首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Direct somatic embryogenesis from mature embryos of sandalwood   总被引:7,自引:0,他引:7  
Plants were regenerated from mature zygotic embryos of sandalwood (Santalum album L.) through direct somatic embryogenesis. Somatic embryos were formed directly without any intervening callus phase on zygotic embryos plated on Murashige and Skoog (MS) medium containing thidiazuron or benzylaminopurine. Individual somatic embryos were then isolated and transferred to MS medium without cytokinin on which they formed secondary embryos in repetitive cycles with or without the addition of indole acetic acid to the medium. Conversion of somatic embryos into plantlets was achieved by isolating somatic embryos with distinct cotyledons and reculturing them onto half-strength MS medium with GA3 (1.4 M). Recovered plantlets were acclimatised and grown in the greenhouse. This is the first report on in vitro regeneration via direct somatic embryogenesis of sandalwood.  相似文献   

2.
Summary Somatic embryogenesis and plant regeneration have been achieved in Nothapodytes foetida, which is known for its rich source of anti-cancer and anti-AIDS alkaloids. Callus cultures were initiated from immature zygotic embryos cultured on Murashige and Skoog's (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid, 6-benzyladenine (BA), and kinetin. MS medium devoid of plant growth regulators favored the development of globular somatic embryos that differentiated further into plantlets. Plantlet regeneration efficiency was effectively increased on MS medium supplemented with BA. Over 90% of the in vitro plantlets survived when transferred to the soil. Alkaloids were detected in different stages of somatic embryos, regenerated plantlets, and different parts of the 2-yr-old regenerated plants. The somatic embryos contains camptothecin (0.011% dry weight. DW) and 9-methoxycamptothecin (0.0028% DW). Two-yearold field-grown plants obtained from somatic embryos were analyzed and contained higher levels of camptothecin (0.20% DW) and 9-methoxycamptothecin. (0.097% DW) accumulated in roots, followed by stem and leaves. Alkaloids were quantified and identified by TLC and HPLC.  相似文献   

3.
Immature zygotic embryos of rose (Rosa hybrida L.; cv. Sumpath) did not form somatic embryos or embryogenic calluses when cultured on half-strength Murashige and Skoog's medium supplemented with various con-centrations of 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole growth regulator. However, the zygotic embryos produced somatic embryos without an intervening callus phase at a frequency of 27.3% on medium with 4.44 M 6-benzyladenine (BA) alone. Immature zygotic embryos formed embryogenic calluses at a frequency of 25% on medium with a combination of 1.36 M 2,4-D and 4.44 M BA. Upon transfer to medium without growth regulators, embryogenic calluses produced numerous somatic embryos that subsequently developed into plantlets. Somatic embryos were induced directly from immature zygotic embryos, or indirectly via an intervening callus phase, by manipulating the exogenous growth regulators. Plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.  相似文献   

4.
Somatic embryogenesis and plant regeneration from immature zygotic embryos was achieved for saw palmetto (Serenoa repens (Bartr.) Small). Embryos, isolated from immature fruit of native-grown plants, were cultured on Murashige and Skoog medium plus 0.15% (w/v) activated charcoal and supplemented with 452 M 2,4-dichlorophenoxyacetic acid (2,4-D) and 14.7 M N6-(2-isopentenyl)adenine (2iP). Clusters of somatic embryos developed from all immature zygotic embryos 5 weeks after culture initiation. After 12 weeks, explants were transferred to the same medium with the amount of 2,4-D reduced to 90.4 M which resulted in somatic embryo proliferation. Somatic embryos were then transferred to the basal medium containing 0.9, 9 M thidiazuron (TDZ), or no growth regulator for conversion into plantlets. The 9 M TDZ treatment was ineffective for plant regeneration. However, 12% of the embryos subcultured on 0.9 M TDZ were able to produce complete plantlets. Shoot production was obtained from 35% of the embryos subcultured in the absence of growth regulators. Rooting (100%) was achieved when these shoots were transferred onto medium containing 22.2 M -naphthaleneacetic acid (NAA).  相似文献   

