首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Phototropins (phot1 and phot2, formerly designated nph1 and npl1) are blue-light receptors that mediate phototropism, blue light-induced chloroplast relocation, and blue light-induced stomatal opening in Arabidopsis. Phototropins contain two light, oxygen, or voltage (LOV) domains at their N termini (LOV1 and LOV2), each a binding site for the chromophore flavin mononucleotide (FMN). Their C termini contain a serine/threonine protein kinase domain. Here, we examine the kinetic properties of the LOV domains of Arabidopsis phot1 and phot2, rice (Oryza sativa) phot1 and phot2, and Chlamydomonas reinhardtii phot. When expressed in Escherichia coli, purified LOV domains from all phototropins examined bind FMN tightly and undergo a self-contained photocycle, characterized by fluorescence and absorption changes induced by blue light (T. Sakai, T. Kagawa, M. Kasahara, T.E. Swartz, J.M. Christie, W.R. Briggs, M. Wada, K. Okada [2001] Proc Natl Acad Sci USA 98: 6969-6974; M. Salomon, J.M. Christie, E. Knieb, U. Lempert, W.R. Briggs [2000] Biochemistry 39: 9401-9410). The photocycle involves the light-induced formation of a cysteinyl adduct to the C(4a) carbon of the FMN chromophore, which subsequently breaks down in darkness. In each case, the relative quantum efficiencies for the photoreaction and the rate constants for dark recovery of LOV1, LOV2, and peptides containing both LOV domains are presented. Moreover, the data obtained from full-length Arabidopsis phot1 and phot2 expressed in insect cells closely resemble those obtained for the tandem LOV-domain fusion proteins expressed in E. coli. For both Arabidopsis and rice phototropins, the LOV domains of phot1 differ from those of phot2 in their reaction kinetic properties and relative quantum efficiencies. Thus, in addition to differing in amino acid sequence, the phototropins can be distinguished on the basis of the photochemical cycles of their LOV domains. The LOV domains of C. reinhardtii phot also undergo light-activated spectral changes consistent with cysteinyl adduct formation. Thus, the phototropin family extends over a wide evolutionary range from unicellular algae to higher plants.  相似文献   

2.
Phototropins (phot1 and phot2) are autophosphorylating serine/threonine kinases that function as photoreceptors for phototropism, light-induced chloroplast movement, and stomatal opening in Arabidopsis. The N-terminal region of phot1 and phot2 contains two specialized PAS domains, designated LOV1 and LOV2, which function as binding sites for the chromophore flavin mononucleotide (FMN). Both LOV1 and LOV2 undergo a self-contained photocycle, which involves the formation of a covalent adduct between the FMN chromophore and a conserved active-site cysteine residue (Cys39). Replacement of Cys39 with alanine abolishes the light-induced photochemical reaction of LOV1 and LOV2. Here we have used the Cys39Ala mutation to investigate the role of LOV1 and LOV2 in regulating phototropin function. Photochemical analysis of a bacterially expressed LOV1 + LOV2 fusion protein indicates that LOV2 functions as the predominant light-sensing domain for phot1. LOV2 also plays a major role in mediating light-dependent autophosphorylation of full-length phot1 expressed in insect cells and transgenic Arabidopsis. Moreover, photochemically active LOV2 alone in full-length phot1 is sufficient to elicit hypocotyl phototropism in transgenic Arabidopsis, whereas photochemically active LOV1 alone is not. Further photochemical and biochemical analyses also indicate that the LOV1 and LOV2 domains of phot2 exhibit distinct roles. The significance for the different roles of the phototropin LOV domains is discussed.  相似文献   

