首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Top-predator (fourth-trophic-level) controlled trophic cascades are thought to be uncommon in terrestrial systems, but actual quantitative tests and comparisons of bottom-up and top-down forces in systems with more than three linear trophic levels are rare. Here, we describe the density patterns of the arthropod community associated with Piper ant-plants in Costa Rican wet forests. Consumers in this community comprise a complex, interacting web of herbivores, predaceous ants, and predators of ants. Although the hollow stems and petioles of the Piper plants provide some protection to resident ants from predation, specialized Dipoena spiders and Phyllobaenus beetles exploit Pheidole ants inhabiting Piper plants. We report abundance patterns of plants, ants and predators in four forests. These patterns of abundance are consistent with predictions of top-down cascades across four trophic levels when the top predators are effective (beetles). We discuss how top-down and bottom-up forces may interact in systems with less effective top predators (spiders).  相似文献   

2.
In this study we investigated the potential importance of species identity and herbivore feeding mode in determining the strengths of top-down and bottom-up effects on phytophagous insect densities. In 1998, we conducted two factorial field experiments in which we manipulated host plant quality and intensity of parasitoid attack on three salt marsh herbivores, the planthoppers Prokelisia marginata and Pissonotus quadripustulatus (Homoptera: Delphacidae), which feed only on Spartina alterniflora and Borrichia frutescens, respectively, and the gall fly Asphondylia borrichiae (Diptera: Cecidomyiidae), which feeds only on B. frutescens. We increased plant quality through addition of nitrogen fertilizer, and decreased parasitism by trapping hymenopteran parasitoids continuously throughout the study. Herbivore densities were censused biweekly. Increasing plant quality through fertilization increased the density of all three herbivores within 2 weeks of treatment application, and higher densities were maintained for the duration of the study. Reduction of top-down pressure had no effect on either planthopper species, possibly because of compensatory mortality affecting the two species. In contrast, reduction of parasitism significantly increased the density of A. borrichiae galls, perhaps because development within gall tissue reduces the sources of compensatory mortality affecting this species. The results of this study show that the bottom-up effects of plant quality were strong and consistent for all three species, but the strength of top-down effects differed between the two feeding guilds. Thus, even for herbivores feeding on the same host plant, conclusions drawn regarding the relative importance of top-down and bottom-up effects may vary depending upon the feeding mode of the herbivore.  相似文献   

3.
Tree species-rich forests are hypothesised to be less susceptible to insect herbivores, but so far herbivory–diversity relationships have rarely been tested for tree saplings, and no such study has been published for deciduous forests in Central Europe. We expected that diverse tree communities reduce the probability of detection of host plants and increase abundance of predators, thereby reducing herbivory. We examined levels of herbivory suffered by beech (Fagus sylvatica L.) and maple saplings (Acer pseudoplatanus L. and Acer platanoides L.) across a tree species diversity gradient within Germany’s largest remaining deciduous forest area, and investigated whether simple beech or mixed stands were less prone to damage caused by herbivorous insects. Leaf area loss and the frequency of galls and mines were recorded for 1,040 saplings (>13,000 leaves) in June and August 2006. In addition, relative abundance of predators was assessed to test for potential top-down control. Leaf area loss was generally higher in the two species of maple compared to beech saplings, while only beech showed a decline in damage caused by leaf-chewing herbivores across the tree diversity gradient. No significant patterns were found for galls and mines. Relative abundance of predators on beech showed a seasonal response and increased on species-rich plots in June, suggesting higher biological control. We conclude that, in temperate deciduous forests, herbivory–tree diversity relationships are significant, but are tree species-dependent with bottom-up and top-down control as possible mechanisms. In contrast to maple, beech profits from growing in a neighbourhood of higher tree richness, which implies that species identity effects may be of greater importance than tree diversity effects per se. Hence, herbivory on beech appeared to be mediated bottom-up by resource concentration in the sampled forest stands, as well as regulated top-down through biocontrol by natural enemies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

