首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
It has been found that 1,2- but not 1,3-diacylglycerols stimulated phosphorylation of the insulin receptor of cultured human monocyte-like (U-937) and lymphoblastoid (IM-9) cells both in the intact- and broken-cell systems. The stimulation of the receptor's beta-subunit phosphorylation was dose-dependent, with optimal effect at 100 micrograms/ml of diacylglycerol. The effects of insulin and 1,2-diacylglycerols on the phosphorylation of partially purified insulin receptors were additive. Phosphoamino acid analysis showed a major effect of diacylglycerols on phosphorylation of tyrosine residues. The diacylglycerols also stimulated tyrosine kinase activity of the partially purified U-937 and IM-9 insulin receptors 2.5-3.5-fold when measured by phosphorylation of an exogenous substrate, poly(Glu80Tyr20) in the absence of any added insulin, calcium or phospholipid. Since this diacylglycerol effect could not be reproduced under conditions optimal for protein kinase C activation and the purified protein kinase C did not stimulate phosphorylation of the beta-subunit of the insulin receptor in this system, it is unlikely that the diacylglycerol effect was mediated by protein kinase C. Since these exogenous 1,2-diacylglycerols at the same high concentration also inhibited 125I-insulin binding to the insulin receptor of the intact U-937 and IM-9 cells, diacylglycerols could modulate the function of the insulin receptor and insulin action in human mononuclear cells.  相似文献   

2.
Nuclear envelopes and nuclear matrices were isolated from rat liver nuclei. Although differences in polypeptide composition of the structures are evident on SDS gel electrophoresis, they have an almost identical distribution of concanavalin A-binding glycoproteins. These matrix-associated concanavalin A-binding glycoproteins derive entirely from the nuclear envelope and are recovered almost quantitatively in the matrix. They constitute easily identifiable markers for nuclear envelope association with matrix or other nuclear subfractions. Surface labelling of nuclei with 125I using solid-phase lactoperoxidase further confirmed that a large number of envelope-associated nuclear surface proteins co-isolate with the matrix. Protein kinase activity, as well as endogenous substrates for the kinase(s) are shown to be the same in both envelopes and matrix. Envelope-derived proteins and glycoproteins may comprise a substantial proportion of total matrix protein.  相似文献   

3.
Mammalian diacylglycerol kinases are a family of enzymes that catalyze the phosphorylation of diacylglycerol to produce phosphatidic acid. The extent of interaction of these enzymes with monoacylglycerols is the focus of the present study. Because of the structural relationship between mono- and diacylglycerols, one might expect the monoacylglycerols to be either substrates or inhibitors of diacylglycerol kinases. This would have some consequence to lipid metabolism. One of the lipid metabolites that would be affected is 2-arachidonoyl glycerol, which is an endogenous ligand for the CB1 cannabinoid receptor. We determined if the monoglycerides 2-arachidonoyl glycerol or 2-oleoyl glycerol affected diacylglycerol kinase activity. We found that 2-arachidonoyl glycerol is a very poor substrate for either the epsilon or the zeta isoforms of diacylglycerol kinases. Moreover, 2-arachidonoyl glycerol is an inhibitor for both of these diacylglycerol kinase isoforms. 2-oleoyl glycerol is also a poor substrate for these two isoforms of diacylglycerol kinases. As an inhibitor, 2-oleoyl glycerol inhibits diacylglycerol kinase ε less than does 2-arachidonoyl glycerol, while for diacylglycerol kinase ζ, these two monoglycerides have similar inhibitory potency. These results have implications for the known role of diacylglycerol kinase ε in neuronal function and in epilepsy since the action of this enzyme will remove 1-stearoyl-2-arachidonoylglycerol, the precursor of the endocannabinoid 2-arachidonoyl glycerol.  相似文献   

