent single far‐red treatment. These observations infer the influence of phytochrome on both pH and Ca2+ patterning. Changes in pH and Ca2+ patterning upon flower induction were observed in both long‐day and short‐day plants. These results support the hypothesis that changes of pH and [Ca2+] in cells of the apical meristem are part of the pathway in signal transduction triggering flower initiation.  相似文献   

5.
The uptake and translocation of fluazifop-butyl was investigated in Setaria viridis. Young plants (three to four leaves) with a portion of the second, third or fourth leaf covered, were sprayed with a dose equivalent to 0.25 kg a.i. ha-1. 14C-fluazifop-butyl was subsequently applied to the unsprayed area and the treatment resulted in plant death within 2 wk. Uptake by leaf 3 was rapid, with less than 5% of the applied dose remaining on the leaf surface after 24 h. The highest proportion of 14C-activity was retained in the treated portion of the leaf. Only 2% of the applied dose was translocated from leaf 3 and 0. 76% accumulated in the apical meristem. Uptake by the younger leaf 4 was more rapid and the pattern of translocation differed in that more 14--activity accumulated in apical meristematic tissue. 6–30% of the applied dose was undetected and this was greatest when foliar uptake was slow. Artificial leaf surface experiments indicated that this undetected activity may have been due to volatility of fluazifop-butyl or degradation to volatile products. 14C-activity extracted from treated leaves was identified as fluazifop-butyl, fluazifop acid and polar conjugates. The major 14C-activity extracted from the apical meristem was fluazifop acid and no fluazifop-butyl was detected in this extract.  相似文献   

6.
Arabidopsis plastid antiporters KEA1 and KEA2 are critical for plastid development, photosynthetic efficiency, and plant development. Here, we show that KEA1 and KEA2 are involved in vacuolar protein trafficking. Genetic analyses found that the kea1 kea2 mutants had short siliques, small seeds, and short seedlings. Molecular and biochemical assays showed that seed storage proteins were missorted out of the cell and the precursor proteins were accumulated in kea1 kea2. Protein storage vacuoles (PSVs) were smaller in kea1 kea2. Further analyses showed that endosomal trafficking in kea1 kea2 was compromised. Vacuolar sorting receptor 1 (VSR1) subcellular localizations, VSR–cargo interactions, and p24 distribution on the endoplasmic reticulum (ER) and Golgi apparatus were affected in kea1 kea2. Moreover, plastid stromule growth was reduced and plastid association with the endomembrane compartments was disrupted in kea1 kea2. Stromule growth was regulated by the cellular pH and K+ homeostasis maintained by KEA1 and KEA2. The organellar pH along the trafficking pathway was altered in kea1 kea2. Overall, KEA1 and KEA2 regulate vacuolar trafficking by controlling the function of plastid stromules via adjusting pH and K+ homeostasis.  相似文献   

7.
8.
Previous studies have suggested that the plastid translation elongation factor, elongation factor thermo unstable (EF-Tu), encoded by RAB GTPASE HOMOLOG 8D (RAB8D) is essential for plant growth. Here, through analyzing the root phenotypes of two knock-down alleles of RAB8D (rab8d-1 and rab8d-2), we further revealed a vital role for RAB8D in primary root development through the maintenance of both the stem cell niche (SCN) and the meristem. Our results showed that RAB8D deficiency affects the root auxin response and SCN maintenance signaling. RAB8D interacts with GENOMES UNCOUPLED 1 (GUN1) in vivo. Further analysis revealed that GUN1 is over-accumulated and is required for both stem cell death and maintenance of root architecture in rab8d Arabidopsis mutants. The ATAXIA-TELANGIECTASIA-MUTATED (ATM)–SUPPRESSOR OF GAMMA RESPONSE 1 pathway is involved in the regulation of root meristem size through upregulating SIAMESE-RELATED 5 expression in the rab8d-2 allele. Moreover, ETHYLENE RESPONSE FACTOR 115 is highly expressed in rab8d-2, which plays a role in further quiescent center division. Our observations not only characterized the role of RAB8D in root development, but also uncovered functions of GUN1 and ATM in response to plastid EF-Tu deficiency.  相似文献   

9.
DNA synthetic activity in the radicle meristem of embryos of germinating seeds of the obligate root parasites, Alectra vogelii and Striga gesnerioides was followed by autoradiography of 3H-thymidine incorporation. Incorporation of 3H-thymidine occurred in the nuclei of cells destined to form the vascular tissues, ground meristem and epidermis. An analysis of the distribution of labeled nuclei demonstrated the presence of a quiescent center of 2-4 cells in the radicle at the beginning of seed germination, becoming more prominent at later stages of germination. During continued growth of the radicle which resulted in a reduction in size of the meristem, cells of the original quiescent center were activated to undergo DNA synthesis.  相似文献   

