首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Mao X  Jiang J  Xu X  Chu X  Luo Y  Shen G  Yu R 《Biosensors & bioelectronics》2008,23(10):1555-1561
We described a novel electrochemical DNA biosensor based on molecular beacon (MB) probe and enzymatic amplification protocol. The MB modified with a thiol at its 5' end and a biotin at its 3' end was immobilized on the gold electrode through mixed self-assembly process. Hybridization events between MB and target DNA cause the conformational change of the MB, triggering the attached biotin group on the electrode surface. Following the specific interaction between the conformation-triggered biotin and streptavidin-horseradish peroxidase (HRP), subsequent quantification of DNA was realized by electrochemical detection of enzymatic product in the presence of substrate. The detection limit is obtained as low as 0.1nM. The presented DNA biosensor has good selectivity, being able to differentiate between a complementary target DNA sequence and one containing G-G single-base mismatches.  相似文献   

2.
We previously prepared the oligonucleotides (ODNs) conjugated to an anthraquinone (AQ) group via one carbon linker at the 2'-sugar position. When these modified ODNs bind to cDNA sequences, the AQ moiety can be intercalated into the predetermined base-pair pocket of a duplex DNA. In this paper, 2'-AQ-modified ODNs are shown to be an excellent electrochemical probe to clarify the effect of a mismatch base on the charge transfer (CT) though DNA. Two types of DNA-modified electrodes were constructed by assembly of disulfide-terminated 2'-AQ-ODN duplexes onto gold electrodes. One type of electrodes (system I) contains fully matched base pairs or a single-base mismatch in duplex DNA between the redox center and the electrode. The other (system II) consists of the mismatch but at the outside of the redox center. The modified electrodes were analyzed by cyclic voltammetry to estimate the CT rate through duplex DNA. In system I, the CT rate was found to be approximately 50 s (-1) for the fully matched AQ-ODN duplexes, while the CT rates of the mismatched DNA were considerably slower than that of the fully matched DNA. In system II, the AQ-ODN duplexes showed almost similar CT rates ( approximately 50 s (-1)) for the fully matched DNA and for the mismatched DNAs. The detection of a single-base mismatch was then performed by chronocoulometry (CC). All the DNA duplexes containing a mismatch base in system I gave the reduced electrochemical responses when compared to the fully matched DNA. In particular, the mismatched DNAs including G--A mismatch can be differentiated from fully matched DNA without using any electrochemical catalyst. We further tested the usefulness of single-stranded (ss) AQ-ODN immobilized on a gold electrode in the electrochemical detection of a single-base mismatch through hybridization assay. The ss-AQ-ODN electrodes were immersed in target-containing buffer at room temperature, and the CC measurements were carried out to see the changes in the integrated charge. Within 60 min, the mismatched DNA was clearly distinguishable by the CC differences from the fully matched target. Thus, the electrochemical hybridization assay provides an easy and convenient detection for DNA mutation that does not require any extra reagents, catalyst, target labeling, and washing steps.  相似文献   

3.
We have developed a simple single nucleotide polymorphisms (SNPs) analysis utilizing DNA hybridization in nanostructural molecular assemblies. The novel technique enables the detection of a single-base mismatch in a DNA sequence without a fluorescent probe. This report describes for the first time that DNA hybridization occurs in the nanostructural molecular assemblies (termed reverse micelles) formed in an organic medium. The restricted nanospace in the reverse micelles amplifies the differences in the hybridization rate between mismatched and perfectly matched DNA probes. For a model system, we hybridized a 20-mer based on the p53 gene sequence to 20-mer complementary oligonucleotides with various types of mismatches. Without any DNA labeling or electrochemical apparatus, we successfully detected the various oligonucleotide mismatches by simply measuring the UV absorbance at 260 nm.  相似文献   

4.
Charge transfer (CT) in DNA offers a unique approach for the detection of a single-base mismatch in a DNA molecule. While the single-base mismatch would significantly affect the CT in DNA, the kinetic basis for the drastic decrease in the CT efficiency through DNA containing mismatches still remains unclear. Recently, we determined the rate constants of the CT through the fully matched DNA, and we can now estimate the CT rate constant for a certain fully matched sequence. We assumed that further elucidating of the kinetics in mismatched sequences can lead to the discrimination of the DNA single-base mismatch based on the kinetics. In this study, we investigated the detailed kinetics of the CT through DNA containing mismatches and tried to discriminate a mismatch sequence based on the kinetics of the CT in DNA containing a mismatch.  相似文献   

