首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The predatory potential of two onmnivorous crustaceans, Gammarus duebeni and Palaemonetes varians, has been examined to investigate their effect as mosquito larval predators. Mature gammarids ate 4-8 Aedes detritus larvae/24 h and palaemonids, 22-30/1 h, often killing larvae when not hungry. The crustaceans were exposed to Bacillus thuringiensis subsp. israelensis (Bti) and to mosquito larvae killed by Bti with no adverse effects, endorsing the safety of this microbial pesticide. Crustacean faecal pellets, collected post-feeding and placed in fresh marsh water, were toxic to mosquito larvae the following day. After placing the crustaceans in fresh salt-marsh water for 6 days, the fresh faecal pellets failed to kill mosquitoes apart from pellets obtained from crustaceans originally fed on the highest concentration of Bti, where there was a 50% kill after 3 days of incubation. Mosquito larvae on salt-marshes are not easy to control with ecologically undesirable toxic chemicals. Encouraging the breeding of predators such as crustaceans, or even their release, could prove to be a useful method of mosquito control to supplement the periodic inundative use of the ecologically acceptable Bti.  相似文献   

2.
Dry powders produced from insecticidal Bacillus sphaericus strains 1593 and 2362 were applied against Culex tarsalis and Anopheles franciscanus mosquito larvae in small-plot field trials. Good control of C. tarsalis, but not of A. franciscanus, was produced at 0.1 and 0.2 lb/acre [ca. 0.122 and 0.244 kg/ha]. B. sphaericus spores settled rapidly from upper water layers and accumulated in bottom muds. Control of third/fourth-instar C. tarsalis larvae was maintained through day 4 after testing and was related to the presence of at least 100 spores per ml in the upper water layer 2 days earlier. B. sphaericus was shown to recycle in dead larvae both in the laboratory and in the field, producing an increase of 100- to 1,000-fold in spore numbers. There was no evidence of recycling in treated water nor of significant spore persistence upon reflooding of ponds after a very hot, dry period.  相似文献   

3.
Bacillus thuringiensis var. israelensis (Bti) is highly pathogenic to mosquito larvae and is widely used for mosquito control. Its mosquitocidal activity however is relatively low compared to many chemical insecticides. The detoxification mechanisms in the mosquito, among other things, might neutralize the Bti activity, resulting in resistance or tolerance. We tested whether or not the detoxification mechanisms against chemical insecticides might also operate against Bti, rendering it less effective. We targeted four enzymes in Aedes aegypti larvae involved in detoxification with inhibitors that have been used in resistance studies in chemical insecticides and assayed their effects on Bti toxicity. Results revealed that phenylmethanesulphonyl fluoride (PMSF), diethyl maleate, phenobarbital (PB), and piperonyl butoxide (PBO) altered Bti toxicity to various degrees. PMSF is a serine protease inhibitor that prevents Bti digestion and improves Bti activity. PB that induces several detoxifying enzymes had two different effects depending on the method of treatment. Mortality was higher when treatment with PB was discontinuous (149%) whereas with continuous treatment it was lower (101%). PBO, a typical cytochrome P450 inhibitor, increased Bti effect (159%). The combination of discontinuous pretreatment of larvae with PB followed by PBO had a synergistic effect and showed increased activity (146%). It appears that the mechanism for Bti resistance in mosquitoes is similar to that of chemical insecticides. Our studies indicate that we may be able to increase Bti activity by inhibiting some of the detoxification systems as active as broad spectrum chemical insecticides.  相似文献   