5.
Summary Kalopanax pictus (Thunb.) Nakai is a tall tree, and its wood has been used in making furniture, while its stem bark is used for medicinal purposes. Here, we report on the micropropagation of Kalopanax pictus via somatic embryogenesis. Embryogenic callus was induced from immature zygotic embryos. The frequency embryogenic callus induction is influenced by days of seed harvest. Callus formation was primarily observed along the radicle tips of zygotic embryos incubated on Murashige and Skoog (MS) medium with 4.4 μM 2,4-dichlorophenoxyacctic acid (2,4-D). Somatic embryogenesis was observed following transfer of embryogenic callus to MS medium lacking 2,4-D. Somatic embryos at the cotyledonary stage were obtained after 6 wk following culture. Frequency of conversion of somatic embryos into plantlets was low (35%) on a hormone-free MS basal medium, but it increased to 61% when the medium was supplemented with 0.05% charcoal. Gibberellic acid (GA3) treatment markedly enhanced the germination frequency of embryos up to 83%. All plantlets obtained showed 98% survival on moist peat soil (TKS2) artificial soil matrix. About 30 000 Kalopanax pictus plants were propagated via somatic embryogenesis and grown to 3-yr-old plants. These results indicate that production of woody medicinal Kalopanax pictus plantlets through somatic embryogenesis can be practically applicable for propagation.  相似文献   

6.
The effectiveness of nitrogen sources in Feijoa somatic embryogenesis   总被引:4,自引:0,他引:4  
Immature and mature zygotic embryos excised from Feijoa fruits were employed as explants and the effects of NH4 + and NO3 ionic concentration in basal LPm culture medium supplemented with 2,4-D (10 M) were evaluated. Moreover, the addition of 4 mM of Asn, Gln, and Arg, and levels of Gln (0 to 8 mM) were tested. The original NH4 + and NO3 concentration present in the LPm culture medium supplemented with Gln (4 mM) resulted in the highest somatic embryo number from immature zygotic embryos. For mature zygotic embryos, the addition of Asn, Gln or Arg to the basal LPm culture medium resulted in improved somatic embryogenesis induction. Ten weeks in culture allowed the highest somatic embryo number when mature zygotic embryos were used as explant. Half-strength MS culture medium supplemented with BAP (0.5 M) enhanced the conversion of somatic embryos to plantlets.  相似文献   

7.
The limit of permeability of white spruce (Picea glauca [Moench.]Voss) somatic embryo cell walls to molecules was in the orderof 30 . Polyethylene glycols (PEGs) and dextrans of molecularweights greater than 1000 and 6000, respectively, produced anonpermeating (non-plasmolysing) water stress which improvedembryo development. Somatic embryos converted to plantlets atfrequencies of 76–84% following slow drying and storageat –20 C for 1 year, which was similar to the 77% recordedfor control somatic embryos slowly dried then germinated withoutfreezing or storage. Culture for 7–8 weeks with mediumcontaining abscisic acid, 3% sucrose, and 7.5% PEG 4000 yieldedsomatic embryos with five times the embryo storage lipid contentrecorded for zygotic embryos. During culture with PEG the moisturecontent of the somatic embryos decreased from 96% for immaturesuspension-cultured somatic embryos, to 47% for mature embryos.Somatic embryos cultured for 7–8 weeks survived rapiddrying to 5% moisture content, and converted to plantlets atfrequencies of 60–70%, but no somatic embryos survivedrapid drying when cultured for only 4 weeks; however, slow dryingdid induce desiccation tolerance in 3-week cultured somaticembryos. Abscisic acid was important to maintain embryos ina developmental state, but ABA alone did not induce desiccationtolerance. In order to induce desiccation tolerance a waterstress treatment was required. Tolerance of rapid drying coincidedwith moisture contents below 55%, which occurred after 5 weeksof culture in the presence of PEG 4000 and abscisic acid. Key words: Dextran, molecular weight, polyethylene glycol, triacylglycerol, water stress  相似文献   

8.
Summary Somatic embryos of Daucus carota L. developed into plantlets at high frequency after addition of an extract from a marine cyanobacterium, Synechococcus sp. NKBG 042902. High molecular weight, nondialyzing fraction, separated from the extract, possessed enhanced plantlet formation promoting activity. Plantlet formation frequency was 60 % after addition of nondialysate (100 mg/l) compared to 28 % without addition. Embryos treated with the nondialysate contained five times more chlorophyll than nontreated embryos after 6 days of culture. The chlorophyll a/b ratio of 4-day old treated somatic embryos was found to be similar to that of zygotic embryos. However, the chlorophyll a/b ratio of plantlets induced from nontreated somatic embryos was variable. Nondialysate was fractionated by ultracentrifugation and an active component obtained, which gave a maximum plantlet formation frequency of 71 %, and induced rapid greening of shoots.Abbreviations MS Murashige and Skoog medium - 2,4D 2,4-dichlorophenoxyacetic acid - PCV packed cell volume - E Einstein - Chl Chlorophyll - vvm volume of air, volume of medium per minute  相似文献   

