首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In vitro-grown shoot tips of five tetraploid potato (SolanumtuberosumL.) clones were cryopreserved by vitrification. Excisedshoot tips (0.5–0.7 mm) were pre-cultured on filter paperdiscs over half strength liquid Murashige and Skoog (MS) mediumsupplemented with 8.7 µMGA3and different combinationsof sucrose (0.3, 0.5 and 0.7M) plus mannitol (0, 0.2 and 0.4M)for 2 d under a 16 h photoperiod at 24 °C. The pre-culturedshoot tips were either successively loaded with 20 and 60% PVS2 solutions or directly exposed to concentrated vitrificationsolution before physical vitrification during liquid nitrogentreatment. The vitrified shoot tips were warmed rapidly andtreated with dilution mixture (MS+1.2Msucrose) for 30 min beforeplating on regrowth medium. Addition of mannitol to the pre-culturemedium improved survival of vitrified shoot tips. Direct dehydrationof pre-cultured shoot tips with concentrated PVS 2 was detrimentalto survival of vitrified shoot tips. Shoot tips pre-culturedon medium containing 0.3Msucrose plus 0.2Mmannitol, and loadedwith 20% PVS 2 for 30 min followed by 15 min incubation in 60%PVS 2 and 5 min incubation in 100% PVS 2 at 0 °C resultedin up to 54% survival after vitrification. About 50% of vitrifiedand warmed shoot tips formed shoots directly. Post-thaw culturingof vitrified shoot tips on medium containing an elevated levelof sucrose (0.2M) under diffuse light for the first week enhancedthe survival rate. Continuous culturing of vitrified shoot tipson high-sucrose medium induced multiple shoot formation.Copyright1998 Annals of Botany Company Solanum tuberosumL., potato, cryopreservation, germplasm conservation,in vitroconservation, meristems, shoot tips, tissue culture, vitrification.  相似文献   

2.
In this work, we compared the efficiency of encapsulation-dehydration and droplet-vitrification techniques for cryopreserving grapevine (Vitis vinifera L.) cv. Portan shoot tips. Recovery of cryopreserved samples was achieved with both techniques; however, droplet-vitrification, which was used for the first time with grapevine shoot tips, produced higher regrowth. With encapsulationdehydration, encapsulated shoot tips were precultured in liquid medium with progressively increasing sucrose concentrations over a 2-day period (12 h in medium with 0.25, 0.5, 0.75 and 1.0 M sucrose), then dehydrated to 22.28% moisture content (fresh weight). After liquid nitrogen exposure 37.1% regrowth was achieved using 1 mm-long shoot tips and only 16.0% with 2 mm-long shoot tips. With droplet-vitrification, 50% regrowth was obtained following treatment of shoot tips with a loading solution containing 2 M glycerol + 0.4 M sucrose for 20 min, dehydration with half-strength PVS2 vitrification solution (30% (w/v) glycerol, 15% (w/v) ethylene glycol, 15% dimethylsulfoxide and 0.4 M sucrose in basal medium) at room temperature, then with full strength PVS2 solution at 0°C for 50 min before direct immersion in liquid nitrogen. No regrowth was achieved after cryopreservation when shoot tips were dehydrated with PVS3 vitrification solution (50% (w/v) glycerol and 50% (w/v) sucrose in basal medium).  相似文献   

3.
In vitro grown shoot tips of transgenic papaya lines (Carica papaya L.) were successfully cryopreserved by vitrification. Shoot tips were excised from stock shoots that were preconditioned in vitro for 45–50-day-old and placed on hormone-free MS medium with 0.09 M sucrose. After loading for 60 min with a mixture of 2 M glycerol and 0.4 M sucrose at 25°C, shoot tips were dehydrated with a highly concentrated vitrification solution (PVS2) for 80 min at 0°C and plunged directly into liquid nitrogen. The regeneration rate was approximately 90% after 2 months post-thawing. Successfully vitrified and warmed shoot tips of three non-transgenic varieties and 13 transgenic lines resumed growth within 2 months and developed shoots in the absence of intermediate callus formation. Dehydration with PVS2 was important for the cryopreservation of transgenic papaya lines. This vitrification procedure for cryopreservation appears to be promising as a routine method for cryopreserving shoot tips of transgenic papaya line germplasm.  相似文献   

