首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gene organization of murine homeobox-containing gene clusters   总被引:1,自引:0,他引:1  
M S Do  P Lonai 《Genomics》1988,3(3):195-200
A chromosomal walk which links a previously described and a new homeobox to the Hox-2 murine homeobox gene cluster is described, and the nucleotide sequence of the new homeobox is presented. With these new data the Hox-2 gene cluster contains seven loci on an approximately 100-kb-long physical map. Homology comparisons reveal that a significant number of vertebrate homeoboxes are in fact analogous. We also find that the linear order of homologous homeoboxes is similar in the two murine gene complexes, Hox-1 and Hox-2, and among the human homeobox loci on chromosome 17. Conservation of the homeo-domain and the linear gene order of homeobox-containing genes in vertebrates is discussed in light of the interactions and the anteroposterior linear order of homeotic loci in insects.  相似文献   

2.
The presence of an altered Hox-2.4 gene in the WEHI3B murine myeloid leukemia suggests that homeobox genes may contribute to neoplasia. A survey of 31 leukemia cell lines of the myeloid, lymphoid and erythroid lineages revealed that Hox-2.4 was expressed only in WEHI3B and the pre-B lymphoid line 70Z/3, in which no DNA rearrangement was observed. To clarify the WEHI3B alteration and normal Hox-2.4 structure, we have sequenced near full length cDNA clones from WEHI3B and 70Z/3, and the 5' portion of the normal Hox-2.4 gene. A WEHI3B cDNA clone demonstrates that an intracisternal A-particle (IAP) provirus has inserted within the first exon of the gene and generated a Hox-2.4 mRNA with a 5' sequence derived from the IAP long terminal repeat. A remarkable degree of similarity found between the amino acid sequences of Hox-2.4 and Hox-3.1, which reside on different chromosomes, supports the notion that an ancient homeobox gene cluster has been duplicated and dispersed early in vertebrate evolution.  相似文献   

3.
A homeobox-containing gene * was detected by Southern analysis of a cosmid spanning a region of the murine HOX-4 complex between Hox-4.4 (Hox-5.2) and Hox-4.2 (Hox-5.1) with a probe derived from the Hox-4.2 homeobox. The sequence of a cross-hybridizing region revealed an open reading frame encoding an Antennapedia (Antp) class homeodomain highly homologous to the products of human HOX4C (Hox-5.4/HOX4E), mouse Hox-3.1 and Hox-2.4. This, together with strong conservation of sequences 3' to the homoebox, indicates that we have cloned the murine Hox-4.3 gene. No other homeobox sequences were detected in this screen suggesting that the HOX-4 complex lacks paralogous genes represented in the equivalent regions of other HOX loci.  相似文献   

4.
R Masuda  N Yuhki  S J O'Brien 《Genomics》1991,11(4):1007-1013
The feline homolog to the mammalian homeobox locus, HOX3A, was isolated by screening a domestic cat genomic library with the murine Hox-3.1 probe. The nucleotide sequence similarity of the feline homeobox was 96% to human HOX3A, 94% to mouse Hox-3.1, and 94% to rat R4. The deduced amino acid sequence (homeodomain) of this feline homeobox was identical to all homeodomains of these cognate genes. Using a panel of feline x rodent somatic cell hybrids, the HOX3A locus was assigned to feline chromosome B4. Human HOX3A and mouse Hox-3.1 have been mapped previously to human chromosome 12 and mouse chromosome 15, respectively, both of which share syntenic homology to feline chromosome B4. These data demonstrate evolutionary conservation of both HOX3A gene sequences and chromosomal location during mammalian evolution.  相似文献   

5.
DNA rearrangement of a homeobox gene in myeloid leukaemic cells.   总被引:24,自引:1,他引:23       下载免费PDF全文
C Blatt  D Aberdam  R Schwartz    L Sachs 《The EMBO journal》1988,7(13):4283-4290
A homeobox gene rearrangement has been detected in WEHI-3B mouse myeloid leukaemic cells. The rearranged gene was identified as Hox-2.4 which is a member of the Hox-2 gene cluster on mouse chromosome 11. Both the normal and the rearranged genes were cloned and analysed, and the rearranged genomic Hox-2.4 gene was sequenced. The results indicate that the rearrangement is due to insertion of an intracisternal A particle 5' upstream to Hox-2.4 and that this resulted in constitutive expression of the homeobox gene. It is suggested that constitutive expression of the homeobox gene may interrupt the normal development program in these leukaemic cells.  相似文献   

6.
7.
8.
9.
10.
11.
Abnormal expression of homeobox genes is one of the abnormalities associated with the development of murine and human leukemia. Myeloid leukemic cells that can be induced to differentiate to mature cells by interleukin 6 were stably transfected with an activated Hox-2.4 homeobox gene. Expression of the Hox-2.4 gene in the transfected clones inhibited specific pathways of the myeloid differentiation program induced by interleukin 6. The expression of some genes associated with differentiation was almost completely blocked, and the expression of other genes was either partially inhibited or not affected. The results support the hypothesis that abnormal expression of Hox-2.4 may contribute to the development of leukemia by interfering with the differentiation program.  相似文献   