4.
We tested integrative bottom-up and top-down trophic cascade hypotheses with manipulative experiments in a tropical wet forest, using the ant-plant Piper cenocladum and its associated arthropod community. We examined enhanced nutrients and light along with predator and herbivore exclusions as sources of variation in the relative biomass of plants, their herbivores (via rates of herbivory), and resident predaceous ants. The combined manipulations of secondary consumers, primary consumers, and plant resources allowed us to examine some of the direct and indirect effects on each trophic level and to determine the relative contributions of bottom-up and top-down cascades to the structure of the community. We found that enhanced plant resources (nutrients and light) had direct positive effects on plant biomass. However, we found no evidence of indirect (cascading through the herbivores) effects of plant biomass on predators or top predators. In contrast, ants had indirect effects on plant biomass by decreasing herbivory on the plants. This top-down cascade occurred whether or not plant resources were enriched, conditions which are expected to modify top-down forces. Received: 9 August 1998 / Accepted: 1 December 1998  相似文献   

5.
To investigate the relative contributions of bottom-up (plant condition) and top-down (predatory mites) factors on the dynamics of the two-spotted spider mite (Tetranychus urticae), a series of experiments were conducted in which spider mites and predatory mites were released on bean plants. Plants inoculated with 2, 4, 8, 16, and 32 adult female T. urticae were either left untreated or were inoculated with 3 or 5 adult female predators (Phytoseiulus persimilis) one week after the introduction of spider mites. Plant area, densities of T. urticae and P. persimilis, and plant injury were assessed by weekly sampling. Data were analysed by a combination of statistical methods and a tri-trophic mechanistic simulation model partly parameterised from the current experiments and partly from previous data. The results showed a clear effect of predators on the density of spider mites and on the plant injury they cause. Plant injury increased with the initial number of spider mites and decreased with the initial number of predators. Extinction of T. urticae, followed by extinction of P. persimilis, was the most likely outcome for most initial combinations of prey and predators. Eggs constituted a relatively smaller part of the prey population as plant injury increased and of the predator population as prey density decreased. We did not find statistical evidence of P. persimilis having preference for feeding on T. urticae eggs. The simulation model demonstrated that bottom-up and top-down factors interact synergistically to reduce the density of spider mites. This may have important implications for biological control of spider mites by means of predatory mites.  相似文献   

6.
Luz Allende 《Polar Biology》2009,32(3):493-501
The goal of this study was to address the top-down and bottom-up controls on different microbial web components (bacterioplankton, picophytoplankton, and >3 μm phytoplankton) in an Antarctic lake. Two experiments using a size fractionation approach and nutrient addition were conducted at microcosm scale (2.5 l). The variation in net growth rates (k′) of bacterioplankton and phytoplankton size fractions was analyzed after 5 days. The results determined significant differences; whereas bacterioplankton and large phytoplankton showed an increase in their k′ when their predators were removed, the picophytoplankton showed a decrease. All the studied plankton components presented the highest k′ when nutrients were added. It is suggested that, in this lake, both the top-down and bottom-up regulations account for the regulation of bacterioplankton and large phytoplankton. As for picophytoplankton, the bottom-up control was evident and grazing did not pose a negative impact and rather, had a positive effect probably due to liberation of nutrients.  相似文献   

7.
Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore.  相似文献   

8.
Wasp-waist interactions in the North Sea ecosystem   总被引:1,自引:0,他引:1  

Background

In a “wasp-waist” ecosystem, an intermediate trophic level is expected to control the abundance of predators through a bottom-up interaction and the abundance of prey through a top-down interaction. Previous studies suggest that the North Sea is mainly governed by bottom-up interactions driven by climate perturbations. However, few studies have investigated the importance of the intermediate trophic level occupied by small pelagic fishes.

Methodology/Principal Findings

We investigated the numeric interactions among 10 species of seabirds, two species of pelagic fish and four groups of zooplankton in the North Sea using decadal-scale databases. Linear models were used to relate the time series of zooplankton and seabirds to the time series of pelagic fish. Seabirds were positively related to herring (Clupea harengus), suggesting a bottom-up interaction. Two groups of zooplankton; Calanus helgolandicus and krill were negatively related to sprat (Sprattus sprattus) and herring respectively, suggesting top-down interactions. In addition, we found positive relationships among the zooplankton groups. Para/pseudocalanus was positively related to C. helgolandicus and C. finmarchicus was positively related to krill.