3.
Phototropins (phot1 and phot2) are plant blue-light receptors that mediate phototropism, chloroplast movement, stomatal opening, rapid inhibition of growth of etiolated seedlings, and leaf expansion in Arabidopsis (Arabidopsis thaliana). Their N-terminal region contains two light, oxygen, or voltage (LOV) domains, which bind flavin mononucleotide and form a covalent adduct between a conserved cysteine and the flavin mononucleotide chromophore upon photoexcitation. The C-terminal region contains a serine/threonine kinase domain that catalyzes blue-light-activated autophosphorylation. Here, we have transformed the phot1 phot2 (phot1-5 phot2-1) double mutant with PHOT expression constructs driven by the cauliflower mosaic virus 35S promoter. These constructs encode either wild-type phototropin or phototropin with one or both LOV-domain cysteines mutated to block their photochemistry. We selected multiple lines in each of the eight resulting categories of transformants for further physiological analyses. Specifically, we investigated whether LOV1 and LOV2 serve the same or different functions for phototropism and leaf expansion. Our results show that the LOV2 domain of phot1 plays a major role in phototropism and leaf expansion, as does the LOV2 domain of phot2. No complementation of phototropism or leaf expansion was observed for the LOV1 domain of phot1. However, phot2 LOV1 was unexpectedly found to complement phototropism to a considerable level. Similarly, transformants carrying a PHOT transgene with both LOV domains inactivated developed strong curvatures toward high fluence rate blue light. However, we found that the phot2-1 mutant is leaky and produces a small level of full-length phot2 protein. In vitro experiments indicate that cross phosphorylation can occur between functional phot2 and inactivated phot1 molecules. Such a mechanism may occur in vivo and therefore account for the functional activities observed in the PHOT transgenics with both lov domains inactivated. The implications of this mechanism with respect to phototropin function are discussed.  相似文献   

4.
Crosson S  Moffat K 《The Plant cell》2002,14(5):1067-1075
The phototropins are flavoprotein kinases that control phototropic bending, light-induced chloroplast movement, and stomatal opening in plants. Two flavin mononucleotide binding light, oxygen, or voltage (LOV) domains are the sites for initial photochemistry in these blue light photoreceptors. We have determined the steady state, photoexcited crystal structure of a flavin-bound LOV domain. The structure reveals a unique photochemical switch in the flavin binding pocket in which the absorption of light drives the formation of a reversible covalent bond between a highly conserved Cys residue and the flavin cofactor. This provides a molecular picture of a cysteinyl-flavin covalent adduct, the presumed signaling species that leads to phototropin kinase activation and subsequent signal transduction. We identify closely related LOV domains in two eubacterial proteins that suggests the light-induced conformational change evident in this structure is an ancient biomolecular response to light, arising before the appearance of plants.  相似文献   

5.
Phototropins, originally detected by their blue light-dependent autophosphorylation, are plant photoreceptors involved in several blue light responses such as phototropism, chloroplast relocation, leaf expansion, rapid inhibition of hypocotyl growth, and stomatal opening. Three domains have been identified in phototropin sequences, two chromophore binding domains (LOV1 and LOV2) and a kinase domain. We describe here two additional domains, the N-terminus upstream of LOV1 and the hinge region between LOV1 and LOV2, as the regions for autophosphorylation; the phosphorylation sites were identified by site-directed mutagenesis as S27, S30, S274, S300, S317, S325, S332, and S349 of the PHOT1a sequence of Avena sativa. Investigation of the autophosphorylation in vivo revealed that serines close to the LOV1 domain are phosphorylated at lower fluence of blue light than the serines close to the LOV2 domain. Recovery of phosphorylation in vivo during a dark period after saturating irradiation is caused by dephosphorylation rather than by degradation of the phosphorylated form and new synthesis of nonphosphorylated phototropin. The results were obtained by a combination of autophosphorylation of phototropin with phosphorylation of recombinant domains by protein kinase A, which turned out to have the same site specificity as the phototropin kinase, followed by proteolysis and separation of phosphopeptides. With the knowledge of the phosphorylation sites, the physiological and biochemical consequences of autophosphorylation can now be approached by site-directed mutagenesis of phototropins.  相似文献   

6.
Phototropin (phot) is a light-regulated protein kinase that mediates a variety of photoresponses in plants, such as phototropism, chloroplast positioning, and stomata opening. Arabidopsis has two homologues, phot1 and phot2, that share physiological functions depending on light intensity. A phot molecule has two photoreceptive light oxygen voltage-sensing domains, LOV1 and LOV2, and a Ser/Thr kinase domain. The LOV domains undergo a photocycle upon blue light (BL) stimulation, including transient adduct formation between the chromophore and a conserved cysteine (S390 intermediate) that leads to activation of the kinase. To uncover the mechanism underlying the photoactivation of the kinase, we have introduced a kinase assay system composed of a phot1 LOV2-linker-kinase polypeptide as a light-regulated kinase and its N-terminal polypeptide as an artificial substrate (Okajima, K., Matsuoka, D., and Tokutomi, S. (2011) LOV2-linker-kinase phosphorylates LOV1-containing N-terminal polypeptide substrate via photoreaction of LOV2 in Arabidopsis phototropin1. FEBS Lett. 585, 3391–3395). In the present study, we extended the assay system to phot2 and compared the photochemistry and kinase activation by BL between phot1 and phot2 to gain insight into the molecular basis for the different photosensitivities of phot1 and phot2. Photosensitivity of kinase activation by BL and the lifetime of S390 of phot1 were 10 times higher and longer, respectively, than those of phot2. This correlation was confirmed by an amino acid substitution experiment with phot1 to shorten the lifetime of S390. The present results demonstrated that the photosensitivity of kinase activation in phot involves the lifetime of S390 in LOV2, suggesting that the lifetime is one of the key factors for the different photosensitivities observed for phot1 and phot2.  相似文献   