4.
Sprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B. thuringiensis subsp. israelensis field efficiency on mosquito control, few studies have evaluated the fate of spores in the environment after treatments. In the present article, two complementary experiments were conducted to study the effect of different parameters on B. thuringiensis subsp. israelensis persistence and recycling, in field conditions and in the laboratory. First, we monitored B. thuringiensis subsp. israelensis persistence in the field in two contrasting regions in France: the Rhône-Alpes region, where mosquito breeding sites are temporary ponds under forest cover with large amounts of decaying leaf matter on the ground and the Mediterranean region characterized by open breeding sites such as brackish marshes. Viable B. thuringiensis subsp. israelensis spores can persist for months after a treatment, and their quantity is explained both by the vegetation type and by the number of local treatments. We found no evidence of B. thuringiensis subsp. israelensis recycling in the field. Then, we tested the effect of water level, substrate type, salinity and presence of mosquito larvae on the persistence/recycling of B. thuringiensis subsp. israelensis spores in controlled laboratory conditions (microcosms). We found no effect of change in water level or salinity on B. thuringiensis subsp. israelensis persistence over time (75 days). B. thuringiensis subsp. israelensis spores tended to persist longer in substrates containing organic matter compared to sand-only substrates. B. thuringiensis subsp. israelensis recycling only occurred in presence of mosquito larvae but was unrelated to the presence of organic matter.  相似文献   

5.
Although many field trials have been conducted using Bacillus thuringiensis subsp. israelensis (Bti)-based formulations, most have been in rivers with different biotic and abiotic conditions thus rendering the evaluation of their performance very difficult. Recently, results of a threeyear experiment using a new field procedure brought new insight into the behavior and the performance (carry) of two liquid formulations of Bti, Teknar HP-D and Vectobac 1200L, tested in the same lotic environment and under similar abiotic and biotic conditions. Factors such as discharge, water temperature and the hyporheic zone were identified as elements affecting the downstream loss of activity of both products. However, to better understand the reduction of black fly mortality along a stream (measured by using gutters), data of residual dosages of both products (measured by laboratory assay with mosquito larvae) were compared with reduction of black fly mortality. Bti toxic activity was monitored from water samples taken at different distances downstream from an application point, and from probes driven into the hyporheic zone, to study the effects of abiotic factors on the loss of the toxic crystals. Results showed that the loss of dosage was exponential for both products but more crystals were recovered from Vectobac 1200L along the stream than from Teknar HP-D. However, the latter was more efficient, i.e. less toxins were needed to kill 50% of black fly larvae both in temperate (16°C) and warmer (19.5-22°C) water. Also, a rise in water temperature had a greater effect in the kill induced by Vectobac 1200L compared to Teknar HP-D. For the same residual dosages present at the stations, longer carries of toxin activity (higher mortalities) were obtained in warmer water. Finally, the hyporheic zone was identified as a major source of loss of activity of Bti products. Large stream discharges decreased the effect of the hyporheic zone and that was reflected in longer carry of the products.  相似文献   

6.
Integrated management of mosquitoes is becoming increasingly important, particularly in relation to avoiding recolonization of ponds after larvicide treatment. We conducted for the first time field experiments that involved exposing natural populations of the mosquito species Culex pipiens to: a) application of the biological insecticide Bacillus thuringiensis israelensis (Bti), b) the introduction of natural competitors (a crustacean community composed mainly of Daphnia spp.), or c) a combined treatment that involved both introduction of a crustacean community and the application of Bti. The treatment that involved only the introduction of crustaceans had no significant effect on mosquito larval populations, while treatment with Bti alone caused only a significant reduction in the abundance of mosquito larvae in the short‐term (within 3–10 days after treatment). In contrast, the combined treatment rapidly reduced the abundance of mosquito larvae, which remained low throughout the entire observation period of 28 days. Growth of the introduced crustacean communities was favored by the immediate reduction in the abundance of mosquito larvae following Bti administration, thus preventing recolonization of ponds by mosquito larvae at the late period (days 14–28 after treatment). Both competition and the temporal order of establishment of different species are hence important mechanisms for efficient and sustainable mosquito control.  相似文献   

7.
8.
Carcasses of mosquito larvae killed by Bacillus thuringiensis var. israelensis allow its complete growth cycle (germination, vegetative growth, and sporulation), thus becoming toxic themselves to scavenging larvae. In this study, we demonstrate that the bacterium is capable of inducing death of Aedes aegypti pupae and of recycling in the resulting carcasses. B. thuringiensis var. israelensis-killed pupae were obtained by treating 40-hr-old synchronized fourth instar larvae with a low dose of spores (8000/ml). The fraction of dead pupae was reduced by higher or lower spore concentrations as well as by treating younger or older larval populations (both fourth instar): Increased proportions of dead larvae were obtained at higher concentration or by earlier treatment, whereas lower concentrations or later treatment resulted in more living pupae. Multiplication of B. thuringiensis var. israelensis is shown to occur in the carcasses of dead pupae. The number of spores in each pupal carcass followed a similar kinetic as in larval carcasses, but the final yield was about 10-fold higher, apparently reflecting the difference in dry weight between the two mosquito developmental stages (426 micrograms vs 83 micrograms, respectively). The specific larvicidal activity in a homogenized dead pupa was similar to that of B. thuringiensis var. israelensis powder, LC50 of about 600 spores/ml.  相似文献   

