首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
RNA编辑是RNA转录过程中序列变化而引起的一种基因动态调控机制。腺苷脱氨酶(adenosine deaminases acting on RNA, ADAR)参与RNA编辑,将双链RNA中腺苷残基(A)转化为肌苷(I),接着被转录和拼接成鸟苷(G)。由ADAR催化,作用于RNA的A-I型RNA编辑是人类最常见的转录后修饰。近年来,这种修饰不仅存在于编码RNA中,在非编码RNA(noncoding RNA, ncRNA)中也逐渐被发现,如microRNA(miRNA)、小分子干扰RNA(siRNA)、转运RNA(tRNA)和长链非编码RNA(lncRNA)。这种修饰可能通过对microRNA和mRNA之间结合位点创造或破坏,进而影响ncRNA的生物起源、稳定性和靶向识别功能。目前,对这种生物现象的机制及ADAR底物,尤其是在ncRNA中的特性仍然没有得到充分的认识。主要对哺乳动物中ncRNA上的RNA编辑进行总结,并列举一些阐明其生物学功能的计算方法。  相似文献   

2.
人类基因组转录本长度>200 nt(核苷酸)、不编码蛋白质的RNA分子为长链非编码RNA(long non-coding RNA,lncRNA)。lncRNA可在多个层面调节基因表达,其功能失调与包括肿瘤在内的很多人类疾病密切相关。本文概述lncRNA的种类、功能与疾病的关系,讨论基于lncRNA基因编辑、干细胞修饰及其与miRNA、蛋白质相互作用等的治疗潜能。  相似文献   

3.
RNA编辑是增加基因转录和功能多样性的重要形式。A至I RNA编辑是ADAR酶作用于双链RNA使腺苷脱氨基变成肌苷形成的。高通量测序技术的发展使得规模化鉴定RNA编辑位点成为可能,目前已在人和其他动物发现了大量的A至I RNA编辑位点,其中多数位于非编码RNA中。RNA编辑在体内具有重要生理功能,编辑异常可能导致一些疾病的发生发展。主要从ADAR介导的RNA A至I编辑的鉴定、分子机理、生理作用以及相关疾病等方面进行阐述。  相似文献   

4.
RNA编辑是指转录后RNA分子的编辑过程,包含核苷酸的插入、删除和替换。RNA依赖腺嘌呤脱氨酶(RNA dependent adenosine deaminases,ADARs)是一类可以将5-羟色胺2C受体基因(HTR2C)的前体mRNA特定位点上的腺苷酸(adenosine,A)脱氨基转化为肌苷酸(inosine,I)的酶。A-to-I RNA编辑最终引起氨基酸的改变。本篇综述主要阐述ADAR家族对HTR2C的RNA编辑作用的相关研究进展,为防治HTR2C的RNA编辑异常引起的相关疾病提供理论依据。  相似文献   

5.
双链RNA依赖的腺苷酸脱氨酶(adenosine deaminase acting on RNA,ADAR)是一组催化双链RNA腺苷(A)脱氨基产生次黄嘌呤(I)的RNA编辑酶。ADARs具有多种功能,如编辑蛋白质编码区可引起蛋白质功能改变;编辑非编码区可以控制m RNA水平和翻译效率;编辑mi RNA前体使其成熟过程被抑制,编辑mi RNA靶位点导致下游靶基因沉默;还可以控制组织发育和造血,保证器官正常发育等。近年来研究表明,ADARs在病毒的感染与复制过程中也发挥重要作用,如ADARs可促进VSV、HDV等病毒的复制,而对MV、HCV等病毒显示出抗病毒作用。现主要就ADARs在病毒感染与复制过程中的作用及其分子机制做一综述。  相似文献   

6.
在哺乳动物中枢神经系统中最常见的RNA编辑是由ADAR(腺苷酸脱氨酶)所介导的从腺苷酸(adnosine,A)到肌苷酸(inosine,I)的转录后修饰过程。许多研究表明RNA编辑对于维持中枢神经系统的稳态和动物正常的生理功能必不可少。因此,RNA编辑可能是神经发育、神经系统功能以及神经系统疾病之间关键性的联系。本综述旨在对目前ADAR介导的RNA编辑在中枢神经系统疾病中作用机制的相关研究加以归纳。  相似文献   

