首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
An 11-L helical ribbon impeller (HRI) bioreactor was tested for the culture of Spodoptera frugiperda (Sf-9) cells. This impeller and surface baffling ensured homogeneous mixing and high oxygen transfer through surface aeration and surface-induced babble generation. Serum-supplemented and serum-free cultures, using TNMFH and IPL/41 media, respectively, grew a similar specific growth rates(0.031 and 0.028 h(-1)) to maximum cell densities of 5.5 x 10(6)-6.0 x 10(6) cells. mL(-1) with viability exceeding 98% during exponential growth phase. Growth limitation coincided with glucose and glutamine depletion and production of significant amounts of alanine. The bioreactor was further tested under more stringent conditions by infecting a serum-free medium culture with a recombinant baculovirus. Heterologous protein production of approximately 35 mug per 10(6) cells was comparable to yields obtained in serum-free cultures grown in spinner flasks and petri dishes. Average specific oxygen up-take and carbon dioxide production rates of the serum-free culture prior to infection as measured by on-line mass spectroscopy were 0.20 mumol O(2)mu.(10(6) cells)(-1) h(-1) and 0.22 mumol CO(2) . (10(6) cells)(-1)h(-1) and increased by 30-40% during infection. Therefore, the mixing and oxygenation conditions of this bioreactor were suitable for insect cell culture and recombinant protein production, with limitation being mainly attributed to nutrient depletion and toxic by-product generation.  相似文献   

2.
Parameters that affect production of the recombinant reporter protein, EGFP, in the T7 promoter based VOTE vaccinia virus-HeLa cell expression system were examined. Length of infection phase, inducer concentration, and timing of its addition relative to infection were evaluated in 6-well plate monolayer cultures. One hour infection with 1.0 mM IPTG added at the time of infection provided a robust process. For larger scale experiments, anchorage-dependent HeLa cells were grown on 5 g/L Cytodex 3 microcarriers. The change to this dynamic culture environment, with cell-covered microcarriers suspended in culture medium in spinner flasks, suggested a re-examination of the multiplicity of infection (MOI) for this culture type that indicated a need for an increase in the number of virus particles per cell to 5.0, higher than that needed for complete infection in monolayer tissue flask culture. Additionally, dissolved oxygen level and temperature during the protein production phase were evaluated for their effect on EGFP expression in microcarrier spinner flask culture. Both increased dissolved oxygen, based on surface area to volume (SA/V) adjustments, and decreased temperature from 37 to 31 degrees C showed increases in EGFP production over the course of the production phase. The level of production achieved with this system reached approximately 17 microg EGFP/10(6) infected cells.  相似文献   

3.
Mass transfer is known to play a critical role in bioprocess performance and henceforth monitoring dissolved O2 (DO) and dissolved CO2 (dCO2) is of paramount importance. At bioreactor level these parameters can be monitored online and can be controlled by sparging air/oxygen or stirrer speed. However, traditional small-scale systems such as shake flasks lack real time monitoring and also employ only surface aeration with additional diffusion limitations imposed by the culture plug. Here we present implementation of intensifying surface aeration by sparging air in the headspace of the reaction vessel and real-time monitoring of DO and dCO2 in the bioprocesses to evaluate the impact of intensified surface aeration. We observed that sparging air in the headspace allowed us to keep dCO2 at low level, which significantly improved not only biomass growth but also protein yield. We expect that implementing such controlled smart shake flasks can minimize the process development gap which currently exists in shake flask level and bioreactor level results.  相似文献   