5.
High-throughput DNA sensors capable of detecting single-base mismatches are required for the routine screening of genetic mutations and disease. A new strategy for the electrochemical detection of single-base mismatches in DNA has been developed based upon charge transport through DNA films. Double-helical DNA films on gold surfaces have been prepared and used to detect DNA mismatches electrochemically. The signals obtained from redox-active intercalators bound to DNA-modified gold surfaces display a marked sensitivity to the presence of base mismatches within the immobilized duplexes. Differential mismatch detection was accomplished irrespective of DNA sequence composition and mismatch identity. Single-base changes in sequences hybridized at the electrode surface are also detected accurately. Coupling the redox reactions of intercalated species to electrocatalytic processes in solution considerably increases the sensitivity of this assay. Reporting on the electronic structure of DNA, as opposed to the hybridization energetics of single-stranded oligonucleotides, electrochemical sensors based on charge transport may offer fundamental advantages in both scope and sensitivity.  相似文献   

6.
DNA hybridization and enzymatic digestion for the detection of mutation was investigated on the gold nanoparticles-calf thymus DNA (AuNPs-ctDNA) modified glassy carbon electrode (GCE). The thiol modified probe oligonucleotides (SH-ssDNA) were assembled on the surface of AuNPs-ctDNA modified GCE. The electrochemical response of the electrode was measured by differential pulse voltammetry and cyclic voltammetry. Methylene blue (MB) was used as the electroactive indicator. AuNPs were then dispersed effectively on the GCE surface in the presence of ct-DNA. When hybridization occurred, a decrease in the signal of MB current was observed. The modified electrode was used for the detection of mutations during the enzymatic digestion reaction in DNA. During this reaction, an increase in the signal of MB current was observed. So, the modified SH-ssDNA had a higher electrochemical response on the AuNPs-ctDNA/GCE because of the strong affinity of MB for guanine residues in it. The electrochemical detection of restriction enzyme digestion can provide a simple and practical method for observing single-base mismatches that can help in distinguishing mismatch sequences of DNA from the complementary ones.  相似文献   

7.
Electrochemical detection of nucleic base mismatches was attempted successfully with ferrocenyl naphthalene diimide (FND) in a model system with 20-meric double-stranded oligonucleotides with or without a mismatch(es). Thus, dA(20) or a 20-meric sequence of the lac Z gene was immobilized on a gold electrode and complementary oligonucleotides with different numbers of mismatches were allowed to hybridize in the presence of FND to give rise to an electrochemical signal. The signal intensity varied depending on the number of unpaired bases on the DNA duplex. From experiments with a quartz crystal microbalance, eight molecules of FND were found to bind to the 20-meric double-stranded oligos and this number decreased as the number of mismatches increased. These findings were further supported by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. This novel method will be useful for the analysis of single-nucleotide polymorphisms present on human genes.  相似文献   

8.
9.
A novel and simple method for detection of mutations in DNA oligonucleotides using a double-stranded DNA specific dye (SYBR Green I) is reported. The SYBR Green I is bound specifically with a duplex DNA oligonucleotide (intercalation). This intercalation induces fluorescent emission at 525 nm with excitation at 494 nm. The fluorescence intensity of mismatched oligonucleotides (40-mer) decreases (by more than 13%) in comparison with the perfectly matched oligonucleotides. Moreover, fluorescence measurement of the SYBR Green I can distinguish various types of single-base mismatches, except for the T-G terminal mismatch. The addition of 20% (v/v) formamide, however, to an oligonucleotide solution improved the sensitivity of detection and also enabled the detection of the T-G terminal-mismatch. This detection method requires only a normal fluorescence spectrophotometer, an inexpensive dye and just 50 pmol of sample DNA.  相似文献   

10.
Mutation detection by electrocatalysis at DNA-modified electrodes   总被引:14,自引:0,他引:14  
Detection of mutations and damaged DNA bases is important for the early diagnosis of genetic disease. Here we describe an electrocatalytic method for the detection of single-base mismatches as well as DNA base lesions in fully hybridized duplexes, based on charge transport through DNA films. Gold electrodes modified with preassembled DNA duplexes are used to monitor the electrocatalytic signal of methylene blue, a redox-active DNA intercalator, coupled to [Fe(CN)6]3-. The presence of mismatched or damaged DNA bases substantially diminishes the electrocatalytic signal. Because this assay is not a measure of differential hybridization, all single-base mismatches, including thermodynamically stable GT and GA mismatches, can be detected without stringent hybridization conditions. Furthermore, many common DNA lesions and "hot spot" mutations in the human p53 genome can be distinguished from perfect duplexes. Finally, we have demonstrated the application of this technology in a chip-based format. This system provides a sensitive method for probing the integrity of DNA sequences and a completely new approach to single-base mismatch detection.  相似文献   