9.
采用常规的生物测定方法确定了纯化的球形芽孢杆菌(Bacillus sphaericus)的缺失信号肽的97kDa营养期杀蚊毒素(Mosquitocidal toxin 1,Mtx1)蛋白和苏云金芽孢杆菌(Bacillus thuringiensis)27.3kDa的Cyt1Aa晶体蛋白对致倦库蚊(Culex quinquefasciatus)幼虫的杀虫活性。结果表明Mtx1和Cyt1Aa不同比例的混合物对致倦库蚊的毒力比单独毒素蛋白高,经统计分析表明两毒素蛋白对目标蚊幼虫具有明显的协同作用。在LC98处理浓度下,Mtx1和Cyt1Aa按3∶1混合的混合物LT50值比单独Mtx1的提前了6.36h。表明Cyt1Aa和Mtx1对致倦库蚊具有协同毒杀作用,提高对目标蚊虫的毒力、缩短半致死时间。该结果为深入研究Mtx1和Cyt1Aa的杀蚊作用方式奠定了基础,同时为其在蚊虫防治中的应用提供了新的思路和方法。  相似文献   

10.
The protein crystals produced by Bacillus thuringiensis israelensis (Bti) are used against the larvae of pestiferous flood-water mosquitoes in ephemeral wetlands. Although mosquito larvae are considered important predators on protozoans and bacteria, it is not known how a distinct reduction of mosquito larvae density in natural wetlands caused by application of Bti may indirectly affect these microbial communities. Here we show, in a large scale experiment in six natural wetlands, that the densities of heterotrophic protozoans was on an average 4.5 times higher in wetland areas treated with Bti than in control areas. In addition, the taxonomic richness of heterotrophic protozoans increased on an average of 60% in areas with Bti application compared to control areas. The increase in protozoan density and richness was fairly consistent among sites of different wetland habitats. We discuss the potential implications of our results for other parts of the ecosystem. Handling editor: K. Martens  相似文献   

11.
The mosquito is a very important vector involved in the worldwide transmission of disease-causing viruses and parasites. Controlling the mosquito population remains one of the best means for preventing the serious infectious diseases of malaria, yellow fever, dengue, filariasis and so on and there has been an increasing interest in developing biopesticides as a useful substitute to chemical insecticides. As a result, Bacillus thuringiensis subsp. israelensis (Bti) has been extensively used due to its specificity and high toxicity to a variety of mosquito larvae. However it is prudent to seek alternatives to Bti with alternative spectra of mosquitocidal activity or that are able to overcome any resistance that might develop against Bti. The Bt S2160-1 strain was isolated from soil samples collected from Southern China and found to have a comparable mosquitocidal activity to Bti. However there were significant differences in terms of their plasmid profiles, crystal proteins produced and cry gene complement. A PCR-restriction fragment length polymorphism identification system was developed and used in order to identify novel cry-type genes and four such genes (cry30Ea, cry30Ga, cry50Ba and cry54Ba) were identified in Bt S2160-1. In conclusion, Bt S2160-1 has been identified as a potential alternative to Bti, which could be used for the control of mosquito populations in order to reduce the incidence of mosquito-borne diseases.  相似文献   

12.
In order to examine the factors influencing xenobiotic toxicity against larval mosquitoes, the larvicidal performances of two conventional insecticides (temephos and Bacillus thuringiensis var. israelensis: Bti) and a new potential phyto-insecticide (decomposed leaf litter) were compared under different conditions against three detritivorous larval mosquito types. Bioassays performed under standard conditions indicated differential tolerance levels according to the xenobiotic and the larval type. Bioassays performed under different conditions of xenobiotic dose and geometry of the water column indicated differential effects of those parameters on mortality rates. This allowed us to distinguish the performances of temephos versus those of Bti and leaf litter. These toxicological performances were examined as indicators for analysis of xenobiotic bioavailability for mosquito larvae in environmental water, and also for their comparative interest in field mosquito control.  相似文献   

