首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For large-scale applications in biotechnology, cultivation of mammalian cells in suspension is an essential prerequisite. Typically, suspension cultures are grown in glass spinner flasks filled to less than 50% of the nominal volume. We propose a superior system for suspension cultures of mammalian cells based on orbital shaker technology. We found that "square-shaped" bottles (square bottles) provide an inexpensive but efficient means to grow HEK-293 EBNA and CHO-DG44 cells to high density. Cultures in agitated 1-L square bottles exceeded the performance of cultures in spinner flasks, reaching densities up to 7 x 10(6) cells/mL for HEK-293 EBNA cells and 5 x 10(6) cells/mL for CHO-DG44 cells in comparison to (2.5-4) x 10(6) cells/mL for cultures of the same cells grown in spinner flasks. For 1-L square bottles, optimal cell growth and viability were observed with a filling volume of 30-40% of the nominal volume and an agitation speed of 130 rpm at a rotational diameter of 2.5 cm. Transient reporter gene expression following gene delivery by calcium phosphate-DNA co-precipitation was the same or slightly better for HEK-293 EBNA cells grown in square bottles as compared to spinner flasks. Reductions in cost, simplified handling, and better performance in cell growth and viability make the agitated square bottle a new and very promising tool for the cultivation of mammalian cells in suspension.  相似文献   

2.
Here we present the TubeSpin bioreactor 50 (TubeSpins) as a simple and disposable culture system for Sf-9 insect cells in suspension. Sf-9 cells had substantially better growth in TubeSpins than in spinner flasks. After inoculation with 106 cells/ml, maximal cell densities of 16 × 106 and 6 × 106 cells/ml were reached in TubeSpins and spinner flasks, respectively. In addition the cell viability in these batch cultures remained above 90% for 10 days in TubeSpins but only for 4 days in spinner flasks. Inoculation at even higher cell densities reduced the duration of the lag phase. After inoculation at 2.5 × 106 cells/ml, the culture reached the maximum cell density within 3 days instead of 7 days as observed for inoculation with 106 cells/ml. Infection of Sf-9 cells in TubeSpins or spinner flasks with a recombinant baculovirus coding for green fluorescent protein (GFP) resulted in similar GFP-specific fluorescence levels. TubeSpins are thus an attractive option for the small-scale cultivation of Sf-9 cells in suspension and for baculovirus-mediated recombinant protein production.  相似文献   

3.
Summary It has been shown that the growth of Spodoptera frugiperda cells is significantly reduced or ceased under oxygen limiting culture conditions. This paper describes the use of a new membrane-aerated spinner flask which was compared to conventional surface-aerated spinner flasks with regard to growth of the insect cell line Sf9 and recombinant protein production after infection with baculovirus. Using a commercially available serum-free culture medium Sf9 cells reached highest cell densities (3×106 ml–1) in the membrane-aerated spinner flask. Production of recombinant protein was also influenced by the oxygen supply. In the membrane-aerated spinner flask and in a surface-aerated spinner flask with reduced filling volume more than 20000 U ml–1 of a recombinant interleukin-2 variant were accumulated whereas only 100 U ml–1 were produced in a surface-aerated spinner flask with insufficient oxygen supply. Sufficient oxygenation appears to be essential for proliferation of Sf9 cells as well as recombinant protein production after infection with baculovirus. Membrane oxygenation allows sufficient oxygen supply at high cell density and an at least 2.5 fold higher filling volume per spinner unit.  相似文献   

