首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
The conversion of starch from unhydrolyzed cassava flour to ethanol by a pure culture of Endomycopsis fibuligera and by a co-culture of this amylolytic yeast and the bacterium Zymomonas mobilis was studied. The best overall results were obtained using the mixed culture. After 96 h of fermentation of a medium containing 150 g/l initial cassava starch, an ethanol concentration of 31.4 g/l, a productivity of 0.33 g ethanol/l × h and a yield of 0.21 g ethanol/g initial starch were reached. The highest yield (0.37 g/g) was obtained after 48 h when using a medium containing 50 g/l initial starch.  相似文献   

2.
Saccharomycopsis fibuligera is found to actively accumulate trehalose from starch and the gene responsible for biosynthesis of trehalose has been cloned and its expression has been characterized. This yeast is also found to secrete a large amount of amylases, acid protease and β-glucosidase which have highly potential applications in fermentation industry. The genes encoding amylases, acid protease and β-glucosidase in S. fibuligera have been cloned and characterized. It is also used to produce ethanol from starch, especially cassava starch by co-cultures of Saccharomyces cereviase or Zymomonas mobilis.  相似文献   

3.
Summary Synergistic coculture of an amylolytic yeast (Saccharomycopsis fibuligera) andS. cerevisiae, a non-amylolytic yeast, fermented unhydrolyzed starch to ethanol with conversion efficiencies over 90% of the theoretical maximum. Fermentation was optimal between pH 5.0 to 6.0. Using a starch concentration of 10% (w/v) and a 5% (v/v) inoculum ofS. fibuligera, increasingS. cerevisiae inoculum from 4% to 12% (w/v) resulted in 35–40% (w/v) increase in ethanol yields. Anaerobic or limited aerobic incubation almost doubled ethanol yields.  相似文献   

4.
Two proven secretion signal zmo130 and zmo331 native to Zymomonas mobilis were fused to the N terminal of ??-amylase from Bacillus subtilis and transformed into 5 different strains of Z. mobilis separately. It was found that the signal zmo130 could direct the extracellular secretion of the expressed ??-amylase with high activity, but zmo331 could not. Fermentation experiments demonstrated that the recombinant Z. mobilis CICC 10225(p130A) exhibited the highest level of ethanol production, which is nearly 50% of the theoretical yield of ethanol from soluble starch, but another recombinant Z. mobilis ATCC 31821(p130A) took the shortest fermentation time of approximately 3 days, with the second high level of ethanol yield. The recombined strains in our study could be an important target for the following genetic engineering of next amylase in order to hydrolyze starch completely.  相似文献   

5.
The present study describes the usage of dried leafy biomass of mango (Mangifera indica) containing 26.3% (w/w) cellulose, 54.4% (w/w) hemicellulose, and 16.9% (w/w) lignin, as a substrate for bioethanol production from Zymomonas mobilis and Candida shehatae. The substrate was subjected to two different pretreatment strategies, namely, wet oxidation and an organosolv process. An ethanol concentration (1.21 g/L) was obtained with Z. mobilis in a shake-flask simultaneous saccharification and fermentation (SSF) trial using 1% (w/v) wet oxidation pretreated mango leaves along with mixed enzymatic consortium of Bacillus subtilis cellulase and recombinant hemicellulase (GH43), whereas C. shehatae gave a slightly higher (8%) ethanol titer of 1.31 g/L. Employing 1% (w/v) organosolv pretreated mango leaves and using Z. mobilis and C. shehatae separately in the SSF, the ethanol titers of 1.33 g/L and 1.52 g/L, respectively, were obtained. The SSF experiments performed with 5% (w/v) organosolv-pretreated substrate along with C. shehatae as fermentative organism gave a significantly enhanced ethanol titer value of 8.11 g/L using the shake flask and 12.33 g/L at the bioreactor level. From the bioreactor, 94.4% (v/v) ethanol was recovered by rotary evaporator with 21% purification efficiency.  相似文献   

6.
The gene from Bacillus licheniformis coding for a thermostable -amylase was subcloned into the broad-host-range plasmid pKT210 in Escherichia coli. The recombinant plasmid pGNB6 was transferred into Zymomonas mobilis ATCC 31821 by conjugation. Plasmid pGNB6 was stably maintained in E. coli and unstable in Z. mobilis. The amylase gene was expressed in Z. mobilis at a lower level (25%) than in E. coli and regulation of enzyme biosynthesis was different in the host cells. Almost all the -amylase activity was recovered in the culture medium of Z. mobilis. This enzyme localization seemed to be the result of protein secretion rather than cell lysis. Integration of the amylase gene into a cryptic plasmid of Z. mobilis was observed. The amylase gene was still expressed, although at a lower level, and the -amylase activity, associated with a protein of molecular mass 62,000 daltons, was immunologically identical in Z. mobilis, E. coli and B. licheniformis.  相似文献   