4.
A simple procedure for cryopreservation of in vitro grown shoot tips of red bud taro (Colocasia esculenta L. Schott var. cormosus‘Hongyayu’) by encapsulation vitrification is investigated. Shoot tips were excised from 8 week old stock shoots and encapsulated into alginate gel beads. Encapsulated shoot tips were precultured in liquid MS medium supplemented with 35mg·L-1 6 BA, 05mg·L-1 IBA, 01mg·L-1 GA3 and 03mol·L-1 sucrose for 24h, then they were loaded with a mixture of 2mol·L-1 glycerol plus 04mol·L-1 sucrose for 30min at 25℃. After dehydration with PVS2 at 25℃ for 20min, the encapsulated and dehydrated shoot tips were plunged directly into liquid nitrogen. After rapidly rewarming in a 40℃ water bath for 3min, PVS2 was drained from the cryotubes and replaced third with liquid MS medium supplemented with 35mg·L-1 6 BA, 05mg·L-1 IBA, 01mg·L-1 GA3 and 12mol·L-1 sucrose and each kept for 10min at 25℃and then post cultured on solidified MS medium supplemented with 35mg·L-1 6 BA, 05mg·L-1 IBA and 01mg·L-1 GA3 in the dark for 3 days and then transferred to the light conditions. The average survival rate amounted to about 80%. Plantlets regenerated from cryopreserved shoot tips were morphologically uniform. This encapsulation vitrification procedure promises to become a routine method for the cryopreservation of shoot tips of Chinese genuine red bud taro.  相似文献   

5.
Shoot tips of Amembranaceus excised from in vitro grown axillary bud were encapsulated in calcium alginate beads. Subsequently, shoot tips were precultured in liquid MS medium enriched with 075mol·L-1 sucrose for 5d at 25℃ and then desiccated aseptically on dried silica gel for 5h to a water content of 231% (fresh weight basis) prior to immersion in liquid nitrogen (LN) for 1d. After rewarming at a 40℃ water bath for 2-3min and transferred to solid culture medium for shoot tip recovery. About 50% of cryopreserved shoot tips grew into shoots within 2 weeks after plating. Cryopreservation of Astragalus membranaceus (Fisch.) Bge. shoot tips by encapsulation vitrification has also been developed. Excised shoot tips were firstly encapsulated into alginate gel beads and then precultured in liquid MS medium containing 1mg·L-1 6 BA, 005mg·L-1 NAA and 075mol·L-1 sucrose at 25℃ for 3d. After loading for 90min with a mixture of 2mol·L-1 glycerol and 04mol·L-1 sucrose at 25℃, shoot tips were dehydrated with PVS2 for 120min at 0℃ prior to direct immersion in liquid nitrogen for 1d. After rapidly thawing at a 37℃ water bath for 2-3min, shoot tips were washed for 10min with liquid MS medium supplemented with 1mg·L-1 6 BA, 005mg·L-1 NAA and 12mol·L-1 sucrose at 25℃ and then post cultured on solid MS medium supplemented with 2mg·L-1 6 BA, 005mg·L-1 NAA. The regeneration rate of shoot tips amounted to nearly 80%. Both of plantlets regenerated from cryopreserved shoot tips were morphologically uniform, which both showed as that of control plants. Thus, this encapsulation dehydration and encapsulation vitrification technique appears promising as a routine method for the cryopreservation of shoot tips of Amembranaceus.  相似文献   

6.
In vitro-grown shoot tips of apples (Malus domestica Borkh. cv. Fuji) were successfully cryopreserved by vitrification. Three-week-old in vitro apple plantlets were cold-hardened at 5°C for 3 weeks. Excised shoot tips from hardened plantlets were precultured on a solidified Murashige & Skoog agar medium (MS) supplemented with 0.7 M sucrose for 1 day at 5°C. Following preculture shoot tips were transferred to a 2 ml plastic cryotube and a highly concentrated cryoprotective solution (designated PVS2) was then added at 25°C. The PVS2 contains (W/V) 30% glycerol, 15% ethylene glycol and 15% dimethylsulfoxide in medium containing 0.4 M sucrose. After dehydration at 25°C for 80 min, the shoot tips were directly plunged into liquid nitrogen. After rapid warming, the shoot tips were expelled into 2 ml of MS medium containing 1.2 M sucrose and then plated on agar MS medium. Direct shoot elongation was observed in approximately 3 weeks. The average rate of shoot formation was about 80%. This vitrification method was successfully applied to five apple species or cultivars and eight pear cultivars. This method appears to be a promising technique for cryopreserving shoot tips from in vitro-grown plantlets of fruit trees.Abbreviations DMSO dimethylsulfoxide - EG ethylene glycol - PVS2 vitrification solution - LN liquid nitrogen - BA 6-benzylaminopurine - NAA -naphthaleneacetic acid - SE standard error - ABA abscisic acid  相似文献   