13.
A field test was conducted in rice paddies adjacent to Wufeng, Taichung County in Central Taiwan to evaluate the efficacy of control agents against mosquito larvae. The agents included Bacillus thuringienesis israelensis (Bti), two Lagenidium giganteum products (Lg product A and T), and temephos. The major mosquito species found in the rice paddies were Culex tritaeniorhynchus/vishnui and Anopheles sinensis. Compared to controls, a 7-day treatment with Bti or Lg products A and T caused overall reductions in the number of immatures (larvae and pupae) of Cx. tritaeniorhynchus/vishnui of 77.5%, 49.7%, and 21.9%, respectively, whereas temephos caused an increase of 66.9%. The overall reductions in An. sinensis were 85.4%, 8.6%, 44.6%, and 92.1%, respectively. There was no significant reduction in the number of mosquito larvae following 42 days of treatment with these agents. In summary, 1-week treatments with both biological control agents produced moderate overall reductions in mosquito larvae in rice paddies. The insecticide temephos, on the other hand, was very effective at suppressing the larvae of An. sinensis but significantly increased the number of Cx. tritaeniorhynchus/vishnui larvae in temephos-treated plots.  相似文献   

14.
Two microbial mosquito larvicides, Bacillus thuringiensis ssp. israelensis (Bti) and Bacillus sphaericus (Bsph), have been shown to be highly effective in controlling mosquito larvae and have been used in larvicidal programs for many years. In exploring other modes of action of these agents, we studied the ovipositional response of Bsph susceptible and resistant Culex quinquefasciatus to aqueous suspensions of Bti and Bsph water dispersible granules (WDG). We quantified the level of mortality of adult mosquitoes caused by exposure to Bti and Bsph suspensions during oviposition. Significantly lower numbers of egg rafts were laid and collected from the treatments than the control regimen. There was an inverse relationship between Bacillus product concentrations and oviposition. As the concentration of Bti or Bsph increased from 0.0 to 2.0 mg/L, treated waters received progressively fewer egg rafts. In addition to the negative effects of Bacillus on oviposition, both male and female adult mosquitoes suffered high mortality on landing and imbibing on Bti and Bsph suspensions, the extent of mortality directly proportional to concentration. These two microbial agents used solely as mosquito larvicides thus have the additional benefits of reducing mosquito oviposition and killing adult mosquitoes, especially gravid females that come in contact with the treated water either for oviposition or drinking. Reducing the number of gravid females may also result in reduced transmission rates of pathogens. The combined effects of reduced oviposition and adult mortality could result in higher control potential of these microbial agents.  相似文献   

15.
It was shown previously that spores and vegetative cells of Bacillus sphaericus (Bf) and Bacillus thuringiensis israelensis (Bti) are very sensitive to osmotic variations. Since spore osmotolerance has been associated with their SASP (small acid soluble spore proteins) content coded by ssp genes, hybridization assays were performed with sspE and sspA genes from B. subtilis as probes and showed that Bti and Bf strains could lack an sspE-like gene. The B. subtilis sspE gene was then introduced into Bti 4Q2 strain; spores were obtained and showed a 65 to 650 times higher level of osmotolerance to NaCl, without affecting other important properties: hypoosmotic resistance in vegetative cells, spore UV resistance, and larvicidal activity against diptera larvae.  相似文献   

16.
Optimization of chicken feather (CF) based culture medium for the production of Bacillus thuringiensis subsp. israelensis (Bti) biomass in combination with the agro industrial by-product (coconut cake, CC) and manganese chloride (MnCl2) has been evaluated. The biomass yield of Bti spore/crystal toxin was highest (12.06 g/L) from the test medium (CF+CC+MnCl2) compared to the reference medium (Luria Bertani, LB). Toxicity assay with Bti produced from the test medium against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti) was also satisfactory and results were comparable with bacteria produced from LB. The results suggest that Bti can be produced to the maximum extent possible as a potential mosquitocidal activity as suggested by the test medium (CF+CC+MnCl2).  相似文献   