4.
Epand RM  Kam A  Bridgelal N  Saiga A  Topham MK 《Biochemistry》2004,43(46):14778-14783
We compared the diacylglycerol kinase (DGK) catalyzed phosphorylation of 1-O-hexanoyl-2-oleoylglycerol (HOG) with 1-O-hexanoyl-2-arachidonoylglycerol (HAG). We assayed the activity of DGKalpha and DGKzeta using a liposomal-based assay system. Liposomal assays show that the DGKalpha and, to a lesser extent, DGKzeta preferentially act on substrates containing an arachidonoyl group when this group is incorporated into alkylacylglycerols. The activity of DGKalpha was 82 times greater with HAG compared to HOG. DGKzeta is 10 times more active in catalyzing the phosphorylation of HAG compared to HOG. Although diacylglycerols were better substrates for both DGKalpha and DGKzeta than the alkylacylglycerols, no specificity was exhibited for arachidonoyl-containing diacylglycerols. However, this specificity for HAG over HOG is modulated by the phospholipid composition of the liposome. Addition of cholesterol and/or phosphatidylethanolamine partially reduces the substrate selectivity. We also analyzed the kinetic constants for the phosphorylation of both diacylglycerol and 1-alkyl-2-acylglycerol catalyzed by the alpha, epsilon, or zeta isoforms using a soluble Triton mixed micelle system. We found that all three isoforms of DGK can phosphorylate 1-alkyl-2-acylglycerols but generally at a lower rate than for the corresponding diacylglycerol. The specificity of DGKepsilon for diacylglycerols containing an arachidonoyl group was retained when the ester group in the C-1 position is replaced with an ether linkage. In contrast, DGKalpha and, to a lesser extent, DGKzeta had greater specificity for arachidonoyl-containing 1-alkyl-2-acylglycerols than for arachidonoyl-containing diacylglycerols. This demonstrates that the acyl chain specificity is affected by the structure of the lipid headgroup.  相似文献   

5.
We studied the influence of platelet-derived growth factor (PDGF) on diacylglycerol phosphorylation in Swiss 3T3 cells. Rates of incorporation of 32P into phosphatidic acid (PA) and phosphatidylinositol (PtdIns) were determined in prelabeled cells into which sn-1,2-didecanoylglycerol (diC10) had been introduced. PDGF stimulated the formation of [32P]PA and -PtdIns from endogenous substrates but decreased the formation of [32P]PA10 and -PtdIns10. Direct measurements of diacylglycerol phosphorylation in lysates of quiescent and stimulated cells showed that PDGF stimulated the phosphorylation of endogenous diacylglycerol 2-fold in parallel with diacylglycerol accumulation but decreased by 50% the phosphorylation of diC10. Total diacylglycerol kinase activity, measured in a mixed micellar assay, was not changed by PDGF treatment. The maximum activity of diacylglycerol kinase exceeded that needed to phosphorylate all of the endogenous diacylglycerol, suggesting that the PDGF-dependent increase in diacylglycerol mass would account for the increase in PA formation. The increased mass of diacylglycerol also could explain the inhibition of diC10 phosphorylation, via substrate competition. The predominant species of endogenous diacylglycerol was 1-stearoyl-2-arachidonoyl-glycerol (18:0/20:4 diacylglycerol). In mixed micelles, the rate of phosphorylation of 18:0/20:4 diacylglycerol was 8-fold higher than that of diC10, and the 18:0/20:4 species competed with diC10 for phosphorylation. Studies showed that a membrane-bound enzyme accounted for the PDGF effect on PA formation; there was no evidence for translocation of cytosolic enzyme to the membrane. The results support these conclusions: 1) PDGF stimulates the phosphorylation of cellular diacylglycerol by promoting a transient accumulation of this lipid. 2) The stimulated phosphorylation is catalyzed by a diacylglycerol kinase that preferentially phosphorylates 18:0/20:4 diacylglycerol over diC10. 3) The diacylglycerol kinase responsible for the PDGF effect is membrane-bound.  相似文献   

6.
Subcellular fractionation revealed that a significant fraction of total sphingosine kinase, the enzyme that phosphorylates sphingosine to form the bioactive lipid metabolite sphingosine-1-phosphate, resides in the nuclei of Swiss 3T3 cells, localized to both the nuclear envelope and the nucleoplasm. Platelet-derived growth factor, in addition to rapidly stimulating cytosolic sphingosine kinase, also induced a large increase in nucleoplasm-associated activity after 12-24 h that correlated with progression of cells to the S-phase of the cell cycle and translocation of sphingosine kinase-green fluorescent protein fusion protein to the nuclear envelope. Our results add sphingosine kinase to the growing list of lipid-metabolizing enzymes associated with the nucleus, and suggest that sphingosine-1-phosphate may also play a role in signal transduction in the nucleus.  相似文献   