4.
Immobilization offers several intrinsic advantages over free suspension cultures for the production of monoclonal antibodies. An important advantage of immobilization is the improved specific monoclonal antibody (MAb) productivity (q(MAb)) that can be obtained. However, there are conflicting reports in the literature on the enhancement of the q(MAb) with immobilization. The discrepancies between these reports can be attributed to the different to either the cultivation methods used for immobilized cell or to difference between the cell lines used in the various studies. We show that these differences may be attributed to the different cultivation methods used for one model hybridoma cell line. S3H5/Upsilon2bA2 hybridoma cells entrapped in different sizes of calcium alginate beads were cultivated in both T- and spinner flasks in order to determine whether cultivation methods (T- and spinner flasks) and bead size influence the q(MAb) Free-suspended cell cultures inoculated with cells recovered from alginate beads were also carried out in order to determine whether changes in the q(Mab) of the entrapped cells are reversible.The cultivation methods was found to influence significantly the q(MAb) of the entrapped cells. When the entrapped cells in 1-mn diameter beads were cultivated in T-flasks, the q(MAb) was not increased by 200% as previously observed in an entrapped cell culture using 1-mm-diameter alginate beads in spinner flasks. The q(MAb) of the entrapped cell was approximately 58% higher than that of the free-suspended cells in a control experiment. Unlike the cultivation method, the bead size in the range of 1- to 3-mm diameter did not significantly influence the q(MAb), regardless of cultivations methods. The changes in q(MAb) of an entrapped cells were reversible. When the free-suspended cells recovered from the T- and spinner flasks were sub-cultured in T- and spinner flasks enhanced q(MAb) of the entrapped cells in both cases decreased to the level of the free-suspended cell in a control experiments. Taken together, these results shows that the method of cultivation of hybridoma cells immobilized in alginate beads determines the extent of enhancement of the q(MAb). (c) 1993 John Wiley & Sons, Inc.  相似文献   

5.
The simple design of traditional spinner flasks makes the on-line estimation of cellular metabolism impossible. An on-line estimation system has been developed and used for the monitoring of oxygen uptake rate (OUR) for insect cells growing in a modified spinner flask. Neglect of oxygen desorption from culture media is a common source of error in OUR measurements for Sf21 cells. Therefore, an algorithm was developed to compensate for the affect of such desorption process on the determination of OUR. A modified spinner flask was successfully used as a low-volume bioreactor for insect cell cultivation and the OUR measurement developed here is both convenient and reliable.  相似文献   

6.
人皮肤成纤维细胞在不同培养系统中的生长代谢特性   总被引:2,自引:0,他引:2  
大面积烧伤病人及多种皮肤溃疡病人很难用自体皮肤移植来进行治疗.早期治疗方法采用尸体来源的皮肤移植,但由于来源有限、且有传播疾病的危险,因此应用组织工程技术构建生物活性人工皮肤已成为近十几年来在组织工程和创伤治疗领域的研究热点,目前已有几种人工皮肤成功地走向临床[1].然而,在构建大面积皮肤组织过程中,如何大量制备皮肤种子细胞仍然是一大棘手的难题,成为人体皮肤组织工程迫切需要解决的技术关键.获得大量扩增的皮肤细胞,解决种子细胞的供应问题,是构建人工皮肤的一个关键.  相似文献   

7.
Zhao D  Huang Y  Jin Z  Qu W  Lu D 《Plant cell reports》2003,21(11):1129-1133
Cell suspension cultures of Saussurea medusa were grown in shake flasks and a 5-l stirred tank bioreactor. Biomass and jaceosidin distribution in cell aggregates of different sizes were investigated during the cultivation period. The results showed that on day 10, jaceosidin accumulation showed an increase with increasing size of the cell aggregate to 4 mm in diameter, with the highest jaceosidin accumulation being 12.2 mg/g. An inverse tendency was observed with cell aggregates larger than 4 mm in diameter, with the lowest accumulation being 3.1 mg/g. However, all of the cell aggregates, despite their size, synthesized almost the same amount of jaceosidin at day 12. Oxygen diffusion limitation and cell-cell contact may explain this behavior. In comparison with cells cultivated in shake flasks, decreased biomass and decreased jaceosidin concentration were observed when the cells were cultivated in a stirred tank bioreactor. The sublytic effects caused by the hydrodynamic stress in combination with insufficient nutrients in the bioreactor may cause cell damage.  相似文献   