7.
Summary Zymomonas mobilis and recombinant Escherichia coli B (pLOI297) were compared in side-by-side batch fermentations using a synthetic cellulose hydrolysate (glucose/salts) medium with pH control at 6.0 and an inoculation cell density of 35–50 mg dry wt. cells/L. At a nominal glucose concentration of 6%, both cultures achieved near maximal theoretical ethanol yields; however, the Z. mobilis fermentation was complete at 13h compared to 33h for the E.coli fermentation. With approx.12% glucose, the Z. mobilis fermentation was complete in 20h with a process yield of 0.49 g ethanol/g added glucose compared to the E. coli fermentation which remained 20% incomplete after 6 days resulting in a process yield of only 0.32 g/g. Nutrient supplementation (10g tryptone/L) resulted in complete fermentation of 12% glucose (pH 6.3) by the recombinant E. coli in 4 days, with a yield of 0.48 g/g.  相似文献   

8.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

9.
The composition of spirits distilled from fermentation of Jerusalem artichoke (Helianthus tuberosus L.) tubers was compared by means of gas chromatography. The microorganisms used in the fermentation processes were the bacterium Zymomonas mobilis, strains 3881 and 3883, the distillery yeast Saccharomyces cerevisiae, strains Bc16a and D2 and the Kluyveromyces fragilis yeast with an active inulinase. The fermentation of mashed tubers was conducted using a single culture of the distillery yeast Saccharomyces cerevisiae and the bacterium Zymomonas mobilis (after acid or enzymatic hydrolysis) as well as Kluyveromyces fragilis (sterilized mashed tubers). The tubers were simultaneously fermented by mixed cultures of the bacterium or the distillery yeast with K. fragilis. The highest ethanol yield was achieved when Z. mobilis 3881 with a yeast demonstrating inulinase activity was applied. The yield reached 94 % of the theoretical value. It was found that the distillates resulting from the fermentation of mixed cultures were characterized by a relatively lower amount of by‐products compared to the distillates resulting from the single species process. Ester production of 0.30–2.93 g/L, responsible for the aromatic quality of the spirits, was noticed when K. fragilis was applied for ethanol fermentation both in a single culture process and also in the mixed fermentation with the bacterium. Yeast applied in this study caused the formation of higher alcohols to concentrations of 7.04 g/L much greater than those obtained with the bacterium. The concentrations of compounds other than ethanol obtained from Jerusalem artichoke mashed tubers, which were fermented by Z. mobilis, were lower than those achieved for yeasts.  相似文献   

10.
Summary The fermentation of large sugar cane chips (1.0–1.5 in) to ethanol by Zymomonas mobilis CP4 (Z. mobilis) was studied in two glass fermentors operating with culture circulation for agitation (the EX-FERM type): a. A laboratory scale(2.5 liter) cylindrical vessel; b. A bench scale (8 liter) wide vessel. Z. mobilis cultures consumed 89–96% of the cane sucrose, converting it to ethanol by 90–97% of the theoretical yield in the laboratory scale fermentor and by 83–90% in the bench scale fermentor culture. Comparative Saccharomyces spp. cultures in laboratory fermentor consumed 96–98% of the cane sucrose, with ethanol conversion of only 75–79% of the theoretical yield.These preliminary results indicated that sucrose in agricultural size sugar cane chips was ethanol fermentable as compared to small size sugar cane chips or to sugar cane juice. Z. mobilis CP4 cultures converted sucrose more efficiently to ethanol than Saccharomyces spp. as shown in the laboratory scale fermentor studies.The ethanol yields in a wide bench scale fermentor cultures were slightly lower than in a laboratory fermentor.  相似文献   

11.
Summary Cassava and sago starch were evaluated for their feasibilities as substrates for ethanol production using Zymomonas mobilis ZM4 strain. Before fermentation, the starch materials were pretreated employing two commercial enzymes, Termamyl (thermostable -amylase) and AMG (amyloglucosidase). Using 2 l/g of Termamyl and 4 l/g of AMG, effective conversion of both cassava and sago starch into glucose was found with substrate concentration up to 30%(w/v) dry substances. Fermentation study performed using these starch hydrolysates as substrates resulted in ethanol yield at an average of 0.48g/g by Z. Mobilis ZM4.  相似文献   