4.
Chinese hamster ovary cells (CHO-K1) were cultivated in macroporous gelatin microcarriers (CultiSpher G and CultiSpher S) in spinner flasks and a 5 1 bioreactor. Near-to-confluent cultures were harvested by bead-to-bead transfer where intact microcarriers with cells were transferred from a spinner flask to another spinner flask or to the bioreactor with naked microcarrier beads. Successful bead-to-bead transfer was achieved in various split ratios. The duration of attachment seemed to be important where the direct contact of beads to each other can be achieved by intermittent stirring. Repeated transfers were performed and at least four transfers in spinner flasks were achieved.Two variations of bead-to-bead transfer were performed in the 5 1 bioreactor either by seeding the bioreactor with near-to-confluent beads cultivated in spinner flasks orin situ transfer by adding fresh beads to the bioreactor. As in the spinner case, attachment was achieved by intermittent stirring where donor beads were in close proximity to the acceptor beads. Again successful transfers were obtained as evidenced by the good growth on acceptor beads where cell yields were in the range of 3100–4500 cells/bead.The results suggest that bead-to-bead transfer of CHO-K1 cells can be easily performed and do provide an alternative route to applications where dissolution techniques may not offer an efficient solution.  相似文献   

5.
The effect of dissolved oxygen concentrations on the behavior of Serratia marcescens and on yields of asparaginase and prodigiosin produced in shaken cultures and in a 55-liter stainless-steel fermentor was studied. A range of oxygen transfer rates was obtained in 500-ml Erlenmeyer flasks by using internal, stainless-steel baffles and by varying the volume of medium per flask, and in the fermentor by high speed agitation (375 rev/min) or low rates of aeration (1.5 volumes of air per volume of broth per min), or both. Dissolved oxygen levels in the fermentation medium were measured with a membrane-type electrode. Peak yields of asparaginase were obtained in unbaffled flasks (3.0 to 3.8 IU/ml) and in the fermentor (2.7 IU/ml) when the level of dissolved oxygen in the culture medium reached zero. A low rate of oxygen transfer was accomplished by limited aeration. Production of prodigiosin required a supply of dissolved oxygen that was obtainable in baffled flasks with a high rate of oxygen transfer and in the fermentor with a combination of high-speed agitation and low-rate aeration. The fermentation proceeded at a more rapid rate and changes in pH and cell populations were accelerated by maintaining high levels of dissolved oxygen in the growth medium.  相似文献   

6.
Six water-jacketed 500-ml Bellco spinner flasks were equipped to monitor and control environmental variables to study their effects on the growth and metabolism of mammalian cells. Studies with automated control of pO(2) levels of l-cell cultures, grown at pH 6.9 +/- 0.1, showed that dissolved O(2) tensions of ca. 9% were optimal for cell growth. At pO(2) values of 5 and 20%, maximum cell yields as well as growth rates were reduced by approximately 20%. Peak yields of L-cell cultures exceeded 5 x 10(6) cells/ml when grown for 4 days without medium renewal from inocula of ca. 10(6) cells/ml in a defined medium sparged with 5% CO(2) and maintained at 9% dissolved O(2) tension. The redox potentials of L-cell cultures reflected the pO(2) levels in the medium and ranged from -45 to +160 mv (versus calomel reference) for O(2) values ranging from 2 to 20% dissolved oxygen tension. Increased utilization of glucose per cell occurred in the presence of increased pO(2), whereas minimal accumulation of ammonia occurred with a pO(2) value maintained at 9%.  相似文献   

7.
Here we present the TubeSpin bioreactor 50 (TubeSpins) as a simple and disposable culture system for Sf-9 insect cells in suspension. Sf-9 cells had substantially better growth in TubeSpins than in spinner flasks. After inoculation with 106 cells/ml, maximal cell densities of 16 × 106 and 6 × 106 cells/ml were reached in TubeSpins and spinner flasks, respectively. In addition the cell viability in these batch cultures remained above 90% for 10 days in TubeSpins but only for 4 days in spinner flasks. Inoculation at even higher cell densities reduced the duration of the lag phase. After inoculation at 2.5 × 106 cells/ml, the culture reached the maximum cell density within 3 days instead of 7 days as observed for inoculation with 106 cells/ml. Infection of Sf-9 cells in TubeSpins or spinner flasks with a recombinant baculovirus coding for green fluorescent protein (GFP) resulted in similar GFP-specific fluorescence levels. TubeSpins are thus an attractive option for the small-scale cultivation of Sf-9 cells in suspension and for baculovirus-mediated recombinant protein production.  相似文献   