7.
As a step towards the elucidation of the role played by nuclear polyphosphoinositides, we have investigated the effect of exogenous calcium free inositol (1,4,5)-trisphosphate on the in vitro phosphorylation of proteins in nuclei prepared from Swiss 3T3 cells treated with bombesin and insulin-like growth factor I. When present in combination with phosphatidylserine, inositol (1,4,5)-trisphosphate enhanced the phosphorylation of two nuclear proteins, Mr 21,000 and 31,000, as well as of exogenous histone H1, to the same extent as a combination of phosphatidylserine and diacylglycerol. Inositol (1,4,5)-trisphosphate alone had no effect. This stimulation could be abolished by the protein kinase C inhibitor sphingosine and by EGTA, while could be restored by a combination of phosphatidylserine and exogenous Ca+(+) ions. These results raise the possibility that inositol (1,4,5)-trisphosphate is capable of liberating Ca+(+) ions from a nuclear store thus stimulating protein kinase C activity.  相似文献   

8.
The diacylglycerol kinase inhibitor R59022 (10 microM) potentiates secretion and aggregation responses in human platelets challenged with sub-maximal concentrations of thrombin. Potentiation correlates closely with increased formation of diacylglycerol, increased phosphorylation of a 40 kDa protein, a known substrate for protein kinase C, and with decreased formation of phosphatidic acid, the product of diacylglycerol kinase. Phosphorylation of myosin light chains, formation of inositol phosphates and the mobilization of Ca2+ by thrombin are not affected by R59022 (10 microM). These data support a role for protein kinase C in platelet aggregation and secretion, and provide further evidence that endogenous diacylglycerols bring about the activation of this enzyme. These data also add further argument against a role for phosphatidic acid in platelet activation.  相似文献   

9.
The metabolism of exogenous [3H]diacylglycerols by intact human platelets was studied in order to examine: the metabolic fate of these second messengers in an intact cell, the effect of diacylglycerol kinase and diacylglycerol lipase inhibitors on this metabolism, the effect of agonist stimulation on metabolism, and the dependence of metabolism on diacylglycerol chain length. When 2.5 microM [3H]dioctanoylglycerol (diC8) was added to 10(9) platelets it was rapidly metabolized; 80% was converted to various products in 2.5 min. Initially, 40% was recovered as 3H-labeled phospholipid (predominantly phosphatidic acid) reflecting the action of diacylglycerol kinase, 20% was recovered as [3H]glycerol due to the action of diacylglycerol and monoacylglycerol lipases, and small amounts were recovered as triacylglycerol and monoacylglycerol. Thrombin stimulation of platelets did not affect the rate or pathway of metabolism. Pretreatment of platelets with the diacylglycerol kinase inhibitors, diC8ethyleneglycol or 1-monooleoylglycerol, inhibited 3H-labeled phospholipid production 47% and 75%, respectively, and resulted in a longer lived diC8 signal. The diacylglycerol lipase inhibitor, RHC 80267, inhibited the production of water-soluble metabolites 75%. Despite inhibition of the lipase, the overall metabolism of exogenous [3H]diC8 occurred at a similar rate as in control platelets due to an increased flux towards phospholipid. The ability of exogenous diacylglycerols to be metabolized by diacylglycerol kinase correlated well with their ability to activate protein kinase C in platelets. [3H]Dibutyroylglycerol, didodecanoylglycerol, and ditetradecanoylglycerol, were not metabolized by this route. These diacylglycerols were still metabolized via the lipase pathway. The results indicate that platelets possess potent attenuation systems to defend against the accumulation of diacylglycerol second messengers, and that the primary metabolic fate of cell-permeable, exogenous diacylglycerols is conversion to phosphatidic acid.  相似文献   