9.
Explants from three different parts (cotyledon, hypocotyl or root) of one week-old seedlings of Eleutherococcus senticosus were cultured on Murashige and Skoog (MS) medium with 1.0 mg l-1 2,4-D. Somatic embryos were formed directly from the surfaces of explants. The frequency of direct somatic embryo formation was the highest in the hypocotyl segments (75%) as compared to cotyledon (56%) or root segments (12%). When hypocotyl explants from 3 different stages of seedlings (zero, one or three week-old) were cultured on MS medium with 1.0 mg l-1 2,4-D, the frequency of somatic embryo formation rapidly declined as the zygotic embryos germinated. However most somatic embryos (93%) from explants of zygotic embryos developed as fused state (multiple embryo), whereas somatic embryos (over 89%) from more developed seedlings developed into single state (single embryo). Single embryos germinated and regenerated into plantlets with both shoots and roots, while multiple embryos only regenerated into only multiple shoots. Plantlets that regenerated from single embryos of E. senticosus were acclimatized in a greenhouse. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
A simple, rapid and effective system to regenerate Arabidopsis plants via direct somatic embryogenesis has been established. Somatic embryogenesis was induced directly during culture of immature zygotic embryos. The frequency of somatic embryogenesis was strongly influenced by the stage of development of the explants. Explants in different developmental stages were cultured on B5 agar medium containing 5 M 2,4-dichlorophenoxyacetic acid and the highest frequency (up to 90%) of somatic embryogenesis was observed in zygotic embryos with fully-developed cotyledons. The first somatic embryos developing directly from explant tissue were noticed after 8 days of culture. Somatic embryogenesis of a high frequency (87–96%) was observed in cultures of the all six genotypes tested (Columbia, C-24, RLD, Wassilewskaja, Landsberg erecta and Wilna). Subculture of somatic embryos onto auxin-free medium resulted in their conversion into plants with an average frequency of 79.5%. The regenerates showed normal morphological characteristics and were fertile. All 56 analysed plants displayed a diploid number of chromosomes and two out of 96 (2.1%) tested plants carried a chlorophyll or embryo-lethal mutation.  相似文献   

11.
Somatic embryos and rooted plantlets have been regenerated from light-initiated embryogenic callus derived from mature embryos of Picea abies. Under a 16 h photoperiod, mature zygotic embryos were cultured on a modified half-strength Murashige & Skoog medium without NH4NO3 and supplemented with 5 mM glutamine, 4.5 M N6-benzyladenine and 10.7 M naphthaleneacetic acid or 10 M 2,4-dichlorophenoxyacetic acid. White translucent embryogenic callus, proliferating from the callusing hypocotyl region after 3 weeks incubation, was isolated from the green non-embryogenic tissue and subcultured for over 12 months. Upon transfer of the embryogenic callus through a specific sequence of media, somatic embryos proceeded to mature, elongating and forming rings of cotyledonary leaves similar to those of zygotic embryos. Transferred to medium without growth regulators, the somatic embryos germinated and produced plantlets with green cotyledons, elongated hypocotyls and primary roots.  相似文献   

12.
Summary The plant regeneration ability of callus obtained from zygotic embryos of the monocot Alstroemeria spp. was studied. The best explants for somatic embryogenesis were immature zygotic embryos in half-ovules when the endosperm was still soft and white. For 2 genotypes embryogenic callus was induced on callus induction medium with a success rate of 54%. The best callus induction period was 10 weeks. The morphology of embryogenic callus was nodular. Somatic embryos were formed after transfer of the callus to regeneration medium. These somatic embryos revealed later on the typical features of zygotic Alstroemeria embryos. The total duration of the plant regeneration protocol, from inoculation till rooted plantlets ready for transfer to the greenhouse, was 28 weeks.Abbreviations BAP 6-benzylaminopurine - 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) - NAA -naphthaleneacetic acid  相似文献   