11.
A thorough selectivity study of DNA hybridization employing an electrochemical enzymatic genosensor is discussed here. After immobilizing on a gold film a 30-mer 3'-thiolated DNA strand, hybridization with a biotinylated complementary one takes place. Then, alkaline phosphatase is incorporated to the duplex through the interaction streptavidin-biotin. Enzymatic generation of indigo blue from 3-indoxyl phosphate and subsequent electrochemical detection was made. The influence of hybridization conditions was studied in order to better discern between fully complementary and mismatched strands. Detection of 3, 2 and 1 mismatch was possible. The type and location of the single-base mismatch, as well as the influence of the length of the strands was studied too. Mutations that suppose displacement of the reading frame were also considered. The effect of the concentration on the selectivity was tested, resulting a highly selective genosensor with an adequate sensitivity and stability.  相似文献   

12.
Discrimination of base mismatches from normal Watson-Crick base pairs in duplex DNA constitutes a key approach to the detection of single nucleotide polymorphisms (SNPs). We have developed a sensor for a surface plasmon resonance (SPR) assay system to detect G-G, A-A, and C-C mismatch duplexes by employing a surface upon which mismatch-binding ligands (MBLs) are immobilized. We synthesized a new MBL consisting of 2,7-diamino-1,8-naphthyridine (damND) and immobilized it onto a CM5 sensor chip to carry out the SPR assay of DNA duplexes containing a single-base mismatch. The SPR sensor with damND revealed strong responses to all C-C mismatches, and sequence-dependent C-T and T-T mismatches. Compared to ND- and naphthyridine-azaquinolone hybrid (NA)-immobilized sensor surfaces, with affinity to mismatches composed of purine nucleotide bases, the damND-immobilized surface was useful for the detection of the mismatches composed of pyrimidine nucleotide bases.  相似文献   

13.
D G Taghian  H Hough  J A Nickoloff 《Genetics》1998,148(3):1257-1268
Mismatch repair of palindromic loops in the presence or absence of single-base mismatches was investigated in wild-type and mismatch-binding defective mutant Chinese hamster ovary cells. Recombination intermediates with a maximum heteroduplex DNA (hDNA) region of 697 bp contained a centrally located, phenotypically silent 12-base palindromic loop mismatch, and/or five single-base mismatches. In wild-type cells, both loops and single-base mismatches were efficiently repaired (80-100%). When no other mismatches were present in hDNA, loops were retained with a 1.6-1.9:1 bias. However, this bias was eliminated when single-base mismatches were present, perhaps because single-base mismatches signal nick-directed repair. In the multiple marker crosses, most repair tracts were long and continuous, with preferential loss of markers in cis to proximal nicks, consistent with nicks directing most repair in this situation. However, approximately 25% of repair tracts were discontinuous as a result of loop-specific repair, or from segregation or short tract repair of single-base mismatches. In mutant cells, single-base mismatches were repaired less frequently, but the loop was still repaired efficiently and with bias toward loop retention, indicating that the defect in these cells does not affect loop-specific repair. Repair tracts in products from mutant cells showed a wide variety of mosaic patterns reflecting short regions of repair and segregation consistent with reduced nick-directed repair. In mutant cells, single-base mismatches were repaired more efficiently in the presence of the loop than in its absence, a likely consequence of corepair initiated at the loop.  相似文献   