12.
Summary Studies on the growth ofZ.mobilis revealed that high concentrations of glucose (10-25%) can be efficiently and rapidly converted to ethanol in batch culture. By comparison withS. carlsbergensis,Z.mobilis had specific glucose uptake rates and specific ethanol productivies several times greater than the yeast.Z.mobilis also had ethanol yields of up to 97% of a theoretical value.  相似文献   

13.
Traditional fermentation of paddy malt mash (containing 18.1% w/v dextrose equivalent) to paddy arrack using paddy husk as source of inoculum yielded very low level of ethanol (4.25% v/v). Use of yeast isolates obtained from paddy husk as well as a potent ethanol producer like Zymomonas mobilis ZM4 and their combinations in the fermentation revealed that a combination of an yeast isolate PH 03 (Saccharomyces cerevisiae) and Z. mobilis ZM4 produced synergistically and statistically more ethanol (10.1% v/v) than the individual and other combination of cultures. In this process, addition of penicillin G at a concentration of 20 U/ml rather than heat sterilization, helped retention of the limited amylase activity in the mash for simultaneous saccharification and fermentation over 7 d at 30°C. About 98.5% of the carbohydrate was accountable in the fermentation which yielded 86.7% of the theoretical yield of ethanol, apart from biomass and acids.  相似文献   

14.
Highly thermosensitive and permeable mutants are the mutants from which intracellular contents can be released when they are incubated both in low osmolarity water and at non-permissive temperature (usually 37°C). After mutagenesis by using nitrosoguanidine, a highly thermosensitive and permeable mutant named A11-b was obtained from Saccharomycopsis fibuligera A11-12, a trehalose overproducer in which the acid protease gene has been disrupted. Of the total trehalose, 73.8% was released from the mutant cells suspended in distilled water after they had been treated at 37°C overnight. However, only 10.0% of the total trehalose was released from the cells of S. fibuligera A11-12 treated under the same conditions. The cell volume of the mutant cells suspended in distilled water and treated at 37°C overnight was much bigger than that of S. fibuligera A11-12 treated under the same conditions. The cell growth and trehalose accumulation of the mutant were almost the same as those of S. fibuligera A11-12 during the cultivation at the flask level and in a 5-l fermentor. Both could accumulate around 28.0% (w/w) trehalose from cassava starch. After purification, the trehalose crystal from the aqueous extract of the mutant was obtained.  相似文献   

15.
Schwanniomyces castellii and Endomycopsis fibuligera Produced extracellular amylase(s) when grown on various carbon sources and at different pH values. Both yeast species showed significant amylase synthesis in the presence of either maltose or soluble starch. On the other substrates tested (glucose, cellobiose, sucrose, trehalose, melezitose, raffinose, ethanol, glycerol) differences were found regarding growth and amylase production. Free glucose in the culture medium apparently inhibited enzyme synthesis. The pH range allowing maximal growth and amylase production was 4.5–6.0 for E. fibuligera and 5.5–7.0 for S. castellii.  相似文献   

16.
Summary The influence of different primary aliphatic alcohols on the activities of two key enzymes in hopanoid biosynthesis of Zymomonas mobilis was investigated. By use of 14C- and 3H-labelled substrates the enzymes 3-hydroxy-3-methylglutaryl-CoA-reductase and squalene-hopenecyclase were detected with activities of 1.6 pmol x (min x mg protein)-1 and 2.3 pmol x- (min x mg protein)-1, respectively. Cells grown in the presence of 6% (v/v) ethanol did not show higher activities of these enzymes than cells grown in the presence of 1% (v/v) ethanol. Furthermore, 3-hydroxy-3-methylglutaryl-CoA-reductase was not activated by ethanol. However, ethanol activated the squalene-hopene-cyclase when added to the enzyme test system. Besides ethanol, propanol also had a positive effect on the squalene-hopene-cyclase: the enzyme's activity increased 1.7-fold in the presence of either alcohol at a concentration of 6% (v/v). This corresponded with a similar increase of hopanoid content of whole cells when grown in the presence of 6% (v/v) added ethanol or propanol. These results indicated that the squalene-hopene-cyclase has a regulatory function in the alcohol dependent hopanoid biosynthesis of Z. mobilis.Abbreviation HMG-CoA-reductase 3-hydroxy-3-methylglutaryl-coenzyme A-reductase  相似文献   