8.
Existence of autocrine growth factors (aGFs) may influence the serum requirement for growth of hybridoma cells and thus significantly influence process economics. For the murine hybridoma cell line S3H5/2bA2, critical inoculum density (cID) and serum requirement for growth were inversely related for cultivation in both T flasks and spinner flasks. In spinner flasks, an inoculum density of 106 cells/ml was necessary for the cells to grow in RPMI 1640 medium without serum supplement, and an inoculum density of 103 cell/ml was necessary in RPMI 1640 medium with 10% serum. In T flasks, where the local cell density is higher than in spinner flasks, an inoculum density of 106 cells/ml was necessary for the cells to grow in RPMI 1640 medium without serum supplement, and an inoculum density of 1 cell/ml was also necessary in RPMI 1640 medium with 10% serum. Further, immobilized cells at high local cell density could grow under conditions where cells in T flasks at corresponding overall cell density could not grow. The cells at high inoculum density were less sensitive to shear induced by mechanical agitation than the cells at low inoculum density. Taken together these observations support the existence of secreted aGF(s) by the hybridoma cell line used. Since the specific MAb production rate was independent of cultivation method and inoculum density, the existence of autocrine growth factors would suggest that the use of immobilized cells should improve the economics of MAb production.  相似文献   

9.

Background

Here we describe a novel cultivation method, called EnBase?, or enzyme-based-substrate-delivery, for the growth of microorganisms in millilitre and sub-millilitre scale which yields 5 to 20 times higher cell densities compared to standard methods. The novel method can be directly applied in microwell plates and shake flasks without any requirements for additional sensors or liquid supply systems. EnBase is therefore readily applicable for many high throughput applications, such as DNA production for genome sequencing, optimisation of protein expression, production of proteins for structural genomics, bioprocess development, and screening of enzyme and metagenomic libraries.

Results

High cell densities with EnBase are obtained by applying the concept of glucose-limited fed-batch cultivation which is commonly used in industrial processes. The major difference of the novel method is that no external glucose feed is required, but glucose is released into the growth medium by enzymatic degradation of starch. To cope with the high levels of starch necessary for high cell density cultivation, starch is supplied to the growing culture suspension by continuous diffusion from a storage gel. Our results show that the controlled enzyme-based supply of glucose allows a glucose-limited growth to high cell densities of OD600 = 20 to 30 (corresponding to 6 to 9 g l-1 cell dry weight) without the external feed of additional compounds in shake flasks and 96-well plates. The final cell density can be further increased by addition of extra nitrogen during the cultivation. Production of a heterologous triosphosphate isomerase in E. coli BL21(DE3) resulted in 10 times higher volumetric product yield and a higher ratio of soluble to insoluble product when compared to the conventional production method.

Conclusion

The novel EnBase method is robust and simple-to-apply for high cell density cultivation in shake flasks and microwell plates. The potential of the system is that the microbial growth rate and oxygen consumption can be simply controlled by the amount (and principally also by the activity) of the starch-degrading enzyme. This solves the problems of uncontrolled growth, oxygen limitation, and severe pH drop in shaken cultures. In parallel the method provides the basis for enhanced cell densities. The feasibility of the new method has been shown for 96-well plates and shake flasks and we believe that it can easily be adapted to different microwell and deepwell plate formats and shake flasks. Therefore EnBase will be a helpful tool especially in high throughput applications.  相似文献   

10.
The baculovirus/insect cell expression system has provided a vital tool to produce a high level of active proteins for many applications. We have developed a very high-density insect cell perfusion process with an ultrasonic filter as a cell retention device. The separation efficiency of the filter was studied under various operating conditions. A cell density of over 30 million cells/mL was achieved in a controlled perfusion bioreactor and cell viability remained greater than 90%. Sf9 cells from a high-density culture and a spinner culture were infected with two recombinant baculoviruses expressing genes for the production of human chitinase and monocyte-colony inhibition factor. The protein yield on a cell basis from infecting high-density Sf9 cells was the same as or higher than that from the spinner Sf9 culture. Virus production from the high-density culture was similar to that from the spinner culture. The results show that the ultrasonic filter did not affect insect cells' ability to support protein expression and virus production following infection with baculovirus. The potential applications of the high-density perfusion culture for large-scale protein expression from Sf9 cells are also highlighted.  相似文献   