8.
Perfluorocarbon (PFC) was used as an oxygen carrier in the cultures of insect cells and virus-infected insect cells. The cell suspensions were placed on a planar layer of PFC, which was re-oxygenated in an outer aeration unit and continuously recirculated, and were agitated by two sets of impeller blades, lower one of which was set in such a way that the ridge of the blade touched the PFC layer. The maximum cell density attained in the PFC-mediated aeration culture was higher than that in surface aeration culture. On viral infection, a recombinant protein yield was significantly high in the PFC-mediated aeration culture as compared with that in the surface aeration culture, though the production was largely decreased by setting apart the lower set of the blade from the PFC-medium interface. These results showed that the PFC-mediated aeration would be a useful technique for insect cell/baculovirus expression system. Overall mass-transfer coefficient K(L) for oxygen was examined in both the PFC-mediated aeration and surface aeration systems, by using a flask whose dimensions were identical to those of spinner flasks used for the cultures. The K(L) value in the PFC-mediated system was 2.60x10(-3)cms(-1), 1.6 times higher than that in the surface aeration system, when impeller blades were positioned at PFC-medium and medium-air interfaces, respectively. However, the K(L) values in both the PFC-mediated and surface aeration systems were decreased and their differences were brought so close, as the blade was set apart from the interfaces. DO behavior in the cultures was well explained by the model calculation using the determined K(L) values and oxygen-consumption rates of viable cells. This calculation further suggested that crucial DO, under which recombinant protein productions were unsuccessful, was 0.24-0.5ppm (3-7%) in the insect cell/baculovirus expression system.  相似文献   

9.
Anchorage-dependent HeLa cells were successfully cultured on two fibrous materials (A07 and R100) with porosities of 75-125 and 40 mum, void fractions of 92% and 81%, and fiber diameters of 7.6 and 10.2 mum, respectively, in 100-mL spinner flasks and 2-L stirred tank bioreactors. The matrix was formed into a fixed vertical spiral configuration. All cultures displayed rapid (/=95%) to the matrix, uniform coverage of the immobilizing area with viable cells, and no significant amount of cell debris in the medium. Spinner flask cultures indicated that the denser material R100 showed better results in terms of final cell density. The growth of HeLa cells on material R100 in both culture systems was similar to that observed in tissue culture dishes (specific growth rate approximately 0.03-0.04 h(-1), maximum cell density of 8 x 10(6)-9 x 10(6) cells . mL(-1), and yields of 0.4 x 10(8) cells . mM(-1) on glucose and 2 x 10(8)-3 x 10(8) cells . mM(-1) on glutamine). Scale-up of this culture technique in a 2-L bioreactor under perfusion with pH and dissolved oxygen (DO) control yielded cell densities of up to 1.6 x 10(6) cells . mL(-1). Two other anchorage-dependent mammalian cells (ADC) known to be cultured with difficulty in roller bottles or with micro carriers were easily grown on material R100 in spinner flasks. The performance of this culture technique was compared to other ADC culture systems.  相似文献   

10.
Previously, Su et al. [Biotechnol Bioeng 42: 884–890 (1993)] reported improved production of rosmarinic acid by Anchusa officinalis in shake-flask cultures using a cultivation strategy that involved intermittent medium exchange. Implementation of this cultivation strategy in 2.5-1 stirred-tank bioreactor cultures is investigated in the present study. Intermittent cell/medium separation in the bioreactor was accomplished by means of automated in situ culture filtration. In the bioreactor culture, rosmarinic acid production was found very sensitive to agitation and aeration conditions as well as dissolved oxygen concentration. A maximum cell density of 35 g dry weight/l and a rosmarinic acid concentration of 3.7 g/l were obtained by maintaining the dissolved oxygen concentration above 30% air saturation, gradually raising the impeller tip speed from 34 cm/s to 72 cm/s, and keeping the aeration rate at 0.44 vvm while increasing the O2: air ratio in the gas feed stream to 4:1. This result is comparable with the data obtained from shake-flask cultures using the same culture strategy.  相似文献   

