首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Cystic fibrosis transmembrane conductance regulator (CFTR) is the only ligand-gated ion channel that hydrolyzes its agonist, ATP. CFTR gating has been argued to be tightly coupled to its enzymatic activity, but channels do open occasionally in the absence of ATP and are reversibly activated (albeit weakly) by nonhydrolyzable nucleotides. Why the latter only weakly activates CFTR is not understood. Here we show that CFTR activation by adenosine 5′-O-(thiotriphosphate) (ATPγS), adenosine 5′-(β,γ-imino)triphosphate (AMP-PNP), and guanosine 5′-3-O-(thio)triphosphate (GTPγS) is enhanced substantially by gain of function (GOF) mutations in the cytosolic loops that increase unliganded activity. This enhancement correlated with the base-line nucleotide-independent activity for several GOF mutations. AMP-PNP or ATPγS activation required both nucleotide binding domains (NBDs) and was disrupted by a cystic fibrosis mutation in NBD1 (G551D). GOF mutant channels deactivated very slowly upon AMP-PNP or ATPγS removal (τdeac ∼ 100 s) implying tight binding between the two NBDs. Despite this apparently tight binding, neither AMP-PNP nor ATPγS activated even the strongest GOF mutant as strongly as ATP. ATPγS-activated wild type channels deactivated more rapidly, indicating that GOF mutations in the cytosolic loops reciprocally/allosterically affect nucleotide occupancy of the NBDs. A GOF mutation substantially rescued defective ATP-dependent gating of G1349D-CFTR, a cystic fibrosis NBD2 signature sequence mutant. Interestingly, the G1349D mutation strongly disrupted activation by AMP-PNP but not by ATPγS, indicating that these analogs interact differently with the NBDs. We conclude that poorly hydrolyzable nucleotides are less effective than ATP at opening CFTR channels even when they bind tightly to the NBDs but are converted to stronger agonists by GOF mutations.  相似文献   

3.
We determined the role of Phospholipase Dα1 (PLDα1) and its lipid product phosphatidic acid (PA) in abscisic acid (ABA)-induced production of reactive oxygen species (ROS) in Arabidopsis thaliana guard cells. The pldα1 mutant failed to produce ROS in guard cells in response to ABA. ABA stimulated NADPH oxidase activity in wild-type guard cells but not in pldα1 cells, whereas PA stimulated NADPH oxidase activity in both genotypes. PA bound to recombinant Arabidopsis NADPH oxidase RbohD (respiratory burst oxidase homolog D) and RbohF. The PA binding motifs were identified, and mutation of the Arg residues 149, 150, 156, and 157 in RbohD resulted in the loss of PA binding and the loss of PA activation of RbohD. The rbohD mutant expressing non-PA-binding RbohD was compromised in ABA-mediated ROS production and stomatal closure. Furthermore, ABA-induced production of nitric oxide (NO) was impaired in pldα1 guard cells. Disruption of PA binding to ABI1 protein phosphatase 2C did not affect ABA-induced production of ROS or NO, but the PA–ABI1 interaction was required for stomatal closure induced by ABA, H2O2, or NO. Thus, PA is as a central lipid signaling molecule that links different components in the ABA signaling network in guard cells.  相似文献   

4.
5.
ATP and other nucleotides are released from cells through regulated pathways or following the loss of plasma membrane integrity. Once outside the cell, these compounds can activate P2 receptors: P2X ionotropic receptors and G protein-coupled P2Y receptors. Eosinophils represent major effector cells in the allergic inflammatory response and they are, in fact, associated with several physiological and pathological processes. Here we investigate the expression of P2 receptors and roles of those receptors in murine eosinophils. In this context, our first step was to investigate the expression and functionality of the P2X receptors by patch clamping, our results showed a potency ranking order of ATP>ATPγS> 2meSATP> ADP> αβmeATP> βγmeATP>BzATP> UTP> UDP>cAMP. This data suggest the presence of P2X1, P2X2 and P2X7. Next we evaluate by microfluorimetry the expression of P2Y receptors, our results based in the ranking order of potency (UTP>ATPγS> ATP > UDP> ADP >2meSATP > αβmeATP) suggests the presence of P2Y2, P2Y4, P2Y6 and P2Y11. Moreover, we confirmed our findings by immunofluorescence assays. We also did chemotaxis assays to verify whether nucleotides could induce migration. After 1 or 2 hours of incubation, ATP increased migration of eosinophils, as well as ATPγS, a less hydrolysable analogue of ATP, while suramin a P2 blocker abolished migration. In keeping with this idea, we tested whether these receptors are implicated in the migration of eosinophils to an inflammation site in vivo, using a model of rat allergic pleurisy. In fact, migration of eosinophils has increased when ATP or ATPγS were applied in the pleural cavity, and once more suramin blocked this effect. We have demonstrated that rat eosinophils express P2X and P2Y receptors. In addition, the activation of P2 receptors can increase migration of eosinophils in vitro and in vivo, an effect blocked by suramin.  相似文献   

6.
ATP, which is present in the extracellular matrix of multicellular organisms and in the extracellular fluid of unicellular organisms, has been shown to function as a signaling molecule in animals. The concentration of extracellular ATP (xATP) is known to be functionally modulated in part by ectoapyrases, membrane-associated proteins that cleave the γ- and β-phosphates on xATP. We present data showing a previously unreported (to our knowledge) linkage between apyrase and phosphate transport. An apyrase from pea (Pisum sativum) complements a yeast (Saccharomyces cerevisiae) phosphate-transport mutant and significantly increases the amount of phosphate taken up by transgenic plants overexpressing the gene. The transgenic plants show enhanced growth and augmented phosphate transport when the additional phosphate is supplied as inorganic phosphate or as ATP. When scavenging phosphate from xATP, apyrase mobilizes the γ-phosphate without promoting the transport of the purine or the ribose.  相似文献   

7.