7.
Phototropin (phot) is a blue-light receptor protein that triggers phototropic responses, chloroplast relocation, and stomata opening to maximize the efficiency of photosynthesis in higher plants. Phot is composed of three functional domains. The N-terminal half folds into two light-oxygen-voltage-sensing domains called LOV1 and LOV2, each binding a flavin mononucleotide to absorb blue light. The C-terminal half is a serine/threonine kinase domain that causes light-dependent autophosphorylation leading to cellular signaling cascades. LOV2 domain is primarily responsible for activation of the kinase, and LOV1 domain is thought to act as a dimerization site and to regulate sensitivity to activation by blue light. Here we show the crystal structures of LOV1 domains of Arabidopsis phot1 and phot2 in the dark at resolutions of 2.1 Å and 2.0 Å, respectively. Either LOV1 domain forms a dimer through face-to-face association of β-scaffolds in the crystallographic asymmetric unit. Three types of interactions stabilizing the dimer structures found are as follows: contacts of side chains in their β-scaffolds, hydrophobic interactions of a short helix found in the N-terminus of a subunit with the β-scaffolds of both subunits, and hydrogen bonds mediated by hydration water molecules filling the dimer interface. The critical residues for dimerization are Cys261, forming a disulfide bridge between subunits in phot1-LOV1 domain, and Thr217 and Met232 in phot2-LOV1. The topology in homodimeric associations of the LOV1 domains is discussed when referring to those of homodimers or heterodimers of light-oxygen-voltage-sensing or Per-ARNT-Sim domains. The present results also provide clues to understanding structural basis in dimeric interactions of Per-ARNT-Sim protein modules in cellular signaling.  相似文献   

8.
Phototropin is a membrane-bound UV-A/blue light photoreceptor of plants responsible for phototropism, chloroplast migration and stomatal opening. Characteristic are two LOV domains, each binding one flavin mononucleotide, in the N-terminal half and having a serine/threonine kinase domain in the C-terminal half of the molecule. We purified the N-terminal half of oat phototropin 1, containing LOV1 and LOV2 domains, as a soluble fusion protein with the calmodulin binding peptide (CBP) by expression in Escherichia coli. Gel chromatography showed that it was dimeric in solution. While the fusion protein CBP-LOV2 was exclusively monomeric in solution, the fusion protein CBP-LOV1 occurred as monomer and dimer. The proportion of dimer increased on prolonged incubation. We conclude that native phototropin is a dimer and that the LOV1 domain is probably responsible for dimerization.  相似文献   

9.
Kagawa T  Suetsugu N 《FEBS letters》2007,581(3):368-374
Chloroplast photoorientation in the green alga Mougeotia scalaris is controlled by blue and red light. The properties of the LOV domains of phototropin A and B were consistent with previous data of action spectra and photoreceptor lifetime for blue light-mediated photoorientation. The LOV domains of the neochromes did not bind flavin, while the domains of neochrome 2 contributed to multimer formation. The absorption spectra of the neochrome phytochrome photosensory domain with phytochromobilin were very similar to the action spectra for red light-induced photoorientation. These results indicate that phototropin and neochrome work as the blue and red photoreceptors involved in photoorientation.  相似文献   

