首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
CLAVATA1 (CLV1), CLV2, CLV3, CORYNE (CRN), BAM1 and BAM2 are key regulators that function at the shoot apical meristem (SAM) of plants to promote differentiation by limiting the size of the organizing center that maintains stem cell identity in neighboring cells. Previous results have indicated that the extracellular domain of the receptor kinase CLV1 binds to the CLV3‐derived CLE ligand. The biochemical role of the receptor‐like protein CLV2 has remained largely unknown. Although genetic analysis suggested that CLV2, together with the membrane kinase CRN, acts in parallel with CLV1, recent studies using transient expression indicated that CLV2 and CRN from a complex with CLV1. Here, we report detection of distinct CLV2‐CRN heteromultimeric and CLV1‐BAM multimeric complexes in transient expression in tobacco and in Arabidopsis meristems. Weaker interactions between the two complexes were detectable in transient expression. We also find that CLV2 alone generates a membrane‐localized CLE binding activity independent of CLV1. CLV2, CLV1 and the CLV1 homologs BAM1 and BAM2 all bind to the CLV3‐derived CLE peptide with similar kinetics, but BAM receptors show a broader range of interactions with different CLE peptides. Finally, we show that BAM and CLV1 overexpression can compensate for the loss of CLV2 function in vivo. These results suggest two parallel ligand‐binding receptor complexes controlling stem cell specification in Arabidopsis.  相似文献   

3.
In Arabidopsis, CORYNE (CRN), a new member of the receptor kinase family, was recently isolated as a key player involved in the CLAVATA3 (CLV3) signaling pathway, thereby playing an important role in regulating the development of shoot and root apical meristems. However, the precise relationships among CLAVATA1 (CLV1), CLAVATA2 (CLV2), and CRN receptors remain unclear. Here, we demonstrate the subcellular localization of CRN and analyze the interactions among CLV1, CLV2, and CRN using firefly luciferase complementation imaging (LCI) assays in both Arabidopsis mesophyll protoplasts and Nicotiana benthamiana leaves. Fluorescence targeting showed that CRN was localized to the plasma membrane. The LCI assays coupled with co‐immunoprecipitation assays demonstrated that CLV2 can directly interact with CRN in the absence of CLV3. Additional LCI assays showed that CLV1 did not interact with CLV2, but can interact weakly with CRN. We also found that CLV1 can interact with CLV2–CRN heterodimers, implying that these three proteins may form a complex. Moreover, CRN, rather than CLV1 and CLV2, was able to form homodimers without CLV3 stimulation. Taken together, our results add direct evidence to the newly proposed two‐parallel receptor pathways model and therefore provide new insights into the CLV3 signaling pathway.  相似文献   

4.
5.
6.
The plant meristems, shoot apical meristem (SAM) and root apical meristem (RAM), are unique structures made up of a self-renewing population of undifferentiated pluripotent stem cells. The SAM produces all aerial parts of postembryonic organs, and the RAM promotes the continuous growth of roots. Even though the structures of the SAM and RAM differ, the signaling components required for stem cell maintenance seem to be relatively conserved. Both meristems utilize cell-to-cell communication to maintain proper meristematic activities and meristem organization and to coordinate new organ formation. In SAM, an essential regulatory mechanism for meristem organization is a regulatory loop between WUSCHEL (WUS) and CLAVATA (CLV), which functions in a non-cell-autonomous manner. This intercellular signaling network coordinates the development of the organization center, organ boundaries and distant organs. The CLAVATA3/ESR (CLE)-related genes produce signal peptides, which act non-cell-autonomously in the meristem regulation in SAM. In RAM, it has been suggested that a similar mechanism can regulate meristem maintenance, but these functions are largely unknown. Here, we overview the WUSCLV signaling network for stem cell maintenance in SAM and a related mechanism in RAM maintenance. We also discuss conservation of the regulatory system for stem cells in various plant species. S. Sawa is the recipient of the BSJ Award for Young Scientist, 2007.  相似文献   

7.
CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE‐receptor kinase‐WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant‐parasitic cyst nematodes secrete CLE‐like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR‐LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode‐induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock‐down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants.  相似文献   