7.
魏清筠  朱远源  彭薇  王旻 《生物磁学》2011,(19):3794-3797
MieroRNA(miRNA)是真核生物中一类内源性、长约22个核苷酸的非编码小分子RNA,参与基因转录后水平调控。miRNA的突变或者异常表达,与大多数癌症的发生发展有关,且与某些抗肿瘤药物疗效密切相关。因此,miRNA在癌症的诊断、预后、治疗和指导肿瘤个体化用药方面具有一定的临床应用潜力,是肿瘤生物治疗领域的一个新亮点。本文即对miRNA在诊断和治疗肿瘤方面的应用现状作一综述。  相似文献   

8.
非编码RNA(non-coding RNA,ncRNA)是生物体内普遍存在,且对生命活动具有重要调控作用的生物分子.以微RNA(microRNA,miRNA)和长链非编码RNA(long non coding RNA,lncRNA)为代表的ncRNA分子在肿瘤发生和发展过程中都有重要的作用.越来越多研究发现,miRNA和lncRNA之间的关系是非常密切的,某些lncRNA(如H19和BIC)可以作为miRNA的前体,通过加工成miRNA而发挥作用.有些miRNA通过作用于lncRNA影响肿瘤的发生(如:miR-129与MEG3,let-7与H19);同样地,有些lncRNA通过作用于miRNA影响肿瘤的发生(如:HULC与miR-372,PTCSC3与miR-574-5p,ciRS-7与miR-7,Sry与miR-138).miRNA与lncRNA之间既可以直接相互作用,也可以通过其它分子(特别是蛋白质或蛋白质复合物)间接地影响着肿瘤的发生和发展.揭示miRNA和lncRNA相互作用在肿瘤发生中的作用可以为肿瘤的诊断和治疗提供新思路.  相似文献   

9.
长链非编码RNA(long-noncoding RNA,lncRNA)是一类长度大于200nt的非编码RNA(noncoding RNA,ncRNA),不具有编码蛋白质的功能,直接以RNA的形式发挥作用,以诱饵分子、信号分子、引导分子和支架分子的方式在转录水平和转录后水平调节蛋白质编码基因的表达,参与细胞分化和个体发育等生命过程。lncRNA存在普遍的转录现象,但与蛋白质编码基因相比表达水平较低。基因组测序结果显示生物体内仅有少量的编码基因,绝大部分基因以非编码的形式存在于动物和植物体内起调控作用。近年来以miRNA和siRNA为代表的ncRNA的研究已经取得了丰硕的成果,而lncRNA的研究才刚刚开始,但是已经有研究表明lncRNA有广泛的生物学功能,如染色体修饰、X染色体沉默、干扰或激活转录和核内运输等。以转录组测序、微阵列和荧光原位杂交为代表的研究方法也在发展完善。  相似文献   

10.
micro RNA(miRNA)是内源基因编码的长度约为19~25个核苷酸的非编码单链RNA分子。miRNA不仅广泛参与肿瘤的发生、发展和转移,与病人预后显著相关,同时还与肿瘤放射治疗有关。研究发现,电离辐射可以影响miRNA的表达水平,并具有辐射剂量和时间依赖性。此外,miRNA在组织中的表达差异也影响个体的辐射敏感性。本文从DNA损伤响应、磷脂酰肌醇3激酶/蛋白质激酶B、核转录因子kappa B、丝裂原活化蛋白激酶等重要信号通路出发,总结了近年来miRNA通过调控这些信号通路对机体组织器官和细胞辐射敏感性的影响,以及miRNA调控信号通路的主要方式,对miRNA介导的辐射损伤相关的重要分子机制作一总结。研究发现,miRNA对信号通路的调节作用交错复杂,单一miRNA可同时参与调节多条信号通路,不同信号通路分子的变化也可能同时影响多个miRNA的表达,形成了复杂的miRNA调控网络,导致细胞周期改变并影响辐射敏感性,最终引起细胞死亡率的变化。这为提高放射对肿瘤的治疗效果,降低副作用以及对病人预后的判断提供了新的理论依据。  相似文献   