14.
The present work demonstrates a rapid, single-step and ultrasensitive label-free and signal-off electrochemical sensor for specific DNA detection with excellent discrimination ability for single-nucleotide polymorphisms, taking advantage of Exonuclease III (Exo III)-aided target recycling strategy to achieve signal amplification. Exo III has a specifical exo-deoxyribonuclease activity for duplex DNAs in the direction from 3' to 5' terminus, however its activity on the duplex DNAs with 3'-overhang and single-strand DNA is limited. In response to the specific features of Exo III, the proposed E-DNA sensor is designed such that, in the presence of target DNA, the electrode self-assembled signaling probe hybridizes with the target DNA to form a duplex in the form of a 3'-blunt end at signaling probe and a 3'-overhang end at target DNA. In this way, Exo III specifically recognizes this structure and selectively digests the signaling probe. As a result, the target DNA dissociates from the duplex and recycles to hybridize with a new signaling probe, leading to the digestion of a large amount of signaling probes gradually. A redox mediator, Ru(NH(3))(6)(3+) (RuHex) is employed to electrostatically adsorbed onto signaling probes, which is directly related to the amount and the length of the signaling probes remaining in the electrode, and provides a quantitative measure of sequence-specific DNA with the experimentally measured (not extrapolated) detection limit as low as 20 fM. Moreover, this E-DNA sensor has an excellent differentiation ability for single mismatches with fairly good stability.  相似文献   

15.
Aggregation of DNA-modified gold nanoparticles in a non-cross-linking configuration has extraordinary selectivity against terminal mismatch of the surface-bound duplex. In this paper, we demonstrate the utility of this selectivity for detection of single-base substitutions. The samples were prepared through standard protocols: DNA extraction, PCR amplification and single-base primer extension. Oligonucleotide-modified nanoparticles correctly responded to the unpurified products from the primer extension: aggregation for the full match and dispersion for all the mismatches. Applicability of this method to genomic DNA was tested with five human tumor cell lines, and verified by conventional technologies: mass spectrometry and direct sequencing. Unlike the existing methods for single-base substitution analysis, this method does not need specialized equipments, and opens up a new possibility of point-of-care diagnosis for single-nucleotide polymorphisms.  相似文献   

16.
Kwon Y  Xi Z  Kappen LS  Goldberg IH  Gao X 《Biochemistry》2003,42(5):1186-1198
Neocarzinostatin (NCS-chrom), a natural enediyne antitumor antibiotic, undergoes either thiol-dependent or thiol-independent activation, resulting in distinctly different DNA cleavage patterns. Structures of two different post-activated NCS-chrom complexes with DNA have been reported, revealing strikingly different binding modes that can be directly related to the specificity of DNA chain cleavage caused by NCS-chrom. The third structure described herein is based on recent studies demonstrating that glutathione (GSH) activated NCS-chrom efficiently cleaves DNA at specific single-base sites in sequences containing a putative single-base bulge. In this structure, the GSH post-activated NCS-chrom (NCSi-glu) binds to a decamer DNA, d(GCCAGAGAGC), from the minor groove. This binding triggers a conformational switch in DNA from a loose duplex in the free form to a single-strand, tightly folded hairpin containing a bulge adenosine embedded between a three base pair stem. The naphthoate aromatic moiety of NCSi-glu intercalates into a GG step flanked by the bulge site, and its substituent groups, the 2-N-methylfucosamine carbohydrate ring and the tetrahydroindacene, form a complementary minor groove binding surface, mostly interacting with the GCC strand in the duplex stem of DNA. The bulge site is stabilized by the interactions involving NCSi-glu naphthoate and GSH tripeptide. The positioning of NCSi-glu is such that only single-chain cleavage via hydrogen abstraction at the 5'-position of the third base C (which is opposite to the putative bulge base) in GCC is possible, explaining the observed single-base cleavage specificity. The reported structure of the NCSi-glu-bulge DNA complex reveals a third binding mode of the antibiotic and represents a new family of minor groove bulge DNA recognition structures. We predict analogue structures of NCSi-R (R = glu or other substituent groups) may be versatile probes for detecting the existence of various structures of nucleic acids. The NMR structure of this complex, in combination with the previously reported NCSi-gb-bulge DNA complex, offers models for specific recognition of DNA bulges of various sizes through binding to either the minor or the major groove and for single-chain cleavage of bulge DNA sequences.  相似文献   