11.
Cell suspension cultures of Lavandula vera (Lamiaceae), Nicotiana tabacum (Solanaceae), and Helianthus annuus (Asteraceae) were cultivated in three different ways: in shake flasks both as free suspensions and in two‐phase systems (in the presence of Amberlite XAD‐4 resin as a second phase), as well as in 3‐L stirred tank reactor, and their volatile metabolic profiles were studied using GC‐MS. A number of compounds, some of them having allelochemical and biological activities, were identified in all the three cell suspension cultures under study. Also the presence of some compounds, unusual for the intact plants, was observed. It was found that the cultivation mode strongly influences the production and the transport (secretion into the culture medium) of the low‐molecular‐mass volatile metabolites. Principal component analyses of 12 common hydrocarbons showed discrimination between the different cultivation modes (shake flasks and two‐phase systems cultivation) by first principal component (PC1) and second principal component (PC2).  相似文献   

12.
The scale-up of insect cell cultures and the production of baculovirus with these cultures is dependent on the inoculation density applied. The effect of applying a low inoculation on the specific growth rate and on the duration of the lag phase was tested. Three different cell lines, HzAm1, Ha2302, and Sf21 were tested in a total of five cell line/medium combinations. Growth in suspension culture was examined, and data obtained were fitted with the Gompertz equation. A significant decline in specific growth rate with decreasing inoculation density was observed in all cell line/medium combinations, except for HzAm1. No critical inoculation density, below which no growth would occur, was found. In suspension culture in shake flasks, an inoculation density of 5 x 10(4) cells/mL is achievable, without severely influencing the overall growth rate. A lower inoculation density in suspension culture results in less steps in the scale-up process and might be a tool in bypassing the viral passage effect.  相似文献   

13.
The purpose of this study was to develop a cell culture process in a bioreactor for the production of a viral insecticide for the spruce budworm, Choristoneura fumiferana . Several cell lines were tested for their growth in serum-free medium suspension cultures. One cell line, CF-124T-2C1 (CF-2C1), was successfully adapted to grow in suspension cultures in SFM. Serum-free Ex-Cell 405 medium produced a much higher cell density (6.3 x 10 6 cells ml -1 ) than the Grace's medium supplemented with 10% fetal bovine serum (2.5 x 10 6 cells ml -1 ). Also, a higher yield of virus was obtained in the former medium. Ex-Cell 405, was used to study the growth of CF-2C1 cells and the production of C. fumiferana nucleopolyhedrovirus (CfMNPV) in a 3 l bioreactor. Under these conditions, a specific growth rate ( μ) of 0.027 h -1 was obtained during the exponential growth phase, and the specific carbon dioxide evolution rate, as determined by on-line measurement, was 0.9 x 10 -16 mol cell -1 s -1 and 1.78 x 10 -16 mol cell -1 s -1 during growth and infection phases, respectively. Virus production in bioreactor cultures infected at 1.3 x 10 6 cells ml -1 was consistently lower than that obtained in Erlenmeyer shake flasks. Only 26% of the cells were infected in the bioreactor compared to 44% in the shake flasks. However, a higher yield of occluded virus was obtained in the bioreactor cultures than in shake flasks. The production of occlusion bodies (OB) achieved in bioreactor cultures was 2 x 10 6 OB ml -1 .  相似文献   