10.
Amiprophosmethyl (APM) is a herbicide acting as a microtubule antagonist. The effect of APM on root development in sensitive and resistant (apm5r) lines of Nicotiana plumbaginifolia was investigated by means of light and immunofluorescent microscopy and by transmission electron microscopy. The treatment of intact roots with APM (0.1–10 M) led to an increase in the root diameter, termed swelling. The root cells in the elongation zone became almost spherical in the APM-sensitive (control) line but retained a cylindrical shape in the apm5r line. After APM treatment, the cell area on longitudinal root sections decreased reliably in the elongation zone but significantly increased in the meristem zone for both lines. A partial destruction of the cortical microtubule network was observed in the apm5r line, and the full degradation of microtubules was evident in the sensitive line. Analysis of the ultrastructure did not reveal any changes in the main cytoplasmic organelles, but showed disturbances of the cell-wall formation. In the meristem zone, some changes in the nucleus structure and the appearance of polynucleate cells were observed.  相似文献   

11.
CLAVATA1 (CLV1) is a receptor protein expressed in the shoot apical meristem (SAM) that translates perception of a non‐cell‐autonomous CLAVATA3 (CLV3) peptide signal into altered stem cell fate. CLV3 reduces expression of WUSCHEL (WUS) and FANTASTIC FOUR 2 (FAF2) in the SAM. Expression of WUS and FAF2 leads to maintenance of undifferentiated stem cells in the SAM. CLV3 binding to CLV1 inhibits expression of these genes and controls stem cell fate in the SAM through an unidentified signaling pathway. Cytosolic Ca2+ elevations, cyclic nucleotide (cGMP)‐activated Ca2+ channels, and cGMP have been linked to signaling downstream of receptors similar to CLV1. Hence, we hypothesized that cytosolic Ca2+ elevation mediates the CLV3 ligand/CLV1 receptor signaling that controls meristem stem cell fate. CLV3 application to Arabidopsis seedlings results in elevation of cytosolic Ca2+ and cGMP. CLV3 control of WUS was prevented in a genotype lacking a functional cGMP‐activated Ca2+ channel. In wild‐type plants, CLV3 inhibition of WUS and FAF2 expression was impaired by treatment with either a Ca2+ channel blocker or a guanylyl cyclase inhibitor. When CLV3‐dependent repression of WUS is blocked, altered control of stem cell fate leads to an increase in SAM size; we observed a larger SAM size in seedlings treated with the Ca2+ channel blocker. These results suggest that the CLV3 ligand/CLV1 receptor system initiates a signaling cascade that elevates cytosolic Ca2+, and that this cytosolic secondary messenger is involved in the signal transduction cascade linking CLV3/CLV1 to control of gene expression and stem cell fate in the SAM.  相似文献   

12.
13.
Based on sequence analysis, the salt overly sensitive (SOS1) gene has been suggested to function as a Na+/H+ antiporter located at the plasma membrane of plant cells, being expressed mostly in the meristem zone of the root and in the parenchyma cells surrounding the vascular tissue of the stem. In this study, we compared net H+ and Ca2+ fluxes and intracellular pH and [Ca2+]cyt in the root meristem zone of Arabidopsis wild‐type (WT) and sos mutants before and after salt stress. In addition, we studied the effect of pretreatment with amiloride (an inhibitor of Na+/H+ antiporters) on net ion fluxes, intracellular pH and intracellular Ca2+ activity ([Ca2+]cyt) in WT plants and sos1 mutants before and after salt stress. Net ion fluxes were measured using microelectrode ion flux estimation (MIFE) and intracellular pH and [Ca2+]cyt using fluorescence lifetime imaging microscopy (FLIM) techniques. During the first 15 min after NaCl application, sos1 mutants showed net H+ efflux and intracellular alkalinization in the meristem zone, whereas sos2 and sos3 mutants and WT showed net H+ influx and slight intracellular acidification in the meristem zone. Treatment with amiloride led to intracellular acidification and lower net H+ flux in WT plants and to a decrease in intracellular Ca2+ in WT and sos1 plants. WT plants pretreated with amiloride did not show positive net H+ flux and intracellular acidification. After NaCl application, internal pH shifted to higher values in WT and sos1 plants. However, absolute values of H+ fluxes were higher and internal pH values were lower in WT plants pretreated with amiloride compared with sos1 mutants. Therefore, the SOS1 transporter is involved in H+ influx into the meristem zone of Arabidopsis roots, or it may function as a Na+/H+ antiporter. Amiloride affects SOS1 and other Na+/H+ antiporters in plant cells because of its ability to decrease the H+ gradient across the plasma membrane.  相似文献   