17.
Summary The crystalline parasporal inclusions (crystals) of Bacillus thuringiensis israelensis (Bti), which are specifically toxic to mosquito and black fly larvae, contain three main polypeptides of 28 kDa, 68 kDa and 130 kDa. The genes encoding the 28 kDa protein and the 130 kDa protein have been cloned from a large plasmid of Bti. Escherichiacoli recombinant clones containing the 130 kDa protein gene were highly active against larvae of Aedes aegypti and Culex pipiens, while B. subtilis recombinant cells containing the 28 kDa protein gene were haemolytic for sheep red blood cells. A fragment of the Bti plasmid which is partially homologous to the 130 kDa protein gene was also isolated; it probably corresponds to part of a second type of mosquitocidal toxin gene. Furthermore, restriction enzyme analysis suggested that the 130 kDa protein gene is located on the same Bti EcoRI fragment as another kind of Bti mosquitocidal protein gene cloned by Thorne et al. (1986). Hybridization experiments conducted with the 28 kDa protein gene and the 230 kDa protein gene showed that these two Bti genes are probably present in the plasmid DNA of B. thuringiensis subsp. morrisoni (PG14), which is also highly active against mosquito larvae.  相似文献   

18.
19.
Bacillus thuringiensis subsp. israelensis is a bioinsecticide increasingly used worldwide for mosquito control. Despite its apparent low level of persistence in the field due to the rapid loss of its insecticidal activity, an increasing number of studies suggested that the recycling of B. thuringiensis subsp. israelensis can occur under specific, unknown conditions. Decaying leaf litters sampled in mosquito breeding sites in the French Rhône-Alpes region several months after a treatment were shown to exhibit a high level of larval toxicity and contained large amounts of spores. In the present article, we show that the high concentration of toxins found in these litters is consistent with spore recycling in the field, which gave rise to the production of new crystal toxins. Furthermore, in these toxic leaf litter samples, Cry4Aa and Cry4Ba toxins became the major toxins instead of Cyt1Aa in the commercial mixture. In a microcosm experiment performed in the laboratory, we also demonstrated that the toxins, when added in their crystal form to nontoxic leaf litter, exhibited patterns of differential persistence consistent with the proportions of toxins observed in the field-collected toxic leaf litter samples (Cry4 > Cry11 > Cyt). These results give strong evidence that B. thuringiensis subsp. israelensis recycled in specific breeding sites containing leaf litters, and one would be justified in asking whether mosquitoes can become resistant when exposed to field-persistent B. thuringiensis subsp. israelensis for several generations.  相似文献   

20.
The efficacy of a local Thai-strain of the copepod, Mesocyclops thermocyclopoides and the larvicide, Bacillus thuringiensis var. israelensis (Bti), used jointly and singly, was studied against Aedes aegypti in water containers. In a laboratory test, copepods alone produced mortality of 98-100% in 1st instar larvae of Ae. aegypti at copepod:larvae ratios ranging from 1:1 to 1:4. In an outdoor field simulated experiment that ran for 16 wk, after a single inoculation, the treatment of copepods and Bti combined yielded the better, more sustainable results than the agents used individually. Numbers of mosquito larvae per sample in the combined treatment were zero during the first 8 wk; larval numbers then increased but were maintained at a very low level for the next 4 wk after which the larval numbers increased moderately but still remained below numbers in the control. Bti alone kept the larvae at the zero level for the first 4 wk after which their numbers increased slightly and were at low levels up to 12 wk. Copepods alone maintained larval numbers at a low level as compared with those of the control. During the course of the experiment the larval numbers in the control were greater than 20 per sample. Statistically significant differences were noted among treatment means (F = 23.083, df = 3/60, P<0.01) over the total period of the study. The number of copepods in the joint treatment was significantly higher than in the copepod alone treatment for the first 8 wk (t = -4.97, df = 14, P<0.01). The density of copepods, however, for the whole 16-wk period was not significantly different in these two treatments (t = -1.51, df = 30, P>0.1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号