10.
alpha-Tocopherol added in vivo increased protein kinase C--dependent phosphorylation of rat liver nuclei proteins. Such effect of tocopherol was found also after the addition of sphingosine known as natural inhibitor of protein kinase C to incubation medium. The stimulation of phosphorilation was observed also after the addition of alpha-tocopherol to the Triton X-100 solubilized nuclear fraction which contained protein kinase C and tocopherol-binding proteins.  相似文献   

11.
Myocardial acidic non-histone nuclear proteins (NHPs) contain endogenous protein kinase activity. Phosphocellulose chromatography of purified NHPs identifies nine separate peaks of protein kinases which can phosphorylate both endogenous and exogenous substrates to a variable degree; endogenous NHPs are the best substrates. Cyclic AMP-stimulated protein kinase induced phosphorylation of endogenous and exogenous substrates; the extent of this stimulation varied according to the protein kinase fraction and substrate used. Cyclic AMP also enhanced NHP-induced stimulation of RNA polymerase activity. This enhancement was dependent on protein kinase-induced phosphorylation of NHPs since it was prevented by alkaline phosphatase pretreatment. It is concluded that nuclear protein kinases regulate myocardial RNA synthesis by enhancing phosphorylation of NHPs and that this regulation is under cyclic AMP control.  相似文献   

12.
Partitioning of lipid precursors between membranes and storage is crucial for cell growth, and its disruption underlies pathologies such as cancer, obesity, and type 2 diabetes. However, the mechanisms and signals that regulate this process are largely unknown. In yeast, lipid precursors are mainly used for phospholipid synthesis in nutrient-rich conditions in order to sustain rapid proliferation but are redirected to triacylglycerol (TAG) stored in lipid droplets during starvation. Here we investigate how cells reprogram lipid metabolism in the endoplasmic reticulum. We show that the conserved phosphatidate (PA) phosphatase Pah1, which generates diacylglycerol from PA, targets a nuclear membrane subdomain that is in contact with growing lipid droplets and mediates TAG synthesis. We find that cytosol acidification activates the master regulator of Pah1, the Nem1-Spo7 complex, thus linking Pah1 activity to cellular metabolic status. In the absence of TAG storage capacity, Pah1 still binds the nuclear membrane, but lipid precursors are redirected toward phospholipids, resulting in nuclear deformation and a proliferation of endoplasmic reticulum membrane. We propose that, in response to growth signals, activation of Pah1 at the nuclear envelope acts as a switch to control the balance between membrane biogenesis and lipid storage.  相似文献   

13.
Substrate-specific stimulation of protein kinase C by polyvalent anion   总被引:3,自引:0,他引:3  
The activity of protein kinase C (PKC) toward arginine-rich substrates was greatly stimulated by sulfate and phosphate, but not by monovalent anions. This stimulation did not require phospholipid, calcium, or diacylglycerol, and appeared to mimic the stimulation by phospholipid. Anionic proteins such as bovine serum albumin also promoted PKC activity toward certain substrates that were characterized by either high arginine or high lysine content. The mechanism of both of these stimulations appeared to be related to formation of a substrate-PKC complex which is essential to phosphorylation by PKC. Polyvalent anions bind the cationic substrate and, together with PKC, form an aggregate which allows phosphorylation. Potential physiological relevance of this stimulation is discussed.  相似文献   

14.
Phosphatidic acid (PA) and its phosphorylated derivative diacylglycerol pyrophosphate (DGPP) are lipid molecules that have been implicated in plant cell signaling. In this study we report the rapid but transient accumulation of PA and DGPP in suspension-cultured tomato (Lycopersicon esculentum) cells treated with the general elicitors, N,N',N",N"'-tetraacetylchitotetraose, xylanase, and the flagellin-derived peptide flg22. To determine whether PA originated from the activation of phospholipase D or from the phosphorylation of diacylglycerol (DAG) by DAG kinase, a strategy involving differential radiolabeling with [(32)P]orthophosphate was used. DAG kinase was found to be the dominant producer of PA that was subsequently metabolized to DGPP. A minor but significant role for phospholipase D could only be detected when xylanase was used as elicitor. Since PA formation was correlated with the high turnover of polyphosphoinositides, we hypothesize that elicitor treatment activates phospholipase C to produce DAG, which in turn acts as substrate for DAG kinase. The potential roles of PA and DGPP in plant defense signaling are discussed.  相似文献   