17.
The fate of G.T mismatches and frameshifts, present at the 3'-terminus of primer-template or internally, has been studied with a combined transfection and electrophoretic assay following in vitro polymerization by DNA polymerase I (Klenow enzyme) of Escherichia coli. Several synthetic oligodeoxynucleotide primers were synthesized and annealed to uracil-containing single-stranded DNA of M13 phage bearing the lacI gene, to produce 1-3 consecutive G.T mismatches in the middle of the duplex region or at the 3'-OH end of the primer. Additional mismatched primer-templates were prepared, in which the primer had a deleted nucleotide, an extra nucleotide or both G.T mismatch and an extra nucleotide. The extension or degradation of these primers during in vitro DNA synthesis in the presence of all 4 dNTPs ('complete' reaction) or in the absence of dATP ('-A' reaction) was monitored by gel electrophoresis. Duplex DNA products were used in a transfection assay and the nucleotide changes in i-mutant progeny were determined by sequence analysis. The results suggest that whereas a single 3'-terminal G.T mismatch is relatively stable in chain elongation by Klenow enzyme, multiple terminal G.T mismatches are degraded by the 3'-exonuclease activity of this polymerase prior to primer extension. This editing activity is increased with the number of 3'-terminal mispairs. Single, double and triple T----C base substitutions were efficiently recovered when the mismatches occurred internally. Also, single-base eliminations or additions were readily recovered when the mutagenic primers contained an internal base deletion or addition, respectively. When products of the '-A' misincorporation reaction (catalyzed by Klenow enzyme) were assayed by transfection, base substitutions (exclusively T----C), but no frameshifts, were recovered. The results indicate that the absence of multiple tandem base substitutions among i- mutants recovered following primer elongation under mutagenic 'minus' conditions was due to the efficient action of the 3'-exonuclease activity of the Klenow enzyme on multiple terminal mismatches during in vitro polymerization, rather than to in vivo events (lack of expression or occurrence of mismatch repair) in the M13-lacI transfection assay.  相似文献   

18.
We herein report an electrochemical biosensor for the sequence-specific detection of DNA with high discrimination ability for single-nucleotide polymorphisms (SNPs). This DNA sensor was constructed by a pair of flanking probes that "sandwiched" the target. A 16-electrode electrochemical sensor array was employed, each having one individual DNA capture probe immobilized at gold electrodes via gold-thiol chemistry. By coupling with a biotin-tagged detection probe, we were able to detect multiple DNA targets with a single array. In order to realize SNP detection, a ligase-based approach was employed. In this method, both the capture probe and the detection probe were in tandem upon being hybridized with the target. Importantly, we employed a ligase that specifically could ligate tandem sequences only in the absence of mismatches. As a result, when both probes were complementary to the target, they were ligated in the presence of the ligase, thus being retained at the surface during the subsequent stringent washing steps. In contrast, if there existed 1-base mismatch, which could be efficiently recognized by the ligase, the detection probe was not ligated and subsequently washed away. A conjugate of avidin-horseradish peroxidase was then attached to the biotin label at the end of the detection probe via the biotin-avidin bridge. We then electrochemically interrogated the electrical current for the peroxidase-catalyzed reduction of hydrogen peroxide. We demonstrated that the electrochemical signal for the wild-type DNA was significantly larger than that for the sequence harboring the SNP.  相似文献   

19.
Bergeron LJ  Sen K  Sen D 《Biochimie》2008,90(7):1064-1073
The property of charge (electron hole) flow in DNA duplexes has been the subject of intensive study. RNA-DNA heteroduplexes have also been investigated; however, little information exists on the conductive properties of purely RNA duplexes. In investigating the relative conductive properties of a three molecule DNA-DNA duplex design, using piperidine and aniline to break strands at modified bases, we observed that duplexes with guanine-rich termini generated a large oxidative end-effect, which could serve as a highly sensitive reporter of charge flow through the duplexes. The end-effect was found faithfully to report attenuations in charge flow due to certain single-base mismatches within a duplex. Comparative charge flow experiments on DNA-DNA and RNA-RNA duplexes found large end-effects from both, suggesting that the A and B family of double helices conduct charge comparably. The sheer magnitude of the end-effect, and its high sensitivity to helical imperfections, suggest that it may be exploited as a sensitive reporter for DNA mismatches, as well as a versatile device for studying the structure, folding, and dynamics of complexly folded RNAs and DNAs.  相似文献   

20.
The tumor suppressor protein p53 modulates cellular response to DNA damage by a variety of mechanisms that may include direct recognition of some forms of primary DNA damage. Linear 49-base pair duplex DNAs were constructed containing all possible single-base mismatches as well as a 3-cytosine bulge. Filter binding and gel retardation assays revealed that the affinity of p53 for a number of these lesions was equal to or greater than that of the human mismatch repair complex, hMSH2-hMSH6, under the same binding conditions. However, other mismatches including G/T, which is bound strongly by hMSH2-hMSH6, were poorly recognized by p53. The general order of affinity of p53 was greatest for a 3-cytosine bulge followed by A/G and C/C mismatches, then C/T and G/T mismatches, and finally all the other mismatches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号