14.
The experimental setup, consisting of a bundle of dialysis tubing 2.5 mm in diameter [10-15 kD cutoff, mean pore size 25 A, 20 microns (dry) and 40 microns (wet) wall thickness] inserted into a 1-l glass bioreactor supplied with oxygen and pH electrodes, a porous gas distributor, a sampling tube, and a holder for the eight pieces of dialysis tubing, was developed to investigate the properties and the microenvironment of hybridoma cells enclosed in the tubing during their batch cultivation. The concentrations of low-molecular-weight medium components were the same inside and outside the tubing, and it was possible to control the microenvironment of the cells in the tubing easily. The cell damage caused by mechanical stress was less in the dialysis tubing than in stirred spinner flasks. The influence of the initial cell density in the range from 4 X 10(5) to 1 X 10(8) cells ml-1 and the cultivation time were evaluated according to the total and viable cell concentrations and the cell/cell fragment size distributions. Furthermore, the cell membrane properties, glucose consumption rate, lactate, ammonia and lipid storage material, and the monoclonal antibody production rates as well as intracellular enzyme activities in the culture medium were measured and compared to those in reference cultures in spinner flasks with the same inoculum at low initial cell densities. In dialysis tubing in a concentration range of 5 X 10(6) to 10(8) cells ml-1, the total and viable concentrations of cells remained the same during cultivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Human embryonic stem cells (hESCs) represent an important resource for novel cell-based regenerative medical therapies. hESCs are known to differentiate into mature cells of defined lineages through the formation of embryoid bodies (EBs) which are amenable to suspension culture for several weeks. However, EBs derived from hESCs in standard static cultures are typically non-homogeneous, leading to inefficient cellular development. Here, we systematically compare the formation, growth, and differentiation capabilities of hESC-derived EBs in stirred and static suspension cultures. A 15-fold expansion in total number of EB-derived cells cultured for 21 days in a stirred flask was observed, compared to a fourfold expansion in static (non-stirred) cultures. Additionally, stirred vessel mediated cultures have a more homogeneous EB morphology and size. Importantly, the EBs cultivated in spinner flasks retained comparable ability to produce hematopoietic progenitor cells as those grown in static culture. These results demonstrate the decoupling between EB cultivation method and EB-derived cells' ability to form hematopoietic progenitors, and will allow for improved production of scalable quantities of hematopoietic cells or other differentiated cell lineages from hESCs in a controlled environment.  相似文献   

16.
Summary Insect cells have been propagated in monolayers in T-flasks or in suspension culture in spinner flasks, the latter being conducted over a range of spinner speeds. In both configurations, the cells were also infected with either wild or recombinant -galactosidase baculovirus at MOI of 0.1, 1 and 10. The strength of both uninfected and infected cells was also measured by a micro-manipulation technique. No significant difference in growth rate was obtained between monolayer culture and suspension culture at the spinner rate which was optimum for growth. This optimum was quite sharp. At the lowest speeds cells settled, whilst above the optimum speed the spinner action led to significant cell damage. The maximum infectivity was obtained at this optimum speed which also gave maximum survival after infection. There were significant changes of cell survival and infection, even over relatively small changes of speed, and presumably energy dissipation rate. As changes in growth in turbine-agitated bioreactors have been shown to be much less, even when the energy inputs varied by two orders of magnitude, these findings throw doubt on the usefulness of spinner flasks for assessing shear sensitivity of cell lines. The percentage of infected cells and -galactosidase production were significantly lower in the monolayer culture compared to that in the suspension culture at MOI values below 10 pfu/cell. This difference is explained as being due to the reduced movement of released virus particles from infected to non-infected cells in the T-flasks.  相似文献   

17.
Equine articular chondrocytes, embedded within a polyglycolic acid nonwoven mesh, were cultured with various combinations of intermittent pressure, fluid flow, and mixing to examine the effects of different physical stimuli on neochondrogenesis from young cells. The cell/polymer constructs were cultured first in 125 ml spinner flasks for 1, 2, or 4 weeks and then in a perfusion system with intermittent pressure for a total of up to 6 weeks. Additional constructs were either cultured for all 6 weeks in the spinner flasks or for 1 week in spinners followed by 5 weeks in the perfusion system without intermittent pressure. Tissue constructs cultivated for 2 or 4 weeks in spinner flasks followed by perfusion with intermittent pressure had significantly higher concentrations of both sulfated glycosaminoglycan and collagen than constructs cultured entirely in spinners or almost entirely in the pressure/perfusion system. Initial cultivation in the spinner flasks, with turbulent mixing, enhanced both cell attachment and early development of the extracellular matrix. Subsequent culture with perfusion and intermittent pressure appeared to accelerate matrix formation. While the correlation was much stronger in the pressurized constructs, the compressive modulus was directly proportional to the concentration of sulfated glycosaminoglycan in all physically stressed constructs. Constructs that were not stressed beyond the 1-week seeding period lost mechanical integrity upon harvest, suggesting that physical stimulation, particularly with intermittent pressure, of immature tissue constructs during their development may contribute to their ultimate biomechanical functionality.  相似文献   