14.
The two C4 Panicum species examined differ in C4 acid decarboxylation type and in developmental origin of bundle sheaths in major veins of their leaf blades. In Panicum effusum R.Br. (NAD-malic enzyme type) both mesophyll (PCA) and chlorenchymatous bundle sheath (PCR) cells are derived from ground meristem. In contrast, in Panicum bulbosum H.B.K. (NADP-malic enzyme type), bundle sheath cells are derived from procambium, while mesophyll develops from ground meristem. To test the hypothesis that the developmental divergence of bundle sheath and mesophyll cells would occur earlier when these two tissues had different ontogenetic origins (in P. bulbosum) than when these tissues had the same origin (in P. effusum), the development of major veins in each species was investigated. We measured cell length and cross sectional area, plastid and mitochondrial number, plastid area, vacuole area fraction, wall thickness and fraction adjacent to intercellular space using direct and digitizer measurements of transmission electron micrographs of leaf cross sections of successive developmental stages. Many of the statistically significant changes in the structural parameters measured occurred late in development of both species. The magnitude of developmental change in P. effusum PCR cells was sometimes more dramatic, viz. changes in cell and PCR plastid area, and in mitochondrion number per cell. However, earlier divergence of PCR and PCA length and volume, and wall fraction adjacent to intercellular space in P. bulbosum than in P. effusum indicates that ontogenetic origin of PCR cells from procambium could determine the timing of at least some developmental events.  相似文献   

15.
Long-distance translocation of 125I in Laminaria saccharina (L.) Lamour. followed a “source to sink” pattern. When the source of 125I was placed on the distal mature part of the blade, the translocation was unidirectional, basipetal and directed towards the meristematic region at the blade-stipe junction. When the source was placed directly at the meristem there was no movement of label distal to the meristem. The velocity of125I transport ranged from 2 to 3.5 cm · h?1. The anion I? seemed to be the only species of125I transported. An assay of iodine content in different parts of L. saccharina plant showed much higher levels of iodine in the meristem, stipe and holdfast than in the blade. This distribution concurs well with the pattern of I? translocation.  相似文献   

16.
17.
The amphiploid Nicotiana suaveolens × N. langsdorffii, which is genetically constituted to produce tumors spontaneously late in development, can be induced to form them in the early seedling stage by treatment of the apical meristem with kinetin and indoleacetic acid. Application of H3-or C14-labeled plant-growth regulators resulted in most plants and notably with C14-labeled indoleacetic acid in a significant increase in the rate of tumor production over growth-regulator treatment alone. Endogenous radiation alone was shown to be tumefacient since radioactive nucleosides, tritiated water, and C14-sodium carbonate also enhance tumorization.  相似文献   

18.
Rice (Oryza sativa ssp. indica) is an important economic crop in many countries. Although a variety of conventional methods have been developed to improve this plant, manipulation by genetic engineering is still complicated. We have established a system of multiple shoot regeneration from rice shoot apical meristem. By use of MS medium containing 4 mg L−1 thidiazuron (TDZ) multiple shoots were successfully developed directly from the meristem without an intervening callus stage. All rice cultivars tested responded well on the medium and regenerated to plantlets that were readily transferred to soil within 5–8 weeks. The tissue culture system was suitable for Agrobacterium-mediated transformation and different factors affecting transformation efficiency were investigated. Agrobacterium strain EHA105 containing the plasmid pCAMBIA1301 was used. The lowest concentration of hygromycin B in combined with either 250 mg L−1 carbenicillin or 250 mg L−1 cefotaxime to kill the rice shoot apical meristem was 50 mg L−1 and carbenicillin was more effective than cefotaxime. Two-hundred micromolar acetosyringone had no effect on the efficiency of transient expression. Sonication of rice shoot apical meristem for 10 s during bacterial immersion increased transient GUS expression in three-day co-cultivated seedlings. The gus gene was found to be integrated into the genome of the T0 transformant plantlets.  相似文献   

19.
The behaviour of cell nuclei and organelle nucleoids (organellenuclei) was studied in the root apical meristem of 3-d-old seedlingsof Arabidopsis thaliana (Col.). Samples were embedded in Technovit7100 resin, cut into thin sections and stained with 4'-6-diamidino-2-phenylindole(DAPI) for observation of DNA. DNA synthesis in cell nucleiand organelle nucleoids was investigated using the incorporationof [3H] thymidine or 5-bromo-2'-deoxyuridine (BrdU). Incorporated[3H] thymidine and BrdU were detected by microautoradiographyor immunofiuorescence microscopy, respectively. Central cellsand cells just above the central cells of the quiescent centre(QC) showed an extremely low activity of DNA synthesis. However,DNA synthesis occurred in at least one organelle nucleoid ofall cells in the QC within 24 h. This suggests the cells inthe QC are quiescent with regard to nuclear DNA synthesis, butnot with regard to the organelle nucleoids. Key words: Arabidopsis thaliana, quiescent centre, root apical meristem, mitochondrial nucleoid (nuclei), plastid nucleoid (nuclei)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号