Conclusion/Significance

Our results indicate that herring was important in regulating the abundance of seabirds through a bottom-up interaction and that herring and sprat were important in regulating zooplankton through top-down interactions. We suggest that the positive relationships among zooplankton groups were due to selective foraging and switching in the two clupeid fishes. Our results suggest that “wasp-waist” interactions might be more important in the North Sea than previously anticipated. Fluctuations in the populations of pelagic fish due to harvesting and depletion of their predators might accordingly have profound consequences for ecosystem dynamics through trophic cascades.  相似文献   

9.
The shallow lakes of Eastern England have been subject to intense anthropogenic pressures including nutrient enrichment and fish stocking. We sought to determine the relationships between fish community structure and other ecosystem characteristics in 28 of these lakes through classification of fish species into piscivorous, zooplanktivorous and benthivorous feeding guilds according to the literature. Canonical correspondence analysis produced clear associations between fish and ecosystem characteristics that generally agreed with other theoretical (e.g. the alternative stable states hypothesis) and empirical studies, but with some important differences. There was a striking lack of relationships between nutrients and other variables, indicating the importance of top-down rather than bottom-up processes as a structuring force in the generally eutrophic study lakes. The presence of submerged (and shoreline) vegetation was associated with a diverse assemblage of apparently co-existing piscivorous (principally pike Esox lucius) and zooplanktivorous species. Perch Perca fluviatilis, a significant predator in other studies, was unimportant and argued to be limited by water quality in the extremely shallow lakes. In contrast, the benthivorous fish guild (principally carp Cyprinus carpio, bream Abramis brama and tench Tinca tinca) essentially represented the inverse of the potential pelagic associations between piscivores/zooplanktivores and vegetation. The introduction of large benthivores to many study lakes could have precipitated a loss of submerged vegetation through direct uprooting during foraging, with the effect of simplifying the fish community being most acute where littoral vegetation was limited by other anthropogenic factors. It is implied that attempts to promote or restore submerged vegetation in these lakes would best target benthivorous species.  相似文献   

10.
Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world''s oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability.  相似文献   

11.
Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species'' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth''s terrestrial surface.  相似文献   

12.
Predators play a fundamental role in prey trophic behaviour, with indirect consequences for species coexistence and ecosystem functioning. Resource quality and availability also influence prey trophic behaviour, with potential effects on predator-prey dynamics. Although many studies have addressed these topics, little attention has been paid to the combined effects of predators and resources on prey species coexistence and nutrient transfer along food chains, especially in detritus-based systems. To determine the influence of predators and resource quality on the movement and P uptake of detritivores, we carried out a field experiment on the River Kelvin (Scotland) using 32P to test the hypothesis of reduced prey vagility among resource patches as a strategy to avoid predation. Thirty leaf sacks containing alder leaves and two detritivore prey populations (Asellus aquaticus and Lymnaea peregra) were placed in cages, half of them with two predator species (Dendrocoelum lacteum and Erpobdella octoculata) and the other half without predators. Five alder leaf bags, each individually inoculated with a different fungus strain to simulate a patchy habitat, were placed inside each leaf sack. One bag in each sack was labelled with 32P, in order to assess the proportion of detritivores using it as food and thus their movement among the five resource patches. Three replicates for each labelled fungus and each predation treatment (i.e. with and without predators) were left on the riverbed for 7 days. The presence of predators had negligible effects on the number of detritivores in the leaf bags, but it did reduce the proportion of 32P-labelled detritivores and their P uptake. The most strongly affected species was A. aquaticus, whose vagility, trophic overlap with L. peregra and P uptake were all reduced. The results confirm the importance of bottom-up and top-down forces acting simultaneously to regulate nutrient transfer along food chains in patchy habitats.  相似文献   