15.
The diacylglycerol kinase (DGK) catalyzes the phosphorylation of diacylglycerol (DAG) yielding phosphatidic acid (PA) signaling molecules which are involved in the modulation of different cell responses. The aim of this work was to characterize the DGK activity associated to the basolateral membranes (BLM) of kidney proximal tubules, in a native preparation that preserves the membrane microenvironment. The Arrhenius plot of DGK activity was non-linear, indicating a complex influence of the lipid environment of the native membrane. The formation of PA was strongly impaired by U73122, an inhibitor of PLC, whereas remained unmodified when exogenous DAG or PLC were added. The Mg.ATP2- complex is the true phosphoryl-donor substrate, and the very narrow peak of activation at pH 7.0 suggests that amino acids that dissociate at this pH, i.e. hystidine residues, play a role by acting in the coordination of the Mg2+ atoms. The renal DGK is almost completely blocked by 0.1 mM sphingosine, but it is insensitive to micromolar free Ca2+ concentrations and to R59499, the most potent inhibitor of the classical DGKs. Taken as a whole, these data suggest that the DGK isoform present in BLM of proximal tubules is different from those included in the type I family, and that membranous PLC could be the main source of DAG for DGK catalysis.  相似文献   

16.
Sphingosine kinase 1 is an intracellular effector of phosphatidic acid   总被引:9,自引:0,他引:9  
Sphingosine kinase 1 (SK1) phosphorylates sphingosine to generate sphingosine 1-phosphate (S1P). Because both substrate and product of the enzyme are potentially important signaling molecules, the regulation of SK1 is of considerable interest. We report that SK1, which is ordinarily a cytosolic enzyme, translocates in vivo and in vitro to membrane compartments enriched in phosphatidic acid (PA), the lipid product of phospholipase D. This translocation depends on direct interaction of SK1 with PA, because recombinant purified enzyme shows strong affinity for pure PA coupled to Affi-Gel. The SK1-PA interaction maps to the C terminus of SK1 and is independent of catalytic activity or of the diacylglycerol kinase-like domain of the enzyme. Thus SK1 constitutes a novel, physiologically relevant PA effector.  相似文献   

17.
A C Newton  D E Koshland 《Biochemistry》1990,29(28):6656-6661
Protein kinase C substrate phosphorylation and autophosphorylation are differentially modulated by the phosphatidylserine concentration in model membranes. Both substrate phosphorylation and auto-phosphorylation display a cooperative dependence on phosphatidylserine in sonicated vesicles composed of diacylglycerol and either phosphatidylcholine or a mixture of cell lipids (cholesterol, sphingomyelin, phosphatidylethanolamine, and phosphatidylcholine). However, the concentration of phosphatidylserine required to support phosphorylation varies with individual substrates. In general, autophosphorylation is favored at intermediate phosphatidylserine concentrations, while substrate phosphorylation dominates at high phosphatidylserine concentrations. These different phosphatidylserine dependencies may reflect different affinities of particular substrates for negatively charged membranes. Increasing the negative surface charge of sonicated vesicles increases the rate of substrate phosphorylation. In contrast to the modulation exerted by phosphatidylserine, diacylglycerol activates protein kinase C equally toward substrate phosphorylation and autophosphorylation. These results indicate that both diacylglycerol and phosphatidylserine regulate protein kinase C activity in the membrane: diacylglycerol turns the enzyme on, while phosphatidylserine affects the specificity toward different substrates.  相似文献   