7.
Shoot tips obtained from in vitro Rosa plants (three cultivars) were successfully cryopreserved by a combined droplet vitrification method and subsequently shoots regenerated. The excised shoot tips (1–4 mm long) were incubated in a liquid MS medium supplemented with 2.5 mg l−1 thiamine, 0.2 mg l−1 biotin, 0.2 mg l−1 pyridoxine, 0.25 mg l−1 6-benzylaminopurine (BAP), 0.5 mg l−1 gibberellic acid (GA3) and 0.08 M sucrose, for 24 h. Following that incubation shoot tips were pre-cultured in this MS medium containing 0.1 till 1.0 M sucrose for 24 and 48 h, respectively. Pre-cultured shoot tips were dehydrated with concentrated PVS2 cryoprotective solution for 10–30 min at room temperature, prior to a direct plunge in liquid nitrogen. After rapid rewarming in the above mentioned liquid medium shoot tips were plated on a modified MS medium (5 g l−1 agar) supplemented with vitamins and plant growth regulators as mentioned above for regrowth. Cryopreserved shoot tips resumed growth within 10 days and regenerated shoots within 3 weeks. The highest numbers of regrowing shoot tips were 64.44% for cv. Kardinal, 67.73% for cv. Fairy and 57.57% for cv. Maidy.  相似文献   

8.
In vitro-grown shoot tips of Emmenopterys henryi Oliv. were successfully cryopreserved by vitrification. Shoot tips excised from 3-month old plantlets were precultured in a liquid hormone-free Murashige and Skoog (MS) medium supplemented with 0.5 M sucrose for 3 days at 25°C and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose (LS solution) for 40 min at 25°C. Osmo-protected shoot tips were first dehydrated with 60% vitrification solution (PVS2) for 30 min at 0°C and followed by 100% PVS2 for 40 min at 0°C. After changing the solution with fresh 100% PVS2, the shoot tips were directly plunged into liquid nitrogen. After rapid warming in a water-bath at 40°C for 2 min, the shoot tips were washed for 20 min at 25°C with liquid MS medium containing 1.2 M sucrose and then transferred onto solid MS medium supplemented with kinetin 2 mg l−1, α-naphthaleneacetic acid 0.1 mg l−1, 3% (w/v) sucrose and 0.75% (w/v) agar. The shoot tips were kept in the dark for 7 days prior to exposure to the light (12 h photoperiod cycle). Direct shoot elongation was observed in approximately 12 days. The regeneration rate was approximately 75–85%. This method appears to be a promising technique for cryopreserving shoot tips of Emmenopterys henryi Oliv. germplasm.  相似文献   

9.
 Sugar beet shoot tips from cold-acclimated plants were successfully cryopreserved using a vitrification technique. Dissected shoot tips were precultured for 1 day at 5  °C on solidified DGJ0 medium with 0.3 M sucrose. After loading for 20 min with a mixture of 2 M glycerol and 0.4 M sucrose (20  °C), shoot tips were dehydrated with PVS2 (0  °C) for 20 min prior to immersion in liquid nitrogen. Both cold acclimation and loading enhanced the dehydration tolerance of shoot tips to PVS2. After thawing, shoot tips were deloaded for 15 min in liquid DGJ0 medium with 1.2 M sucrose (20  °C). The optimal exposure time to both loading solution and PVS2 depended on the in vitro morphology of the clone. With tetraploid clones a higher sucrose concentration during cold acclimation and preculture further enhanced survival after cryopreservation. Survival rates ranged between 60% and 100% depending on the clone. Since only 10–50% of the surviving shoot tips developed into non-hyperhydric shoots, regrowth was optimized. Received: 13 September 1999 / Revision received: 2 March 2000 / Accepted: 16 March 2000  相似文献   