13.
There is increasing evidence that top-down controls have strong non-consumptive effects on herbivore populations. However, little is known about how these non-consumptive effects relate to bottom-up influences. Using a series of field trials, we tested how changes in top-down and bottom-up controls at the within-plant scale interact to increase herbivore suppression. In the first experiment, we manipulated access of natural populations of predators (primarily lady beetles) to controlled numbers of A. glycines on upper (i.e. vigorous-growing) versus lower (i.e. slow-growing) soybean nodes and under contrasting plant ages. In a second experiment, we measured aphid dispersion in response to predation. Bottom-up and top-down controls had additive effects on A. glycines population growth. Plant age and within-plant quality had significant bottom-up effects on aphid size and population growth. However, top-down control was the dominant force suppressing aphid population growth, and completely counteracted bottom-up effects at the plant and within-plant scales. The intensity of predation was higher on upper than lower soybean nodes, and resulted in a non-consumptive reduction in aphid population growth because most of the surviving aphids were located on lower plant nodes, where rates of increase were reduced. No effects of predation on aphid dispersal among plants were detected, suggesting an absence of predator avoidance behavior by A. glycines. Our results revealed significant non-consumptive predator impacts on aphids due to the asymmetric intensity of predation at the within-plant scale, suggesting that low numbers of predators are highly effective at suppressing aphid populations.  相似文献   

14.
This study examined the intraspecific variability of a phenotypic trait, the body weight/body length ratio, and its adequacy to provide unbiased information about patterns of resource availability among conspecific individuals. Individual body weight and length were measured for the amphipod Gammarus minus Say (and other detritivores) in samples from freshwater springs differing in expected resource availability, and from sites in which detritus abundance had been manipulated. Mean individual weight per length was lower: (a) in populations from low-richness than from high-richness detritivore guilds; (b) in populations with size-abundance distributions similar to that of the entire guild, rather than statistically different; (c) in population samples from outside than from inside the areas of detritus addition. Small-sized individuals (< 3 mm) showed the largest variation among both populations and population samples. Similar differences were qualitatively observed for the other common detritivores co-occurring with G. minus in some springs. These observed patterns were in agreement with the variation of resource availability expected among field conditions, supporting the relevance of weight per length as a measure of food limitation.  相似文献   

15.
Hargrave CW 《Oecologia》2006,149(1):123-132
The pathways linking consumer effects to primary productivity (PPR) are likely to vary among taxa because of species-specific trophic and functional differences. Thus, it is necessary to understand the dynamics of consumer–PPR interactions so that effects of species loss on ecosystem function can be addressed from a mechanistic approach. In this study, I used three fish taxa (orangethroat darter, Etheostoma spectabile; western mosquitofish, Gambusia affinis; and bullhead minnow, Pimephales vigilax) as model consumers with different trophic and functional characteristics to test alternative mechanisms for consumer regulation of PPR (i.e., trophic cascade, terrestrial nutrient translocation, and sedimentary nutrient translocation). Experiments were conducted in stream mesocosms fitted with a combination of fish and terrestrial insect barriers to address relative importance of consumer-driven top-down and bottom-up control of PPR. A predatory invertivore, orangethroat darter, increased PPR through an apparent trophic cascade by localized reduction of benthic grazing invertebrate densities (i.e., top-down). A surface feeding insectivore, western mosquitofish, consumed terrestrial insects on the stream surface, increasing PPR by enhancing allochthonous nutrients in the mesocosms (i.e., bottom-up). A benthic omnivore, bullhead minnow, consumed benthic food items, resulting in increased PPR by enhancing availability of autochthonous nutrients via translocation of sedimentary nutrients (i.e., bottom-up). However, under specific environmental contexts, this species also consumed terrestrial invertebrates, potentially affecting PPR through terrestrial nutrient translocation as well. In this study, the trophic and functional characteristics of different species resulted in alternative pathways that increased PPR, suggesting that in natural ecosystems multiple consumer-driven pathways may be influencing PPR simultaneously and could potentially be important for temporal persistence of ecosystem function in changing environments.  相似文献   