18.
The nonionic surfactant Pluronic F-68 polyol is commonly used to protect cultured animal cells from the detrimental effects of sparging. In this study we investigated the structural features of the Pluronic F-68 molecule responsible for this protective behavior. Poly(oxyethylene)-poly(oxypropylene) block copolymer polyols of various molecular weights and percentages of hydrophobe (poly(oxypropylene], including both Pluronic and reverse Pluronic polyols, were considered. The potential toxicity of these agents was examined in the absence of sparging (i.e., in spinner flasks) by using the attachment-independent Sf9 insect cell line as a model system. Each polyol resulted in one of three distinct types of behavior in these spinner flask experiments: (1) cells lysed at an exponential rate, (2) inhibition of cell growth (i.e., no net cell growth), or (3) uninhibited cell growth. It was then shown that all of the Pluronic and reverse Pluronic polyols that did not inhibit cell growth provided protection from sparging in the bioreactors used in this study; thus, finding a polyol that protected cells was synonymous with finding one that did not inhibit cell growth. The ability of these polyols to protect animal cells in sparged bioreactors was found to correlate well with the hydrophilic-lipophilic balance (HLB). Those polyols with the largest HLB values were found to be protective agents. These poly(oxyethylene)-poly(oxypropylene) polyols were also shown to be more effective protective agents than pure poly(oxyethylene); thus, the presence of the hydrophobe (poly(oxypropylene] is important in their ability to serve as protective agents.  相似文献   

19.
pH in animal cell cultures decreases due to production of metabolites like lactate. pH control via measurement and base addition is not easily possible in small‐scale culture formats like tissue‐culture flasks and shake flasks. A hydrogel‐based system is reported for in situ pH maintenance without pH measurement in such formats, and is demonstrated to maintain pH between 6.8 and 7.2 for a suspension CHO cell line in CD CHO medium and between 7.3 and 7.5 for adherent A549 cells in DMEM:F12 containing 10% FBS. This system for pH maintenance, along with our previous report of hydrogels for controlled nutrient delivery in shake flasks can allow shake flasks to better mimic bioreactor‐based fed batch operation for initial screening during cell line and process development for recombinant protein production in mammalian cells. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

20.
Suspension cells of Taxus chinensis were cultivated in both shake flasks and bioreactors. The production of taxuyunnanine C (TC) was greatly reduced when the cell cultures were transferred from shake flasks to bioreactors. Oxygen supply, shear stress and stripping-off of gaseous metabolites were considered as potential factors affecting the taxane accumulation in bioreactors. The effects of oxygen supply on the cell growth and metabolism were investigated in a stirred tank bioreactor by altering its oxygen transfer rate (OTR). It was found that both the pattern and amount of TC accumulation were not much changed within the range of OTR as investigated. Comparative studies on the cell cultivation in low shear and high shear generating bioreactors suggest that the decrease of TC formation in bioreactors was not due to the different shear environments in different cultivation vessels. An incorporation of 2% CO(2) in the inlet air was beneficial for the cell growth, but did not improve the TC production in bioreactors. Furthermore, the effects of different levels of ethylene addition into the inlet air on the cell growth and TC production were investigated in a bubble column reactor. The average cell growth rate increased from 0.146 to 0.204 d(-1) as the ethylene concentration was raised from 0 to 50 ppm, and both the content and production of TC were also greatly improved by ethylene addition. At an ethylene concentration of 18 ppm, the highest TC content and volumetric production in the reactor reached 13.28 mg/(g DW) and 163.7 mg/L, respectively, which were almost the same as those in shake flasks. Compared with the control reactor (bubble column without ethylene supplementation), the maximum TC content was increased by 82% and the total production of TC was doubled. The results indicate that ethylene is a key factor in scaling up the process of the suspension cultures of T. chinensis from a shake flask to a bioreactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号