8.
Arabidopsis root development is orchestrated by signaling pathways that consist of different CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptide ligands and their cognate CLAVATA (CLV) and BARELY ANY MERISTEM (BAM) receptors. How and where different CLE peptides trigger specific morphological or physiological changes in the root is poorly understood. Here, we report that the receptor‐like protein CLAVATA 2 (CLV2) and the pseudokinase CORYNE (CRN) are necessary to fully sense root‐active CLE peptides. We uncover BAM3 as the CLE45 receptor in the root and biochemically map its peptide binding surface. In contrast to other plant peptide receptors, we found no evidence that SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) proteins act as co‐receptor kinases in CLE45 perception. CRN stabilizes BAM3 expression and thus is required for BAM3‐mediated CLE45 signaling. Moreover, protophloem‐specific CRN expression complements resistance of the crn mutant to root‐active CLE peptides, suggesting that protophloem is their principal site of action. Our work defines a genetic framework for dissecting CLE peptide signaling and CLV/BAM receptor activation in the root.  相似文献   

9.
10.
Plant shoot stem cell pool is constantly maintained by a negative feedback loop through peptide-receptor mediated signaling pathway. CLAVATA3 (CLV3) encode a 96 aminoacid protein which is processed to 12-amino-acid or arabinosylated 13-amino-acid peptides, acting as a ligand signal to regulate stem cell homeostasis in the shoot apical meristem (SAM). Although arabinosylated 13-amino-acid CLV3 peptide (CLV3p) shows more significant binding affinity to its receptors and biological activities in the SAM, the physiological function of two mature forms of CLV3p remained an unresolved puzzle in the past decade due to the technical difficulties of arabinosylation modification in the peptide synthesis. Here, we analyzed the role of two mature CLV3 peptides with newly synthesized arabinosylated peptide. Beside shoot meristem phenotypes, arabinosylated CLV3p showed the conventional trait of CLV2-dependent root growth inhibition. Moreover, both 12-amino-acid and arabinosylated 13-amino-acid CLV3 peptides have analogous activities in shoot stem cell signaling. Notably, we demonstrated that non-arabinosylated 12-amino acid CLV3p can affect shoot stem cell signaling at the physiological level unlike previously suggested (Ohyama et al. 2009; Shinohara and Matsubayashi 2013; Shinohara and Matsubayashi 2015). Therefore, these results support the physiological role of the 12-amino-acid CLV3p in shoot stem cell signaling in the deficient condition of arabinosylated 13-amino-acid CLV3p in Arabidopsis thaliana.  相似文献   

11.
Inflorescence regeneration in vitro provides a simplified approach for the study of inflorescence development. In this study, high frequency of regenerated inflorescences was established using Arabidopsis stage-10 pistil as the explants on the inducing medium containing the 2 mg/L zeatin and 0.01 mg/L indole-3-acetic acid. TERMINAL FLOWER 1 (TFL1) expression was detected in callus at 6 days after transferred to inducing medium, and LEAFY (LFY) expression was detectable subsequently, suggesting that both genes play important roles as they function on inflorescence development in the plant. To investigate the formation of the stem cell organizing center, we examined the WUSCHEL (WUS) and CLAVATA3 (CLV3) expression within callus during inflorescence regeneration. WUS signals start to accumulate on callus at 4 days after induction, and then, the CLV3 signals are induced on callus at 5 days on the inflorescence-inducing medium. The expression domain of WUS is below that of CLV3, indicating that the patterns of the organizing center and stem cell formation are similar to that in zygotic and somatic embryogenesis. However, more cells of the organizing center were observed within callus than pro-embryo, suggesting that inflorescence differentiation requires more cells of the organizing center. Furthermore, it was found that the WUS expression is controlled by the ratio of cytokinin with auxin. The results suggest that other factors besides WUS and CLV3 are required for inflorescence regeneration.  相似文献   

12.
Like their animal counterparts, plant glutamate receptor‐like (GLR) homologs are intimately associated with Ca2+ influx through plasma membrane and participate in various physiological processes. In pathogen‐associated molecular patterns (PAMP)‐/elicitor‐mediated resistance, Ca2+ fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca2+] ([Ca2+]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense‐related genes by OGs. In addition, wild‐type Col‐0 plants treated with the glutamate‐receptor antagonist 6,7‐dinitriquinoxaline‐2,3‐dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against Harabidopsidis. In addition, some OGs‐triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen‐mediated plant defense signaling pathways in Arabidopsis thaliana.  相似文献   