13.
In order to enhance post-germinative vigour, somatic embryos of Picea glauca (Moench) Voss. were matured under in-vitro conditions that stimulated triacylglycerol (TAG) biosynthesis. In P. glauca seeds over 90% of the TAG was stored within the megagametophyte, and isolated zygotic embryos contained twice the amount of TAG of somatic embryos cultured for four weeks on basal medium containing 16 M abscisic acid (ABA). Polyethylene glycol-4000 (PEG) as a non-permeating osmoticum with ABA promoted TAG biosynthesis by somatic embryos and sustained maturation throughout an eight-week culture period. Treatments that promoted TAG biosynthesis also prevented precocious germination and promoted desiccation tolerance. Thus, the optimal culture conditions for maturation, desiccation survival, and plantlet regeneration were 16–24 M ABA and 7.5% PEG for eight weeks, followed by desiccation. Under these conditions the levels of TAG per somatic embryo were raised ninefold to about five times the zygotic-embryo level, and the TAG fatty-acid composition became similar to that of zygotic embryos. A study of sectioned material, using light and transmission electron microscopy, showed that the structure and distribution of lipid bodies within these somatic embryos and the degree of embryo development were similar to mature zygotic embryos. Up to 81% of the desiccated somatic embryos regenerated to plantlets during which time the TAG was utilised in a manner similar to zygotic seedlings.Abbreviations ABA abscisic acid - PEG polyethylene glycol - TAG triacylglycerol - TL total lipid - TEM transmission electron microscopy Plant Research Centre contribution No. 1383We are grateful to Dawn Moore and Ken Stanley for technical assistance, and thank Pat Rennie for the electron microscopy. We acknowledge financial support through an NSERC/Forestry Canada/Weyerhaeuser Canada Ltd (Prince Albert, Sask.) research partnership programme.  相似文献   

14.
Summary Somatic embryogenesis of Calamus manan, a single-stemmed rattan species, in tissue culture was scientifically demonstrated for the first time. Root tips of in vitro plantlets produced friable callus when the explants were cultivated for several mo. on a Murashige and Skoog induction medium containing 7.5 mg Picloram per l (31.1 μM). Histological analyses established the presence of proembryos within the callus which differentiated subsequently into somatic embryos using the same culture medium. Histological examination revealed that these somatic embryos completely lacked starch and protein reserves, which did not prevent them, however, from germinating, and showing bipolar development. These somatic embryos further developed into young plants, similarly to zygotic embryos.  相似文献   

15.
Choi  Y.E.  Ko  S.K.  Lee  K.S.  Yoon  E.S. 《Plant Cell, Tissue and Organ Culture》2002,69(2):201-204
Explants of germinating zygotic embryos of Eleutherococcus sessiliflorus,an important medicinal plant, produced somatic embryos directly on Murashige and Skoog (MS) medium with 4.5 M 2,4-D. In addition, embryogenic callus formed at a low frequency (less than 7%) from hypocotyl segments after prolonged culture. High frequency somatic embryogenesis was obtained through cell suspension culture after the cells were transferred to medium lacking 2,4-D. Maturation and germination of embryos was influenced by the sucrose concentration of the medium. At a low concentration of sucrose (1%), maturation and germination of embryos occurred readily. At over 6% sucrose, somatic embryos did not germinate although this could be overcome by GA3 treatment. Cold treatment during acclimatization after transfer to soil enhanced survival. Surviving plantlets produced new sprouts after overwintering in the field.  相似文献   

16.
A high-efficiency two-step culture procedure for direct somaticorganogenesis in loblolly pine (Pinus taeda L.) resulting inthe formation of multiple shoot structures induced on cotyledons andhypocotyls of mature zygotic embryos is described. Mature zygoticembryos of eight genotypes of loblolly pine were used as explants toinduce direct somatic organogenesis with this two-step culture method,involving the induction and the differentiation of direct adventitiousshoots. After mature zygotic embryos of eight genotypes of loblolly pinewere cultured on induction medium containing 2,4-dichlorophenoxyaceticacid (2,4-D) or -naphthaleneacetic acid (NAA), 6-benzyladenine(BA), and kinetin for 2–3 weeks, embryos were transferred todifferentiation medium. Adventitious shoot regeneration via directsomatic organogenesis with the frequency of 8.7–27.8% wasobtained from mature zygotic embryo cultures of the genotypes tested.The highest mean number of 32.6 adventitious shoots per mature zygoticembryo was produced from genotype La. The tissue culture protocol of invitro shoot regeneration via direct somatic embryogenesis was optimizedafter examining the periods of the induction culture, chillingtreatment, glutamine concentration, and basic medium levels. Rooting wasachieved on TE medium supplemented with 0.5 mg/l indole-3-butyric acid(IBA), 0.5 mg/l gibberellic acid (GA3), and 1 mg/l6-benzyladenine (BA), and regenerated plantlets were established insoil. These results suggested that adventitious shoot regeneration viadirect somatic organogenesis could be useful for clonal micropropagationof some genotypes of loblolly pine and for establishing a transformationsystem of this coniferous species.  相似文献   