16.
Abstract

Despite considerable interest in the factors affecting trophic cascades in terrestrial systems, there has been relatively little attention paid to the importance of the herbivore-plant link in explaining why some systems “cascade” (have strong top-down effects on plant survival and population growth) and others “trickle” (have top-down effects on plant damage, but little effect on plant fitness). This is despite the fact that herbivore guild identity has long been recognized as a major force affecting herbivore-plant interactions. We address the potential importance of herbivore guild identity in determining the strength of tritrophic interactions by reviewing literature concerning plant damage from and induced defenses against two “cryptic” herbivore guilds, predispersal seed predators and root/stem borers. Although both guilds are capable of strongly affecting plant fitness, the impact of root/stem borers on plants in natural systems seems far greater than that of predispersal seed predators. The large impact of root/stem borers occurs via their disruption of plant vascular systems, while a variety of factors (safe-site-limited plant populations, long-lived seed banks, temporal plant escape, etc.) each seem important in explaining the smaller effect of predispersal seed predators. While the lack of attention to herbivore guilds is understandable, given the (by necessity) single-species focus of much trophic cascade research, we suggest that predator suppression of root/stem borers and predispersal seed predators will, respectively, yield strong versus weak top-down effects on plant fitness. The potential tritrophic consequences of herbivore feeding mode highlight the importance of research on varied predator-herbivore chains that share a common basal resource.  相似文献   

17.
We characterized the behavioral responses of two leech species, Hirudo verbana and Erpobdella obscura, to mechanical skin stimulation and examined the interactions between the pressure mechanosensory neurons (P cells) that innervate the skin. To quantify behavioral responses, we stimulated both intact leeches and isolated body wall preparations from the two species. In response to mechanical stimulation, Hirudo showed local bending behavior, in which the body wall shortened only on the side of the stimulation. Erpobdella, in contrast, contracted both sides of the body in response to touch. To investigate the neuronal basis for this behavioral difference, we studied the interactions between P cells. Each midbody ganglion has four P cells; each cell innervates a different quadrant of the body wall. Consistent with local bending, activating any one P cell in Hirudo elicited polysynaptic inhibitory potentials in the other P cells. In contrast, the P cells in Erpobdella had excitatory polysynaptic connections, consistent with the segment-wide contraction observed in this species. In addition, activating individual P cells caused asymmetrical body wall contractions in Hirudo and symmetrical body wall contractions in Erpobdella. These results suggest that the different behavioral responses in Erpobdella and Hirudo are partly mediated by interactions among mechanosensory cells.  相似文献   

18.
Plant performance is influenced by both top-down (e.g., herbivores) and bottom-up (e.g., soil nutrients) controls. Research investigating the collective effects of such factors may provide important insight into the success and management of invasive plants. Through a combination of observational and experimental field studies, we examined top-down and bottom-up effects on the growth and reproduction of an invasive plant, Linaria dalmatica. First, we assessed attack levels and impacts of an introduced biocontrol agent, the stem-mining weevil Mecinus janthinus, on L. dalmatica plants across multiple years and sites. Then, we conducted a manipulative experiment to examine the effects of weevil attack, soil nitrogen availability, and interspecific competition on L. dalmatica. We found substantial variations in weevil attack within populations as well as across sites and years. Observational and experimental data showed that increased weevil attack was associated with a reduction in plant biomass and seed production, but only at the highest levels of attack. Nitrogen addition had a strong positive effect on plant performance, with a two-fold increase in biomass and seed production. Clipping neighboring vegetation resulted in no significant effects on L. dalmatica performance, suggesting that plants remained resource limited or continued to experienced belowground competitive effects. Overall, our research indicates that M. janthinus can exert top-down effects on L. dalmatica; however, weevil densities and attack rates observed in this study have not reached sufficient levels to yield effective control. Moreover, bottom-up controls, in particular, soil nitrogen availability, may have a large influence on the success and spread of this invasive plant.  相似文献   

19.
The selection of habitat by macroinvertebrates living in running waters may be influenced by the physical characteristics of the substratum, as well as by the presence of other species. In this study, an artificial river with three different substrata (pebbles, detritus, and leaves) was utilized to analyze the microhabitat preference of two Plecoptera prey species (Amphinemura sulcicollis and Brachyptera risi), both in absence and in presence of a Plecoptera predator species (Perla marginata). In the absence of predators, both prey species showed a clear preference for the leaf microhabitat. When the predators were present, only Brachyptera risi showed a change of microhabitat selection, with a decrease of leaves and an increase of pebbles and detritus utilization. Amphinemura sulcicollis did not change their substratum utilization. This study demonstrates that the presence of a predator may affect microhabitat selection through a switch from the preferred to the less preferred substrata, although not all species change their habitat utilization in response to predator presence. (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号