13.
14.
Long‐chain base phosphates (LCBPs) have been correlated with amounts of crucial biological processes ranging from cell proliferation to apoptosis in animals. However, their functions in plants remain largely unknown. Here, we report that LCBPs, sphingosine‐1‐phosphate (S1P) and phytosphingosine‐1‐phosphate (Phyto‐S1P), modulate pollen tube growth in a concentration‐dependent bi‐phasic manner. The pollen tube growth in the stylar transmitting tissue was promoted by SPHK1 overexpression (SPHK1‐OE) but dampened by SPHK1 knockdown (SPHK1‐KD) compared with wild‐type of Arabidopsis; however, there was no detectable effect on in vitro pollen tube growth caused by misexpression of SPHK1. Interestingly, exogenous S1P or Phyto‐S1P applications could increase the pollen tube growth rate in SPHK1‐OE, SPHK1‐KD and wild‐type of Arabidopsis. Calcium ion (Ca2+)‐imaging analysis showed that S1P triggered a remarkable increase in cytosolic Ca2+ concentration in pollen. Extracellular S1P induced hyperpolarization‐activated Ca2+ currents in the pollen plasma membrane, and the Ca2+ current activation was mediated by heterotrimeric G proteins. Moreover, the S1P‐induced increase of cytosolic free Ca2+ inhibited the influx of potassium ions in pollen tubes. Our findings suggest that LCBPs functions in a signaling cascade that facilitates Ca2+ influx and modulates pollen tube growth.  相似文献   

15.
CLE, which is the term for the CLV3/ESR-related gene family, is thought to participate in CLAVATA3-WUSCHEL (CLV3-WUS) and CLV3-WUS-like signaling pathways to regulate meristem activity in plant. Although some CLE genes are expressed in meristems, many CLE genes appear to express in a variety of tissues/cells. Here we report that CLE14 and CLE20 express in various specific tissues/cells outside the shoot/root apical meristem (SAM/RAM), including in highly differentiated cells, and at different developmental stages. Overexpressing CLE14 or CLE20 also causes multiple phenotypes, which is consistent with its expression pattern in Arabidopsis. These results suggest that CLE genes may play multiple roles and involve other signaling cascades in addition to the CLV3-WUS and CLV3-WUS-like pathways.Key words: CLE, CLAVATA3-WUSCHEL, cell signaling and development, root apical meristem, arabidopsisIntercellular communication and coordination between adjacent cell populations are critical for cell-fate specification, as well as for meristem organization and maintenance. In the shoot apical meristem (SAM), local signaling, which involves the CLAVATA3-WUSCHEL (CLV3-WUS) negative feedback loop, controls stem cell homeostasis and SAM activity.1 As well, it has been suggested that a CLV3-WUS-like negative feedback pathway operates to control root apical meristem (RAM) activity. This view is supported by the facts that a WUS-related homeobox gene, WOX5, is expressed in cells of the quiescent center (QC) in the RAM, and that loss-of-function of WOX5 in the QC leads to the differentiation of the adjacent root cap initials (RCI), whereas gain-of-function blocks the differentiation of derivatives of the RCI in the root.2 Additional support for the function in the RAM of a CLV3-WUS-like pathway, comes from observations that CLE genes (collectively referred to as the CLV3/ESR-relate gene family) are not only expressed in the RAM,3,4 but also, that overexpression of some CLE genes triggers premature termination of the RAM.5 In this regard it has been recently reported that CLE40, which expresses in the differentiating daughter cells of the distal root stem cells, restricts WOX5 expression and promotes differentiation of stem cells in the RAM.6 Taken together these data suggest a CLV3-WUS-like feedback loop acts to negatively regulate RAM activity in plants.Our previous results have shown that CLE14 and CLE20 express in specific cells of roots, and that overexpression of CLE14 or CLE20 in Arabidopsis triggers early termination of the RAM in a CLAVATA1 (CLV1)-independent, but CLAVATA2 (CLV2)-dependent manner.7,8 We also showed that both CLE14 and CLE20 peptides inhibit, irreversibly, root growth by reducing cell division rates in the RAM.7 CLV2 and CRN (a receptor-like protein kinase, also known as SOL2, isolated as a suppressor of root-specific overexpression of CLE19) are required for CLE14 and CLE20 peptide functions in vitro.9,10 Using computational modeling approaches we further demonstrated that 12-amino-acid CLE14 and CLE20 peptides may function through a potential heterodimer/heterotetramer CLV2-CRN complex.7CLV3 expresses exclusively in the stem cells of the SAM, and it has been consistently shown that the CLV3 peptide is required for homeostasis of the stem cells and for the maintenance of the SAM.1 Although some CLE genes are found to express in meristems, many CLE genes appear to express in an array of tissues and cells, including highly differentiated tissues/cells.3,4 In this report we show that CLE14 and CLE20 express in specific tissues outside the RAM and SAM of Arabidopsis, including highly differentiated cells, and at different developmental stages. Overexpressing CLE14 or CLE20 also causes multiple phenotypes, which is consistent with its expression pattern in Arabidopsis. These results suggest that CLE genes may play multiple roles in regulating the developmental fate of cells, which includes, but is not limited to, stem cells, and also may be involved in other signaling cascades in addition to the CLV3-WUS pathway.  相似文献   