11.
This work focused on determining the effect of dissolved oxygen concentration (DO) on growth and metabolism of BHK-21 cell line (host cell for recombinant proteins manufacturing and viral vaccines) cultured in two stirred tank bioreactors with different aeration-homogenization systems, as well as pH control mode. BHK-21 cell line adapted to single-cell suspension was cultured in Celligen without aeration cage (rotating gas-sparger) and Bioflo 110, at 10, 30 and 50 % air saturation (impeller for gas dispersion from sparger-ring). The pH was controlled at 7.2 as far as it was possible with gas mixtures. In other runs, at 30 and 50 % (DO) in Bioflo 110, the cells grew at pH controlled with CO2 and NaHCO3 solution. Glucose, lactate, glutamine, and ammonium were quantified by enzymatic methods. Cell concentration, size and specific oxygen consumption were also determined. When NaHCO3 solution was not used, the optimal DOs were 10 and 50 % air saturation for Celligen and Bioflo 110, respectively. In this condition maximum cell concentrations were higher than 4 × 106 cell/mL. An increase in maximum cell concentration of 36 % was observed in batch carried out at 30 % air saturation in a classical stirred tank bioreactor (Bioflo 110) with base solution addition. The optimal parameters defined in this work allow for bioprocess developing of viral vaccines, transient protein expression and viral vector for gene therapy based on BHK-21 cell line in two stirred tank bioreactors with different agitation–aeration systems.  相似文献   

12.
The production of enterotoxin A and nuclease by Staphylococcus aureus strain 100 was studied in a 1.0-liter fermentor. The effects of the gas flow rate, pH, and dissolved oxygen were evaluated. Toxin and nuclease secretion occurred under all conditions which permitted growth of the organism. Final yields of toxin and nuclease in cultures grown at constant air flow rates, ranging from 50 to 500 cm3 per min, were higher at successively higher flow rates. An optimum flow rate for either toxin or nuclease production was not observed. When the aeration rate alone or aeration rate and pH were held constant, the dissolved oxygen levels in the culture decreased from the initial 100% level to 0 to 5% 3 to 4 h after inoculation. The O2 demand of the culture then maintained this level for an additional 4 to 5 h. This low dissolved oxygen interval was characterized by rapid growth and extracellular protein production. Controlling the dissolved oxygen at a constant level throughout growth did not increase the final levels of toxin and nuclease above those achieved at the respective constant pH values. Growth under the influence of a constant aeration rate of 500 cm3 per min and a constant pH of 6.5 and 7.0 yielded the highest titers of nuclease (1,550 units/ml) and toxin (10.5 mug/ml) obtained in any of the fermentations conducted in this study. Sparging fermentor cultures with pure oxygen at a rate of 100 cm3 per min yielded growth and extracellular protein levels similar to those achieved at the sparge rate of 500 cm3 of air per min. Controlling the dissolved oxygen at 100% of pure oxygen saturation appeared to inhibit the culture, as the final cultural turbidity as well as the levels of toxin and nuclease were reduced. These data indicate that enterotoxin and nuclease secretions are closely associated with the growth of strain 100. Analyses of the production rates of these components indicated that early log phase was the most efficient production interval in the growth cycle and that this efficiency was increased by pH control at 6.7 to 6.8 and dissolved oxygen control at 10% of air saturation.  相似文献   