10.
A blue-light photoreceptor in plants, phototropin, mediates phototropism, chloroplast relocation, stomatal opening, and leaf-flattening responses. Phototropin is divided into two functional moieties, the N-terminal photosensory and the C-terminal signaling moieties. Phototropin perceives light stimuli by the light, oxygen or voltage (LOV) domain in the N-terminus; the signal is then transduced intramolecularly to the C-terminal kinase domain. Two phototropins, phot1 and phot2, which have overlapping and distinct functions, exist in Arabidopsis thaliana. Phot1 mediates responses with higher sensitivity than phot2. Phot2 mediates specific responses, such as the chloroplast avoidance response and chloroplast dark positioning. To elucidate the molecular basis for the functional specificities of phot1 and phot2, we exchanged the N- and C-terminal moieties of phot1 and phot2, fused them to GFP and expressed them under the PHOT2 promoter in the phot1 phot2 mutant background. With respect to phototropism and other responses, the chimeric phototropin consisting of phot1 N-terminal and phot2 C-terminal moieties (P1n/2cG) was almost as sensitive as phot1; whereas the reverse combination (P2n/1cG) functioned with lower sensitivity. Hence, the N-terminal moiety mainly determined the sensitivity of the phototropins. Unexpectedly, both P1n/2cG and P2n/1cG mediated the chloroplast avoidance response, which is specific to phot2. Hence, chloroplast avoidance activity appeared to be suppressed specifically in the combination of N- and C-terminal moieties of phot1. Unlike the chloroplast avoidance response, chloroplast dark positioning was observed for P2G and P2n/1cG but not for P1G or P1n/2cG, suggesting that a specific structure in the N-terminal moiety of phot2 is required for this activity.  相似文献   

11.
Gametophytes of the fern Adiantum capillus-veneris L. were mutagenized by heavy ion beam irradiation and screened for mutants lacking chloroplast avoidance movement under high intensity blue light. Mutants recovered include several with small deletions in the AcPHOT2 gene. The avoidance movement response in these mutants could be restored by transient expression of non-mutant AcPHOT2 cDNA, indicating that the chloroplast avoidance movement in this fern is mediated by the Acphot2 protein. Further functional analyses of the Acphot2 protein were performed using this transient assay for chloroplast avoidance movement. The results obtained suggest that the LOV2, but not the LOV1, domain of Acphot2 is essential for avoidance movement, and that several residues in the C-terminus of the kinase domain contribute to the avoidance response. The rate of dark reversion of the photo-activated LOV2 domain, which was calculated photometrically, was too fast to account for the lifetime of phot2 signal estimated from physiological responses. However, the rate of dark reversion of the combined domains of LOV1 and LOV2 did correspond to the lifetime of the signal, suggesting that LOV1 might have some function in this response, although it is not essential for playing a role as a photoreceptor.  相似文献   

12.
In gametophytic cells (prothalli) of the fern Adiantum capillus-veneris, nuclei as well as chloroplasts change their position according to light conditions. Nuclei reside on anticlinal walls in darkness and move to periclinal or anticlinal walls under weak or strong light conditions, respectively. Here we reveal that red light-induced nuclear movement is mediated by neochrome1 (neo1), blue light-induced movement is redundantly mediated by neo1, phototropin2 (phot2) and possibly phot1, and dark positioning of both nuclei and chloroplasts is mediated by phot2. Thus, both the nuclear and chloroplast photorelocation movements share common photoreceptor systems.  相似文献   

13.
The phototropins phot1 and phot2 are plant blue-light receptors that mediate phototropism, chloroplast movements, stomatal opening, leaf expansion, the rapid Inhibition of hypocotyl growth in etiolated seedlings, and possibly solar tracking by leaves in those species in which It occurs. The phototroplns are plasma membrane-associated hydrophilic proteins with two chromophore domains (designated LOV1 and LOV2 for their resemblance to domains In other signaling proteins that detect light, oxygen, or voltage) in their Nterminal half and a classic serine/threonlne kinase domain in their C-terminal half. Both chromophore domains bind flavin mononucleotide (FMN) and both undergo light-activated formation of a covalent bond between a nearby cystelne and the C(4a) carbon of the FMN to form the signaling state. LOV2-cystelnyl adduct formation leads to the release downstream of a tightly bound amphlpathlc α-helix, a step required for activation of the klnase function. This cysteinyl adduct then slowly decays over a matter of seconds or minutes to return the photoreceptor chromophore modules to their ground state. Functional LOV2 is required for light-activated phosphorylation and for various blue-light responses mediated by the phototroplns. The function of LOV1 is still unknown, although It may serve to modulate the signal generated by LOV2. The LOV domain Is an ancient chromophore module found In a wide range of otherwise unrelated proteins In fungi and prokaryotes, the latter Including cyanobacterla, eubacterla, and archaea. Further general reviews on the phototropins are those by Celaya and Liscum (2005) and Christie and Briggs (2005).  相似文献   