16.
The role of second messengers in the diversion of cellular processes by pathogens remains poorly studied despite their importance. Among these, Ca2+ virtually regulates all known cell processes, including cytoskeletal reorganization, inflammation, or cell death pathways. Under physiological conditions, cytosolic Ca2+ increases are transient and oscillatory, defining the so‐called Ca2+ code that links cell responses to specific Ca2+ oscillatory patterns. During cell invasion, Shigella induces atypical local and global Ca2+ signals. Here, we show that by hydrolyzing phosphatidylinositol‐(4,5)bisphosphate, the Shigella type III effector IpgD dampens inositol‐(1,4,5)trisphosphate (InsP3) levels. By modifying InsP3 dynamics and diffusion, IpgD favors the elicitation of long‐lasting local Ca2+ signals at Shigella invasion sites and converts Shigella‐induced global oscillatory responses into erratic responses with atypical dynamics and amplitude. Furthermore, IpgD eventually inhibits InsP3‐dependent responses during prolonged infection kinetics. IpgD thus acts as a pathogen regulator of the Ca2+ code implicated in a versatility of cell functions. Consistent with this function, IpgD prevents the Ca2+‐dependent activation of calpain, thereby preserving the integrity of cell adhesion structures during the early stages of infection.  相似文献   

17.
18.
Multilocular silique is a desirable agricultural trait with great potential for the development of high‐yield varieties of Brassica. To date, no spontaneous or induced multilocular mutants have been reported in Brassica napus, which likely reflects its allotetraploid nature and the extremely low probability of the simultaneous random mutagenesis of multiple gene copies with functional redundancy. Here, we present evidence for the efficient knockout of rapeseed homologues of CLAVATA3 (CLV3) for a secreted peptide and its related receptors CLV1 and CLV2 in the CLV signalling pathway using the CRISPR/Cas9 system and achieved stable transmission of the mutations across three generations. Each BnCLV gene has two copies located in two subgenomes. The multilocular phenotype can be recovered only in knockout mutations of both copies of each BnCLV gene, illustrating that the simultaneous alteration of multiple gene copies by CRISPR/Cas9 mutagenesis has great potential in generating agronomically important mutations in rapeseed. The mutagenesis efficiency varied widely from 0% to 48.65% in T0 with different single‐guide RNAs (sgRNAs), indicating that the appropriate selection of the sgRNA is important for effectively generating indels in rapeseed. The double mutation of BnCLV3 produced more leaves and multilocular siliques with a significantly higher number of seeds per silique and a higher seed weight than the wild‐type and single mutant plants, potentially contributing to increased seed production. We also assessed the efficiency of the horizontal transfer of Cas9/gRNA cassettes by pollination. Our findings reveal the potential for plant breeding strategies to improve yield traits in currently cultivated rapeseed varieties.  相似文献   

19.
Plants have the ability to continously generate new organs by maintaining populations of stem cells throught their lives. The shoot apical meristem (SAM) provides a stable environment for the maintenance of stem cells. All cells inside the SAM divide, yet boundaries and patterns are maintained. Experimental evidence indicates that patterning is independent of cell lineage, thus a dynamic self-regulatory mechanism is required. A pivotal role in the organization of the SAM is played by the WUSCHEL gene (WUS). An important question in this regard is that how WUS expression is positioned in the SAM via a cell-lineage independent signaling mechanism. In this study we demonstrate via mathematical modeling that a combination of an inhibitor of the Cytokinin (CK) receptor, Arabidopsis histidine kinase 4 (AHK4) and two morphogens originating from the top cell layer, can plausibly account for the cell lineage-independent centering of WUS expression within SAM. Furthermore, our laser ablation and microsurgical experiments support the hypothesis that patterning in SAM occurs at the level of CK reception and signaling. The model suggests that the interplay between CK signaling, WUS/CLV feedback loop and boundary signals can account for positioning of the WUS expression, and provides directions for further experimental investigation.  相似文献   

20.
Postembryonic growth and development in higher plants are ultimately reliant on the activity of meristems, where the cells divide frequently to provide source cells for new organs and tissues while in part maintain their pluripotent nature as stem cells. The shoot apical meristem (SAM) is maintained throughout the life of plants and responsible for the development of all areal tissues. In Arabidopsis thaliana, the size of SAM is controlled by a peptide ligand, CLAVATA3 (CLV3). Previously, genetic studies have identified several genes that function downstream of CLV3, many of which, intriguingly, encode receptors. Recently we identified an E3 ubiquitin ligase, PLANT U-BOX 4 (PUB4), as a key regulatory component of root meristem maintenance that functions downstream of an exogenous synthetic CLV3 peptide. Here, we report an additional function of PUB4 in the SAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号