13.
The production of enterotoxin A and nuclease by Staphylococcus aureus strain 100 was studied in a 1.0-liter fermentor. The effects of the gas flow rate, pH, and dissolved oxygen were evaluated. Toxin and nuclease secretion occurred under all conditions which permitted growth of the organism. Final yields of toxin and nuclease in cultures grown at constant air flow rates, ranging from 50 to 500 cm3 per min, were higher at successively higher flow rates. An optimum flow rate for either toxin or nuclease production was not observed. When the aeration rate alone or aeration rate and pH were held constant, the dissolved oxygen levels in the culture decreased from the initial 100% level to 0 to 5% 3 to 4 h after inoculation. The O2 demand of the culture then maintained this level for an additional 4 to 5 h. This low dissolved oxygen interval was characterized by rapid growth and extracellular protein production. Controlling the dissolved oxygen at a constant level throughout growth did not increase the final levels of toxin and nuclease above those achieved at the respective constant pH values. Growth under the influence of a constant aeration rate of 500 cm3 per min and a constant pH of 6.5 and 7.0 yielded the highest titers of nuclease (1,550 units/ml) and toxin (10.5 mug/ml) obtained in any of the fermentations conducted in this study. Sparging fermentor cultures with pure oxygen at a rate of 100 cm3 per min yielded growth and extracellular protein levels similar to those achieved at the sparge rate of 500 cm3 of air per min. Controlling the dissolved oxygen at 100% of pure oxygen saturation appeared to inhibit the culture, as the final cultural turbidity as well as the levels of toxin and nuclease were reduced. These data indicate that enterotoxin and nuclease secretions are closely associated with the growth of strain 100. Analyses of the production rates of these components indicated that early log phase was the most efficient production interval in the growth cycle and that this efficiency was increased by pH control at 6.7 to 6.8 and dissolved oxygen control at 10% of air saturation.  相似文献   

14.
Summary Various insect cell lines were grown as suspension cultures in spinner vessels and infected with a recombinant baculovirus vector expressing the measles virus nucleoprotein. The highest yields of recombinant protein production were achieved using Trichoplusia ni (BTI-Tn 5B1-4) cells growing as natural aggregates in suspension and cell line Mb as a single cell suspension culture.  相似文献   

15.
Summary It has been shown that the growth of Spodoptera frugiperda cells is significantly reduced or ceased under oxygen limiting culture conditions. This paper describes the use of a new membrane-aerated spinner flask which was compared to conventional surface-aerated spinner flasks with regard to growth of the insect cell line Sf9 and recombinant protein production after infection with baculovirus. Using a commercially available serum-free culture medium Sf9 cells reached highest cell densities (3×106 ml–1) in the membrane-aerated spinner flask. Production of recombinant protein was also influenced by the oxygen supply. In the membrane-aerated spinner flask and in a surface-aerated spinner flask with reduced filling volume more than 20000 U ml–1 of a recombinant interleukin-2 variant were accumulated whereas only 100 U ml–1 were produced in a surface-aerated spinner flask with insufficient oxygen supply. Sufficient oxygenation appears to be essential for proliferation of Sf9 cells as well as recombinant protein production after infection with baculovirus. Membrane oxygenation allows sufficient oxygen supply at high cell density and an at least 2.5 fold higher filling volume per spinner unit.  相似文献   

16.
Pseudomonas aeruginosa PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). Parameters that included medium volume, cell growth time, gyration speed, pH, substrate concentration, and dissolved oxygen concentration were evaluated for a scale-up production of DOD in batch cultures using Fernbach flasks and a bench-top bioreactor. Maximum production of about 2 g DOD (38% yield) was attained in Fernbach flasks containing 500 ml medium when cells were grown at 28 degrees C and 300 rpm for 16-20 h and the culture was adjusted to pH 7 prior to substrate addition. Increases of medium volume and substrate concentration failed to enhance yield. When batch cultures were initially conducted in a reactor, excessive foaming occurred that made the bioconversion process inoperable. This was overcome by a new aeration mechanism that provided adequate dissolved oxygen to the fermentation culture. Under the optimal conditions of 650 rpm, 28 degrees C, and 40-60% dissolved oxygen concentration, DOD production reached about 40 g (40% yield) in 4.5 L culture medium using a 7-L reactor vessel. This is the first report on a successful scale-up production of DOD.  相似文献   