14.
Okajima K  Matsuoka D  Tokutomi S 《FEBS letters》2011,585(21):3391-3395
Phototropin is a blue light receptor in plants and is thought to be a light-regulated protein kinase. Previously, we defined the role of the photoreceptive domains, LOV1 and 2, in the light activation of the kinase in Arabidopsis phototropin2 (phot2). In this study, photoregulation of the kinase in phototropin1 (phot1) was studied using LOV2-linker-kinase polypeptide. We designed a new substrate consisting of the N-terminal part of the phot1 with autophosphorylation sites. The LOV2-linker-kinase had the same spectroscopic properties as those of the LOV2 core and phosphorylated the substrate in a light-dependent manner. Amino acid substitution experiments proved that the phosphorylation comes from the activation of the kinase via photoreaction of LOV2.  相似文献   

15.
In the plant blue-light sensor phototropin, illumination of the chromophoric LOV domains causes activation of the serine/threonine kinase domain. Flavin mononucleotide (FMN) is a chromophore molecule in the two LOV domains (LOV1 and LOV2), but only LOV2 is responsible for kinase activation. Previous studies reported an important role of an additional helix connected to the C-terminal of LOV2 (Jα helix) for the function of phototropin; however, it remains unclear how the Jα helix affects light-induced structural changes in LOV2. In this study we compared light-induced protein structural changes of the LOV2 domain of Arabidopsis phot1 in the absence (LOV2-core) and presence (LOV2-Jα) of the Jα helix by Fourier-transform infrared spectroscopy. Prominent peaks were observed only in the amide-I region (1650 (−)/1625 (+) cm−1) of LOV2-Jα at physiological temperatures (≥260 K), corresponding to structural perturbation of the α-helix. The peaks were diminished by point mutation of functionally important amino acids such as Phe-556 between FMN and the β-sheet, Gln-575 being hydrogen-bonded with FMN, and Ile-608 on the Jα helix. We thus conclude that a light signal is relayed from FMN through these amino acids and eventually changes the interaction between LOV2-core and the Jα helix in Arabidopsis phot1.  相似文献   

16.
Chen E  Swartz TE  Bogomolni RA  Kliger DS 《Biochemistry》2007,46(15):4619-4624
Light-, oxygen-, or voltage-regulated (LOV1 and LOV2) domains bind flavin mononucleotide (FMN) and activate the phototropism photoreceptors phototropin 1 (phot1) and phototropin 2 (phot2) by using energy from absorbed blue light. Upon absorption of blue light, chromophore and protein conformational changes trigger the kinase domain for subsequent autophosphorylation and presumed downstream signal transduction. To date, the light-induced photocycle of the phot1 LOV2 protein is known to involve formation of a triplet flavin mononucleotide (FMN) chromophore followed by the appearance of a FMN adduct within 4 micros [Swartz, T. E., Corchnoy, S. B., Christie, J. M., Lewis, J. W., Szundi, I., Briggs, W. R., and Bogomolni, R. A. (2001) J. Biol. Chem. 276, 36493-36500] before thermal decay back to the dark state. To probe the mechanism by which the blue light information is relayed from the chromophore to the protein, nanosecond time-resolved optical rotatory dispersion (TRORD) spectroscopy, which is a direct probe of global secondary structure, was used to study the phot1 LOV2 protein in the far-UV region. These TRORD experiments reveal a previously unobserved intermediate species (tau approximately 90 micros) that is characterized by a FMN adduct chromophore and partially unfolded secondary structure (LOV390(S2)). This intermediate appears shortly after the formation of the FMN adduct. For LOV2, formation of a long-lived species that is ready to interact with a receptor domain for downstream signaling is much faster by comparison with formation of a similar species in other light-sensing proteins.  相似文献   