11.
12.
Adenosine to inosine (A-to-I) RNA editing is the most abundant editing event in animals. It converts adenosine to inosine in double-stranded RNA regions through the action of the adenosine deaminase acting on RNA (ADAR) proteins. Editing of pre-mRNA coding regions can alter the protein codon and increase functional diversity. However, most of the A-to-I editing sites occur in the non-coding regions of pre-mRNA or mRNA and non-coding RNAs. Untranslated regions (UTRs) and introns are located in pre-mRNA non-coding regions, thus A-to-I editing can influence gene expression by nuclear retention, degradation, alternative splicing, and translation regulation. Non-coding RNAs such as microRNA (miRNA), small interfering RNA (siRNA) and long non-coding RNA (lncRNA) are related to pre-mRNA splicing, translation, and gene regulation. A-to-I editing could therefore affect the stability, biogenesis, and target recognition of non-coding RNAs. Finally, it may influence the function of non-coding RNAs, resulting in regulation of gene expression. This review focuses on the function of ADAR-mediated RNA editing on mRNA non-coding regions (UTRs and introns) and non-coding RNAs (miRNA, siRNA, and lncRNA).  相似文献   

13.
RNA editing by A-to-I modification has been recognized as an important molecular mechanism for generating RNA and protein diversity. In mammals, it is mediated by a family of adenosine deaminases that act on RNAs (ADARs). The large version of the editing enzyme ADAR1 (ADAR1-L), expressed from an interferon-responsible promoter, has a Z-DNA/Z-RNA binding domain at its N-terminus. We have tested the in vitro ability of the enzyme to act on a 50 bp segment of dsRNA with or without a Z-RNA forming nucleotide sequence. A-to-I editing efficiency is markedly enhanced in presence of the sequence favoring Z-RNA. In addition, an alteration in the pattern of modification along the RNA duplex becomes evident as reaction times decrease. These results suggest that the local conformation of dsRNA molecules might be an important feature for target selectivity by ADAR1 and other proteins with Z-RNA binding domains.  相似文献   

14.
15.
Adenosine deaminases that act on RNA (ADAR) catalyze adenosine to inosine (A-to-I) editing in double-stranded RNA (dsRNA) substrates. Inosine is read as guanosine by the translation machinery; therefore A-to-I editing events in coding sequences may result in recoding genetic information. Whereas vertebrates have two catalytically active enzymes, namely ADAR1 and ADAR2, Drosophila has a single ADAR protein (dADAR) related to ADAR2. The structural determinants controlling substrate recognition and editing of a specific adenosine within dsRNA substrates are only partially understood. Here, we report the solution structure of the N-terminal dsRNA binding domain (dsRBD) of dADAR and use NMR chemical shift perturbations to identify the protein surface involved in RNA binding. Additionally, we show that Drosophila ADAR edits the R/G site in the mammalian GluR-2 pre-mRNA which is naturally modified by both ADAR1 and ADAR2. We then constructed a model showing how dADAR dsRBD1 binds to the GluR-2 R/G stem-loop. This model revealed that most side chains interacting with the RNA sugar-phosphate backbone need only small displacement to adapt for dsRNA binding and are thus ready to bind to their dsRNA target. It also predicts that dADAR dsRBD1 would bind to dsRNA with less sequence specificity than dsRBDs of ADAR2. Altogether, this study gives new insights into dsRNA substrate recognition by Drosophila ADAR.  相似文献   

16.
17.
18.
A-to-I editing challenger or ally to the microRNA process   总被引:4,自引:0,他引:4  
Ohman M 《Biochimie》2007,89(10):1171-1176
  相似文献   

19.
20.
A-to-I RNA editing is a ubiquitous and crucial molecular mechanism able to convert adenosines into inosines (then read as guanosines by several intracellular proteins/enzymes) within RNA molecules, changing the genomic information. The A-to-I deaminase enzymes (ADARs), which modify the adenosine, can alter the splicing and translation machineries, the double-stranded RNA structures and the binding affinity between RNA and RNA-binding proteins. ADAR activity is an essential mechanism in mammals and altered editing has been associated with several human diseases. Many efforts are now being concentrated on modifying ADAR activity in vivo in an attempt to correct RNA editing dysfunction. Concomitantly, ongoing studies aim to show the way that the ADAR deaminase domain can be used as a possible new tool, an intracellular Trojan horse, for the correction of heritage diseases not related to RNA editing events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号