10.
An efficient and broad-spectrum protocol for cryopreservation of Vitis spp. shoot tips by droplet-vitrification is reported. Shoot tips (1.0 mm) containing 5–6 leaf primordia (LPs) were precultured for 3 d with a preculture medium containing 0.3 M sucrose, 0.16 μM glutathione, and 0.14 μM ascorbic acid. Precultured shoot tips were treated for 20 min at 24°C with a loading solution composed of 2 M glycerol and 0.4 M sucrose, followed by exposure at 0°C to half-strength plant vitrification solution 2 (PVS2) for 30 min, and then full-strength PVS2 for 50 min. Dehydrated shoot tips were transferred into 2.5-μL PVS2 carried on aluminum foil, prior to a direct immersion in liquid nitrogen. With this method, an average shoot regrowth level of 50.5% was obtained from cryopreserved shoot tips in six V. vinifera genotypes (three wine cultivars, two table cultivars, and one rootstock) and two V. pseudoreticulata genotypes. Vegetative growth of the regenerants recovered from cryopreservation, significantly increased as the number of subculture cycles increased and was greater than the control after the third subculture following cryopreservation. Inter-simple sequence repeats (ISSR) and random amplification of polymorphic DNA (RAPD) analyses did not detect any polymorphic loci in the plants of V. vinifera L. cv. ‘Cabernet Sauvignon’ from cryopreserved shoot tips compared to the original cultures. This droplet-vitrification cryopreservation method provides a technical platform to set up cryobanks of Vitis spp.  相似文献   

11.
 Routine cryopreservation of shoot tips from sweet potato [Ipomoea batatas (L.) Lam] has been hampered by their survival variability after cryogenic exposure. We examined the effects of light conditions on stock plants, sucrose preculture and cryoprotectant loading on survival after vitrification using PVS2 solution. The survival of vitrified sweet potato shoot tips cooled to approximately –208  °C was increased by preculturing with 0.3 M sucrose for 24 h at 22  °C. Survival was also enhanced by excising shoot tips immediately after the 8-h dark photoperiod. The best survival after cryogenic exposure was obtained using 2 M glycerol +0.4 M sucrose for 1 h at 22  °C followed by dehydration with PVS2 for 16 min at 22  °C. Rapid cooling was used and achieved by the immersion of foil strips into partially solidified nitrogen. Successfully vitrified and warmed shoot tips directly developed shoots on a medium containing 1 μM NAA, 0.5 μM BA and 0.1 μM kinetin with only minimum callus formation. Shoot formation occurred in all surviving shoot tips. This procedure shows promise for cryopreserving sweet potato shoot tips. Received: 2 March 1999 / Revision received: 21 September 1999 / Accepted: 29 September 1999  相似文献   

12.
Jerusalem artichoke (Helianthus tuberosus L.) cultivars are conserved in genebanks for use in breeding and horticultural research programs. Jerusalem artichoke collections are particularly vulnerable to environmental and biological threats because they are often maintained in the field. These field collections could be securely conserved in genebanks if improved cryopreservation methods were available. This work used four Jersualem artichoke cultivars (‘Shudi’, ‘M6’, ‘Stampede’, and ‘Relikt’) to improve upon an existing procedure. Four steps were optimized and the resulting procedure is as follows: preculture excised shoot tips (2–3 mm) in liquid MS medium supplemented with 0.4 M sucrose for 3 days, osmoprotect shoot tips in loading solution for 30 min, dehydrate with plant vitrification solution 2 for 15 min before rapid cooling in liquid nitrogen, store in liquid nitrogen, rapidly rewarm in MS liquid medium containing 1.2 M sucrose, and recover on MS medium supplemented with 0.1 mg L?1 GA3 for 3–5 days in the dark and then on the same medium for 4–6 weeks in the light (14 h light/10 h dark). After cryopreservation, Jerusalem artichoke cultivar ‘Shudi’ had the highest survival (93%) and regrowth (83%) percentages. Cultivars ‘M6’, ‘Stampede’, and ‘Relikt’ achieved survival and regrowth percentages ranging from 44 to 72%, and 37–53%, respectively. No genetic changes, as assessed by using simple sequence repeat markers, were detected in plants regenerated after LN exposure in Jerusalem artichoke cultivar ‘Shudi’. Differential scanning calorimetry analyses were used to investigate the thermal activities of the tissues during the cryopreservation process and it was determined that loading with 2.0 M sucrose and 0.4 M sucrose dehydrated the shoot tips prior to treatment with PVS2. Histological observations revealed that the optimized droplet vitrification protocol caused minimal cellular damage within the meristem cells of the shoot tips.  相似文献   