17.
The plant photoreceptor phototropin is an autophosphorylating serine-threonine protein kinase activated by UV-A/blue light. Two domains, LOV1 and LOV2, members of the PAS domain superfamily, mediate light sensing by phototropin. Heterologous expression studies have shown that both domains function as FMN-binding sites. Although three plant blue light photoreceptors, cry1, cry2, and phototropin, have been identified to date, the photochemical reactions underlying photoactivation of these light sensors have not been described so far. Herein, we demonstrate that the LOV domains of Avena sativa phototropin undergo a self-contained photocycle characterized by a loss of blue light absorbance in response to light and a spontaneous recovery of the blue light-absorbing form in the dark. Rate constants and quantum efficiencies for the photoreactions indicate that LOV1 exhibits a lower photosensitivity than LOV2. The spectral properties of the photoproduct produced for both LOV domains are unrelated to those found for photoreduced flavins and flavoproteins, but are consistent with those of a flavin-cysteinyl adduct. Flavin-thiol adducts are generally short-lifetime reaction intermediates formed during the flavoprotein-catalyzed reduction of protein disulfides. By site-directed mutagenesis, we have identified several amino acid residues within the putative chromophore binding site of LOV1 and LOV2 that appear to be important for FMN binding and/or the photochemical reactivity. Among those is Cys39, which plays an important role in the photochemical reaction of the LOV domains. Replacement of Cys39 with Ala abolished the photochemical reactions of both LOV domains. We therefore propose that light sensing by the phototropin LOV domains occurs via the formation of a stable adduct between the FMN chromophore and Cys39.  相似文献   

18.
Phototropins (phot1 and phot2) are blue light-activated serine/threonine protein kinases that function to mediate a variety of adaptive processes that serve to optimize the photosynthetic efficiency of plants and thereby promote their growth. Light sensing by the phototropins is mediated by a repeated motif located within the N-terminal region of the protein designated the LOV domain. Although phototropins possess two LOV photosensors (LOV1 and LOV2), recent biophysical and structure-function analyses clearly indicate that the LOV2 domain plays a predominant role in regulating phototropin kinase activity owing to specific protein changes that occur in response to LOV2 photoexcitation. In particular, the central β-sheet scaffold plays a role in propagating the photochemical signal generated from within LOV2 to protein changes at the surface that are necessary for kinase activation.Key words: phototropin, LOV domain, FMN, cysteinyl adduct, amphipathic helix, receptor autophosphoryation  相似文献   

19.
Phototropin is the blue-light receptor that mediates phototropism, chloroplast movement, and stomatal opening in Arabidopsis. Blue and red light induce chloroplast movement in the moss Physcomitrella patens. To study the photoreceptors for chloroplast movement in P. patens, four phototropin genes (PHOTA1, PHOTA2, PHOTB1, and PHOTB2) were isolated by screening cDNA libraries. These genes were classified into two groups (PHOTA and PHOTB) on the basis of their deduced amino acid sequences. Then phototropin disruptants were generated by homologous recombination and used for analysis of chloroplast movement. Data revealed that blue light-induced chloroplast movement was mediated by phototropins in P. patens. Both photA and photB groups were able to mediate chloroplast avoidance, as has been reported for Arabidopsis phot2, although the photA group contributed more to the response. Red light-induced chloroplast movement was also significantly reduced in photA2photB1photB2 triple disruptants. Because the primary photoreceptor for red light-induced chloroplast movement in P. patens is phytochrome, phototropins may be downstream components of phytochromes in the signaling pathway. To our knowledge, this work is the first to show a function for the phototropin blue-light receptor in a response to wavelengths that it does not absorb.  相似文献   

20.
Hitomi Katsura 《FEBS letters》2009,583(3):526-3395
Oligomeric structures of the four LOV domains in Arabidopsis phototropin1 (phot1) and 2 (phot2) were studied using crosslinking. Both LOV1 domains of phot1 and phot2 form a dimer independently on the light conditions, suggesting that the LOV1 domain can be a stable dimerization site of phot in vivo. In contrast, phot1-LOV2 is in a monomer-dimer equilibrium and phot2-LOV2 exists as a monomer in the dark. Blue light-induced a slight increase in the monomer population in phot1-LOV2, suggesting a possible blue light-inducible dissociation of dimers. Furthermore, blue light caused a band shift of the phot2-LOV2 monomer. CD spectra revealed the unfolding of helices and the formation of strand structures. Both light-induced changes were reversible in the dark.

Structured summary

MINT-6823377, MINT-6823391:PHOT1 (uniprotkb:O48963) and PHOT1 (uniprotkb: O48963) bind (MI:0407) by cross-linking studies (MI:0030)MINT-6823495, MINT-6823508:PHOT2 (uniprotkb:P93025) and PHOT2 (uniprotkb:P93025) bind (MI:0407) by cross-linking studies (MI:0030)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号