12.
13.
14.
To better understand the role of the Hox-2.3 murine homeobox gene during development, a dominant gain-of-function mutation was generated. The developmental malformations that resulted when the chicken beta-actin promoter was used to direct widespread expression of the Hox-2.3 gene in transgenic mice included early postnatal death as well as craniofacial abnormalities, including open eyes and cleft palate. Ventricular septal defects were also observed in the hearts of three transgenic mice. Skeletal malformations were seen in the bones of the craniocervical transition, with the occipital, basisphenoid, and atlas bones deficient or misshapen. Interestingly, one mutant exhibited an extra pair of ribs as well as alterations in cervical vertebrae identities. Some of the malformations observed in Hox-2.3 gain-of-function mutants overlap with those seen in Hox-1.1 and Hox-2.2 misexpression mutants which suggests functional similarities between paralogous homeobox genes. The results of these experiments are consistent with a role for Hox-2.3 in specifying positional information during development.  相似文献   

15.
Most members of the murine Hox gene system can be grouped into two subclasses based on their structural similarity to either one of the Drosophila homeotic genes Antennapedia (Antp) or Abdominal B (AbdB). All the AbdB-like genes reported thus far are located in the 5' region of their respective cluster. We describe here the isolation, structural characterization and spatio-temporal expression pattern of a new AbdB-like homeobox gene designated Hox-3.6 that is located in the 5' region of the Hox-3 cluster. Hox-3.6 has an extreme posterior expression domain in embryos of 12.5 days of gestation, a feature that has thus far only been observed for the 5' most genes of the Hox-4 cluster. Like the other members of the AbdB subfamily, Hox-3.6 exhibits spatially restricted expression in the hindlimb bud, but the expression domain is antero-proximal in contrast to the postero-distal domain reported for its cognate gene Hox-4.5. Structural analysis of the 5' region revealed the presence of a 35 bp sequence which shares homology and relative 5' position with an upstream sequence present in its two nearest downstream neighbors, Hox-3.2 and -3.1.  相似文献   

16.
Sequence and embryonic expression of the murine Hox-3.5 gene.   总被引:2,自引:0,他引:2  
The murine Hox-3.5 gene has been mapped and linked genomically to a position 18 kb 3' of its most 5' locus neighbour, Hox-3.4, on chromosome 15. The sequence of the Hox-3.5 cDNA, together with the position of the gene within the locus, show it to be a paralogue of Hox-2.6, Hox-1.4 and Hox-4.2. The patterns of embryonic expression for the Hox-3.5 gene are examined in terms of three rules, proposed to relate a Hox gene's expression pattern to its position within the locus. The anterior boundaries of Hox-3.5 expression in the hindbrain and prevertebral column lie anterior to those of Hox-3.4 and all other, more 5'-located Hox-3 genes. Within the hindbrain, the Hox-3.5 boundary is seen to lie posterior to that of its paralogue, Hox-2.6, by a distance equal to about the length of one rhombomere. Patterns of Hox-3.5 expression within the oesophagus and spinal cord, but not the testis, are similar to those of other Hox-3 genes, Hox-3.3 and Hox-3.4.  相似文献   

17.
Genes carrying the homeobox were originally identified in Drosophila, in which they are now known to play key roles in establishing segmentation patterns and in determining segment identities. A number of genes with striking homology to the Drosophila homeobox genes have now been found in the mouse genome, and mutational analysis is beginning to shed light on their function in mammalian development. To understand better the developmental significance of the murine Hox-2.2 gene, we have generated gain of function mutants by using the chicken beta-actin promoter to drive ubiquitous expression in transgenic mice. The resulting Hox-2.2 misexpression produces early postnatal lethality as well as craniofacial and axial skeletal perturbations that include open eyes at birth, cleft palate, micrognathia, microtia, skull bone deficiencies, and structural and positional alterations in the vertebral column. We repeatedly observe complete or partial absence of the supraoccipital bone and malformations of the exoccipital and the basioccipital bones. These results suggests a role for the Hox-2.2 gene in specifying positional identity along the anterior-posterior axis.  相似文献   

18.
19.
20.
Two members of the murine labial (lab) subfamily of Antennapedia-like homeobox-containing genes, Hox-1.6 and Hox-2.9, have been identified previously. Here we describe a third member genetically linked to the Hox-4 cluster on chromosome 2. This gene, designated Hox-4.9, is similar in structure to the other lab subfamily members. However, little coding sequence other than the homeobox and sequences immediately upstream of it have been conserved. By in situ hybridization analysis, Hox-4.9 mRNA is first detected at the end of the late streak stage (E7.75) in presumptive lateral and extraembryonic mesoderm. During early neurogenesis (E8.0-8.5), Hox-4.9 is detected solely in lateral mesoderm; its lack of expression in somitic mesoderm and the neural tube makes it unique among the Hox genes. By late neurogenesis and through mid-gestation (E9.0-E11.5), Hox-4.9 is no longer detected in lateral mesoderm but is found instead in a restricted region of presumed trunk neural crest and in the dermatome. These data are discussed in comparison with what is known about expression of the other members of the lab subfamily.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号