13.
Summary In vitro-grown apical meristems of wasabi (Wasabia japonica Matsumura) were successfully cryopreserved by vitrification. Excised apical meristems precultured on solidified M S medium containing 0.3M sucrose at 20°C for 1 day were loaded with a mixture of 2M glycerol and 0.4M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) for 10 min at 25°C prior to a plunge into liquid nitrogen. After rapid warming, the meristems were expelled into 2 ml of 1.2M sucrose for 20 min and then plated on solidified culture medium. Successfully vitrified and warmed meristems remained green after plating, resumed growth within 3 days, and directly developed shoots within two weeks. The average rate of normal shoot formation amounted to about 80 to 90% in the cryopreserved meristems. This method was successfully applied to three other cultivars of wasabi. This vitrification procedure promises to become a routine method for cryopreserving meristems of wasabi.Abbreviations BA 6-benzylaminopurine - DMSO dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS medium Murashige and Skoog medium (1962) - PVS2 vitrification solution  相似文献   

14.
Shoot tips of in vitro grown plantlets of Rosa multiflora were cryopreserved using an encapsulation/dehydration procedure. The influence of sucrose and silica gel pretreatments on pre- and post-freeze shoot growth were examined. Shoot tips recovered from liquid nitrogen only grew after 24h pretreatment in medium containing 0.5 M sucrose, followed by 2 h drying with silica gel and rapid freezing.Abbreviations RSC1 modified Murashige and Skoog medium for Rosa multiflora shoot culture  相似文献   

15.
Apical meristems from adventitious buds induced by culturing of bulb-scale segments of Japanese Pink Lily (Lilium japonicum Thunb.) were successfully cryopreserved by a vitrification. The excised apical meristems were precultured on a solidified Murashige & Skoog medium, containing 0.3 M sucrose, for 1 day at 25°C and then loaded in a mixture of 2 M glycerol plus 0.4 M sucrose for 20 min at 25°C. Cryoprotected meristems were then sufficiently dehydrated with a highly concentrated vitrification solution (designated PVS2) at 25°C for 20 min or at 0°C for 110 min prior to a plunge into liquid nitrogen. After rapid warming in a water bath at 40°C, the meristems were placed in 1.8 ml of 1.2 M sucrose for 20 min and then, placed on filter papers over gellan gum-solidified MS medium. The revived meristems resumed growth within 5 days and directly produced shoots. The rate of shoot formation was approximately 80% after 4 weeks. When bulb-scale segments with adventitious buds were cold-hardened at 0°C for more than 7 days before the procedure, the rates of shoot formation were significantly increased. This vitrification method was successfully applied to five other lily cultivars. Thus, this vitrification procedure for cryopreservation appears promising as a routine method for cryopreserving meristems of lily.Abbreviations DMSO dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS medium Murashige & Skoog (1962) medium - PVS2 vitrification solution  相似文献   

16.
In vitro-grown shoot tips of Alnus glutinosa (L.) Gaertn. were successfully cryopreserved by vitrification. Shoot tips (0.5–1 mm) excised from 6-week-old shoots were precultured in hormone-free Woody Plant Medium (WPM) supplemented with 0.2 M sucrose, for 2 days at 4 °C in the dark, and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose, for 20 min at 25 °C. Osmoprotected shoot tips were first dehydrated with 50 % vitrification solution (PVS2), for 30 min at 0 °C, and then placed in 100 % PVS2, for 30 min at 0 °C. The solution was replaced with fresh 100 % PVS2, and the shoot tips were plunged directly into liquid nitrogen. The shoot tips were rewarmed in a water bath at 40 °C for 2 min, and then washed twice, for 10 min at 25 °C, with 1.2 M sucrose solution, before being transferred onto WPM supplemented with 0.5 mg l?1 N 6-benzyladenine, 0.5 mg l?1 indole-3-acetic acid, 0.2 mg l?1 zeatin, 20 g l?1 glucose and 6 g l?1 Difco Bacto agar. The shoot tips were kept in darkness for 1 week and under dim lighting for another week, before being exposed to standard culture conditions (16 h photoperiod). This protocol was successfully applied to three alder genotypes, with recovery rates higher than 50 %.  相似文献   