18.
The ability of exogenous sn-1,2-diacylglycerols and analogs to function as bioregulators of protein kinase C in human platelets was investigated. The activation of protein kinase C in platelets is indicated by specific phosphorylation of a 40,000-dalton protein. Dihexanoylglycerol, dioctanoylglycerol (diC8), didecanoylglycerol, and sn-1-oleoyl-2-acetylglycerol were active in stimulating 40,000-dalton protein phosphorylation. Only a trace of phosphorylation was elicited by dibutyrylglycerol. Phosphorylation was not induced by analogs of diC8 in which an -H, -SH, or -Cl group replaced the free -OH, nor by monoacylglycerols or long chain diacylglycerols. Maximum phosphorylation was induced by dihexanoylglycerol, diC8, and didecanoylglycerol at concentrations from 5 to 20 microM and between 5 and 30 S after exposure of platelets to these diacylglycerols. Under conditions of maximal phosphorylation of the 40,000-dalton protein, these diacylglycerols did not induce phosphatidylinositol turnover, or platelet aggregation, or stimulate release of ATP or serotonin. A small degree of aggregation was evident with platelets isolated in the absence of prostacyclin, and release of serotonin was observed when 1 mM Ca2+ or submaximal concentrations of ionophore A23187 were included. These results are consistent with a model in which platelet activation requires the simultaneous formation of two intracellular signals, diacylglycerols and Ca2+. These diacylglycerols and diacylglycerol analogs provide useful tools to investigate the function of diacylglycerols as bioregulators in intact cells.  相似文献   

19.
Purified membrane vesicles isolated from sea urchin eggs form nuclear envelopes around sperm nuclei following GTP hydrolysis in the presence of cytosol. A low density subfraction of these vesicles (MV1), highly enriched in phosphatidylinositol (PtdIns), is required for nuclear envelope formation. Membrane fusion of MV1 with a second fraction that contributes most of the nuclear envelope can be initiated without GTP by an exogenous bacterial PtdIns-specific phospholipase C (PI-PLC) which hydrolyzes PtdIns to form diacylglycerides and inositol 1-phosphate. This PI-PLC hydrolyzes a subset of sea urchin membrane vesicle PtdIns into diglycerides enriched in long chain, polyunsaturated species as revealed by a novel liquid chromatography-mass spectrometry analysis. Large unilammelar vesicles (LUVs) enriched in PtdIns can substitute for MV1 in PI-PLC induced nuclear envelope formation. Moreover, MV1 prehydrolyzed with PI-PLC and washed to remove inositols leads to spontaneous nuclear envelope formation with MV2 without further PI-PLC treatment. LUVs enriched in diacylglycerol mimic prehydrolyzed MV1. These results indicate that production of membrane-destabilizing diglycerides in membranes enriched in PtdIns may facilitate membrane fusion in a natural membrane system and suggest that MV1, which binds only to two places on the sperm nucleus, may initiate fusion locally.  相似文献   

20.
The membrane-bound diacylglycerol kinase from Swiss 3T3 cells (M-DG kinase) was characterized with a mixed micellar assay system, and compared with the cytosolic diacylglycerol kinase from 3T3 cells and with the membrane-bound diacylglycerol kinase from Escherichia coli. M-DG kinase selectively phosphorylated arachidonoyl-diacylglycerols, at a rate 2- to 8-fold higher than that for other naturally occurring long-chain diacylglycerols. In contrast, the cytosolic 3T3 enzyme exhibited little or no selectivity among long-chain diacylglycerols but had higher activity with more soluble substrates such as 1,2-didecanoylglycerol. Comparison of the properties of M-DG kinase with those of the bacterial membrane-bound enzyme revealed that selectivity for arachidonoyl-diacylglycerol was unique to the mammalian enzyme. All three kinases were activated by phosphatidylserine, but activation did not alter the arachidonoyl selectivity of M-DG kinase. Phosphatidylserine activated M-DG kinase by increasing Vm and decreasing the apparent Km for diacylglycerol. High concentrations of diacylglycerol reduced the Ka for phosphatidylserine, but did not abolish the phosphatidylserine requirement for maximum activity. Examination of the thermal lability of M-DG kinase revealed that this enzyme was rapidly and selectively inactivated by preincubation with its preferred substrate. This novel effect may have obscured previous attempts to discern substrate selectivity. Taken together, the results provide evidence that M-DG kinase is an arachidonoyl-diacylglycerol kinase that may participate in the formation of arachidonoyl-enriched species of phosphatidylinositol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号