17.
An experimental study was undertaken to quantify the effects of infection cell density, medium condition, and surface aeration on recombinant protein yields in insect cells. In the absence of surface aeration and fresh medium, insect cells generated higher product yields (on a per cell basis) when infected with recombinant baculovirus at low cell densities, LCD (3 x 10(5)-4 x 10(5) cells/mL), than at high cell densities, HCD (>0.9 x 10(6) cells/mL), for two distinct baculovirus types. Surface aeration of a HCD culture infected in spent medium improved beta-glactosidase yields 5-fold over the nonaerated case. Surface aeration and medium replenishment improved beta-galactosidase yields of a HCD culture by 20-fold (compared to a 1.6-fold improvement for a LCD culture), resulting in cultures with productivties that were independent of the cell density at infection.  相似文献   

18.
Disposable orbitally shaken TubeSpin bioreactor 600 tubes (TS600s) were recently developed for the bench-scale cultivation of animal cells in suspension. Here we compared batch cultures of Sf9 insect cells in TS600s, spinner flasks, and shake flasks. Superior cell growth was observed in TS600s and shake flasks as compared with spinner flasks, and more favorable oxygen-enriched cell culture conditions were observed in TS600s as compared with either spinner or shake flasks. The results demonstrated the suitability of TS600s as a disposable vessel for the cultivation of Sf9 cells in suspension.  相似文献   

19.
Abstract

In plants, an increased production of toxic oxygen species is commonly observed under low oxygen stress, but cellular responses still have to be fully investigated. Plant cell cultures can be a valuable tool to study plant metabolic responses to various environmental stresses including low oxygen condition. Arabidopsis suspension cultures growing in shake flasks were subjected to hypoxia by stopping shaking for different intervals, showing an increase of the antioxidant metabolite α‐tocopherol. In order to obtain a more controlled condition, cultivation of Arabidopsis suspension cultures was established in a 5‐l stirred bioreactor. A constant aeration of 20% dissolved oxygen was found to be the most suitable for cell growth. A 4‐h anoxic shock was induced by suspending the aeration and flushing into the vessel with nitrogen. During the anoxic stress, tocopherol levels resulted increased at the end of the treatment, indicating that the complete oxygen deprivation, indeed, induced a defence response involving antioxidant metabolism. The presence of an oxidative stress as a consequence of anoxic condition was also confirmed by the increased levels of H2O2. Overall, these results indicate that Arabidopsis suspension cultures grown in a stirred bioreactor can be a useful in vitro system for investigating low oxygen stress.  相似文献   

20.
Respiration rates in Spodoptera frugiperda (Sf-9) cell bioreactor cultures were successfully measured on-line using two methods: The O(2) uptake rate (OUR) was determined using gas phase pO(2) values imposed by a dissolved oxygen controller and the CO(2) evolution rate (CER) was measured using an infrared detector. The measurement methods were accurate, reliable, and relatively inexpensive. The CER was routinely determined in bioreactor cultures used for the production of several recombinant proteins. Simple linear relationships between viable cell densities and both OUR and CER in exponentially growing cultures were used to predict viable cell density. Respiration measurements were also used to follow the progress of baculoviral infections in Sf-9 cultures. Infection led to increases in volumetric and per-cell respiration rates. The relationships between respiration and several other culture parameters, including viable cell density, cell protein, cell volume, glucose consumption, lactate production, viral titer, and recombinant beta-galactosidase accumulation, were examined. The extent of the increase in CER following infection and the time postinfection at which maximum CER was attained were negatively correlated with the multiplicity of infection (MOI) at multiplicities below the level required to infect all the cells in a culture. Delays in the respiration peak related to the MOI employed were correlated with delays in the peak in recombinant protein accumulation. DO levels in the range 5-100% did not exert any major effects on viable cell densities, CER, or product titer in cultures infected with a baculovirus expressing recombinant beta-galactosidase. (c) 1996 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号