17.
Shoot apices of in vitro-grown plantlets of white mulberry, Morus alba L. cv Florio, were cryopreserved using either encapsulation-dehydration or vitrification. For encapsulation-dehydration, alginate beads containing apices were dehydrated for 1, 3, 5 or 7 days in a liquid medium containing various sucrose concentrations (0.5, 0.75, 1.0 or 1.25 M). Bead desiccation was performed using silica gel for either 0, 4, 6, 8, 9 or 14 h. For vitrification, apices were directly immersed for either 5, 15, 30 or 60 min in a vitrification solution (PVS2). Following encapsulation-dehydration, treatment of alginate beads with 0.75 M sucrose was more effective in promoting re-growth of explants after immersion in liquid nitrogen than in the presence of 0.5 M sucrose for either 1 or 3 days. Re-growth of explants was also observed following vitrification and this reached 47% with increasing duration of the PVS2 treatment from 5 to 30 min. Overall, the highest frequency of explant re-growth was obtained when explants were subjected to encapsulation-dehydration in the presence of 0.75 M along with a 3 day sucrose dehydration pre-treatment and followed by desiccation for 9 h in silica gel.  相似文献   

18.
Tuberaria major is an endangered endemic species from the Algarve, in the south of Portugal. We investigated two techniques for the cryopreservation of T. major shoot tips, namely vitrification and encapsulation-dehydration. Before the cryopreservation trials, shoot tips were precultured for 1 day on liquid Murashige and Skoog (MS) medium containing 0.3 M sucrose. For the vitrification method, shoots tips were exposed for 0, 30, 60, 90 and 120 min to plant vitrification solution 2 (PVS2). As for the encapsulation-dehydration method, shoot tips were dried inside a laminar air flow cabinet for 0, 1, 2, 3, 4, 5 and 6 h at room temperature. The highest regrowth percentages were approximately 60 and 67 % for vitrification and encapsulation-dehydration, respectively. The best times were 60 min exposure to PVS2 for vitrification and 3 h desiccation for encapsulation-dehydration. Though these are preliminary results, the use of the cryopreservation techniques tested here proved to be an important asset in the conservation of this endangered species and will complement the conservation strategies previously developed.  相似文献   

19.
马铃薯茎尖超低温保存流程TTC活力响应   总被引:1,自引:0,他引:1  
以马铃薯栽培种呼自83-213无菌试管苗茎尖为材料,通过开展2,3,5-氯化三苯基四氮唑(TTC,2,3,5-Triphenyl tetrazolium chloride)茎尖活力染色关键因素研究,优化了马铃薯茎尖TTC活力染色条件,确定了适合的染色温度为40℃,染色时间为2 h。利用优化的TTC活力染色条件,对马铃薯茎尖小滴玻璃化超低温保存关键步骤处理茎尖进行TTC活力观察。研究发现:经蔗糖预培养(MS培养液添加0.3 mol/L和0.5 mol/L蔗糖)的茎尖与新鲜茎尖均保持高活力;经PVS2处理后茎尖表现时空特异性活力丧失和存活,分生组织和叶原基中间区域仍保持较高活力。通过对茎尖TTC活力染色面积测定,发现当茎尖TTC活力染色面积比≥0.4时,TTC活力染色与恢复培养存活率呈极显著正相关。  相似文献   

20.
Invitro-grown shoot tips of taro (Colocasia esculenta (L.) Schott.) were successfully cryopreserved by vitrification. Excised shoot tips precultured on solidified MS supplemented with 0.3M sucrose and maintained under a 16 h phtoperiod at 25°C for 16 h were loaded with a mixture of 2M glycerol plus 0.4M sucrose for 20 min at 25°C. The shoot tips were then sufficiently dehydrated with a highly concentrated vitrification solution (PVS2) for 20 min at 25°C prior to immersion into liquid nitrogen. Successfully vitrified and warmed shoot tips resumed growth within 7 days and developed shoots directly without intermediate callus formation. The average rate of shoot recovery amounted to around 80%, and the vitrification protocol appeared to be very promising for the cryopreservation of taro germplasm.Abbreviations DMSO Dimethylsulfoxide - EG ethylene glycol - LN liquid nitrogen - MS Murashige & Skoog medium (1962) - TDZ thidiazuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号