17.
Pichia kudriavzevii DMKU 3-ET15 was isolated from traditional fermented pork sausage by an enrichment technique in a yeast extract peptone dextrose (YPD) broth, supplemented with 4 % (v/v) ethanol at 40 °C and selected based on its ethanol fermentation ability at 40 °C in YPD broth composed of 16 % glucose, and in a cassava starch hydrolysate medium composed of cassava starch hydrolysate adjusted to 16 % glucose. The strain produced ethanol from cassava starch hydrolysate at a high temperature up to 45 °C, but the optimal temperature for ethanol production was at 40 °C. Ethanol production by this strain using shaking flask cultivation was the highest in a medium containing cassava starch hydrolysate adjusted to 18 % glucose, 0.05 % (NH4)2SO4, 0.09 % yeast extract, 0.05 % KH2PO4, and 0.05 % MgSO4·7H2O, with a pH of 5.0 at 40 °C. The highest ethanol concentration reached 7.86 % (w/v) after 24 h, with productivity of 3.28 g/l/h and yield of 85.4 % of the theoretical yield. At 42 °C, ethanol production by this strain became slightly lower, while at 45 °C only 3.82 % (w/v) of ethanol, 1.27 g/l/h productivity and 41.5 % of the theoretical yield were attained. In a study on ethanol production in a 2.5-l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.1 vvm throughout the fermentation, P. kudriavzevii DMKU 3-ET15 yielded a final ethanol concentration of 7.35 % (w/v) after 33 h, a productivity of 2.23 g/l/h and a yield of 79.9 % of the theoretical yield.  相似文献   

18.
Biofilms are a natural form of cell immobilization that result from microbial attachment to solid supports. Biofilm reactors with polypropylene composite-supports containing up to 25% (w/w) of various agricultural materials (corn hulls, cellulose, oat hulls, soybean hulls or starch) and nutrients (soybean flour or zein) were used for ethanol production. Pure cultures ofZymomonas mobilis, ATCC 31821 orSaccharomyces cerevisiae ATCC 24859 and mixed cultures with either of these ethanol-producing microorganisms and the biofilm-formingStreptomyces viridosporus T7A ATCC 39115 were evaluated. An ethanol productivity of 374g L–1 h–1 (44% yield) was obtained on polypropylene composite-supports of soybean hull-zein-polypropylene by usingZ. mobilis, whereas mixed-culture fermentations withS. viridosporus resulted in ethanol productivity of 147.5 g L–1 h–1 when polypropylene composite-supports of corn starch-soybean flour were used. WithS. cerevisiae, maximum productivity of 40 g L–1 h–1 (47% yield) was obtained on polypropylene composite-supports of soybean hull-soybean flour, whereas mixed-culture fermentation withS. viridosporus resulted in ethanol productivity of 190g L–1 h–1 (35% yield) when polypropylene composite-supports of oat hull-polypropylene were used. The maximum productivities obtained without supports (suspension culture) were 124 g L–1 h–1 and 5 g L–1 h–1 withZ. mobilis andS. cerevisiae, respectively. Therefore, forZ. mobilis andS. cerevisiae, ethanol productivities in biofilm fermentations were three- and eight-fold higher than suspension culture fermentations, respectively. Biofilm formation on the chips was detected by weight change and Gram staining of the support material at the end of the fermentation. The ethanol production rate and concentrations were consistently greater in biofilm reactors than in suspension cultures.This is Journal Paper No. J-16356 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 3253  相似文献   

19.
He MX  Feng H  Zhang YZ 《Biotechnology letters》2008,30(12):2111-2117
A novel bacterial cell-surface display system was developed in Escherichia coli using omp1, a hypothetical outer membrane protein of Zymomonas mobilis. By using this system, we successfully expressed β-amylase gene of sweet potato in E. coli. The display of enzyme on the membrane surface was also confirmed. The recombinant β-amylase showed to significantly increase hydrolytic activity toward soluble starch. Our results provide a basis for constructing an engineered Z. mobilis strain directly fermenting raw starch to produce ethanol.  相似文献   

20.
Summary The simultaneous saccharification and fermentation (SSF) of sweet sorghum carbohydrates to ethanol by Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae 2541 or Zymomonas mobilis CP4 in a fed-batch fermentation process was studied. While SSF was adequately carried out by the first microorganism the process achieved its maximum value by the mixed culture of the fungus and yeast. Under optimum conditions, ethanol yields and concentrations as high as 29.7 g of ethanol per 100 g of dry sorghum stalk and 7.5 % (w/v) respectively were obtained. These values together with the high yield of sorghum crop in Greece make this process promising and worthy of further investigation for the production of fuel bioethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号