17.
Immature zygotic embryos from Howea forsteriana Becc. were cultured on the Murashige and Skoog medium, supplemented with myo-inositol, thiamine-HCl and activated charcoal, in the absence of growth regulators. The fruits were stored for 4 weeks at +4°C and at –18°C. The excised embryos from the fruits stored at +4°C developed into plantlets, showing a well developed primary root, after 40 days in culture, while those excised from fruits stored at –18°C exhibited no growth.This is the first time that in vitro culture and plantlet regeneration from immature embryos of Howea forsteriana has been obtained.  相似文献   

18.
To initiate somatic embryogenesis in Pinus sylvestris and Pinus pinaster, immature seeds were collected from June to August and the developmental stage of the zygotic embryos was determined. Four developmental stages were distinguished and the response of the zygotic embryos at each of the four developmental stages was compared intra- and inter-species. For this study, modified Litvay's medium (LM), with or without growth regulators, was chosen. Somatic embryogenesis was initiated and maintained on both media but the two species displayed different propensities. In P. sylvestris, the highest initiation frequency was obtained with intact megagametophytes containing embryos at the four-cell stage to the stage of cleavage polyembryony (up to 22 and 9%, respectively). The culture medium had no significant effect on the initiation and proliferation of embryogenic cultures. In P. pinaster, however, the best response occurred from excised zygotic embryos at the stage prior to elongation of cotyledon primordia (up to 40% explants responded), on medium with growth regulators. Another characteristic distinguishing the two species in culture was that in some embryogenic cell lines of P. sylvestris, somatic embryos matured spontaneously when initiated and maintained on medium without growth regulators. Some of these embryos developed into plantlets on the same medium at the frequency of 40%. Therefore, in P. sylvestris all the stages of somatic embryogenesis were achieved on the medium without growth regulators. However, in both species, maturation of a large number of somatic embryos was greatly improved on medium containing high concentration of gellan gum (Gelrite 10 g l?1) and abscisic acid (60 μM). Cotyledonary somatic embryos subsequently germinated (72 and 80% for P. sylvestris and P. pinaster, respectively) and developed into plantlets (48 and 29%, for P. sylvestris and P. pinaster, respectively). This represents a significant improvement in plantlet recovery from somatic embryos of both species.  相似文献   

19.
Immature and mature zygotic embryos of hexaploid, Triticale var. DT-46 formed an embryogenic callus, with subsequent somatic embryo formation upon subculture to MS (Murashige and Skoog, 1962) or N6 (Chu et al., 1975) nutrient medium supplemented with various concentrations (9.0–22.5 M) of 2,4-dichlorophenoxyacetic acid (2,4-D). Of the two types of explants, embryogenic tissue from immature embryos responded at a higher frequency, to form somatic embryos over the callus surface. Leaf-base segment cultured on to 2,4-D-containing medium formed a tissue which did not form somatic embryos and instead differentiated into shoot-buds. N6 medium proved to be more effective than MS in support of somatic embryogenesis or shoot-bud formation. Regeneration of plantlets occurred on 2,4-D-free basal medium. These in vitro-formed plantlets were successfully transferred to soil and set seed.  相似文献   

20.
Root explants excised from carnation plants maintained in vitro formed off-white, friable calluses after three weeks of culture on Murashige and Skoog (MS) medium supplemented with 1 mg l−1 thidiazuron (TDZ) and 1 mg l−1 α-naphthalaneacetic acid (NAA). These calluses were subsequently transferred to MS basal medium where, after an additional four weeks of culture, approximately 50% of the calluses formed somatic embryos. However, calluses formed on root explants that had been cultured on MS medium supplemented with 2,4-dichlorophenoxyacetic acid did not produce somatic embryos upon transfer to MS basal medium. Somatic embryos developed into plantlets and subsequently were grown to maturity. These results indicate that root explants have a high competence for somatic embryogenesis in carnation. J. Seo and S.W. Kim contributed equally to this work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号