Main conclusion

Phyto-S1P and S1P induced stomatal closure in epidermis of pea ( Pisum sativum ) by raising the levels of NO and pH in guard cells. Phosphosphingolipids, such as phytosphingosine-1-phosphate (phyto-S1P) and sphingosine-1-phosphate (S1P), are important signaling components during drought stress. The biosynthesis of phyto-S1P or S1P is mediated by sphingosine kinases (SPHKs). Although phyto-S1P and S1P are known to be signaling components in higher plants, their ability to induce stomatal closure has been ambiguous. We evaluated in detail the effects of phyto-S1P, S1P and SPHK inhibitors on signaling events leading to stomatal closure in the epidermis of Pisum sativum. Phyto-S1P or S1P induced stomatal closure, along with a marked rise in nitric oxide (NO) and cytoplasmic pH of guard cells, as in case of ABA. Two SPHK inhibitors, DL-threo dihydrosphingosine and N’,N’-dimethylsphingosine, restricted ABA-induced stomatal closure and prevented the increase of NO or pH by ABA. Modulators of NO or pH impaired both stomatal closure and increase in NO or pH by phyto-S1P/S1P. The stomatal closure by phyto-S1P/S1P was mediated by phospholipase D and phosphatidic acid (PA). When present, PA elevated the levels of pH, but not NO of guard cells. Our results demonstrate that stomatal closure induced by phyto-S1P and S1P depends on rise in pH as well as NO of guard cells. A scheme of signaling events initiated by phyto-S1P/S1P, and converging to cause stomatal closure, is proposed.
  相似文献   

8.
Neuroendocrine-type KATP channels, (SUR1/Kir6.2)4, couple the transmembrane flux of K+, and thus membrane potential, with cellular metabolism in various cell types including insulin-secreting β-cells. Mutant channels with reduced activity are a cause of congenital hyperinsulinism, whereas hyperactive channels are a cause of neonatal diabetes. A current regulatory model proposes that ATP hydrolysis is required to switch SUR1 into post-hydrolytic conformations able to antagonize the inhibitory action of nucleotide binding at the Kir6.2 pore, thus coupling enzymatic and channel activities. Alterations in SUR1 ATPase activity are proposed to contribute to neonatal diabetes and type 2 diabetes risk. The regulatory model is partly based on the reduced ability of ATP analogs such as adenosine 5′-(β,γ-imino)triphosphate (AMP-PNP) and adenosine 5′-O-(thiotriphosphate) (ATPγS) to stimulate channel activity, presumably by reducing hydrolysis. This study uses a substitution at the catalytic glutamate, SUR1E1507Q, with a significantly increased affinity for ATP, to probe the action of these ATP analogs on conformational switching. ATPγS, a slowly hydrolyzable analog, switches SUR1 conformations, albeit with reduced affinity. Nonhydrolyzable AMP-PNP and adenosine 5′-(β,γ-methylenetriphosphate) (AMP-PCP) alone fail to switch SUR1, but do reverse ATP-induced switching. AMP-PCP displaces 8-azido-[32P]ATP from the noncanonical NBD1 of SUR1. This is consistent with structural data on an asymmetric bacterial ABC protein that shows that AMP-PNP binds selectively to the noncanonical NBD to prevent conformational switching. The results imply that MgAMP-PNP and MgAMP-PCP (AMP-PxP) fail to activate KATP channels because they do not support NBD dimerization and conformational switching, rather than by limiting enzymatic activity.  相似文献   

9.
Ribozymes that phosphorylate internal 2′-OH positions mimic the first mechanistic step of P-type ATPase enzymes by forming a phospho-enzyme intermediate. We previously described 2′-autophosphorylation and autothiophosphorylation by the 2PTmin3.2 ribozyme. In the present work we demonstrate that the thiophosphorylated form of this ribozyme can de-thiophosphorylate in the absence of ATPγS. Identical ionic conditions yield a thiophosphorylated strand when ATPγS is included, thus effecting a net ATPγS hydrolysis. The de-thiophosphorylation step is nearly independent of pH over the range of 6.3–8.5 and does not require a specifically folded RNA structure, but this step is greatly stimulated by transition metal ions. By monitoring thiophosphate release, we observe 29–46 ATPγS hydrolyzed per ribozyme strand in 24 h, corresponding to a turnover rate of 1.2–2.0 h−1. The existence of an ATP- (or thio-ATP-)powered catalytic cycle raises the possibility of using ribozymes to transduce chemical energy into mechanical work for nucleic acid nanodevices.  相似文献   

10.
ATP is omnipresent in biology and acts as an extracellular signaling molecule in mammals. Information regarding the signaling function of extracellular ATP in single-celled eukaryotes is lacking. Here, we explore the role of extracellular ATP in cell volume recovery during osmotic swelling in the amoeba Dictyostelium. Release of micromolar ATP could be detected during cell swelling and regulatory cell volume decrease (RVD) phases during hypotonic challenge. Scavenging ATP with apyrase caused profound cell swelling and loss of RVD. Apyrase-induced swelling could be rescued by 100 μM βγ-imidoATP. N-Ethylmalemide (NEM), an inhibitor of vesicular exocytosis, caused heightened cell swelling, loss of RVD, and inhibition of ATP release. Amoebas with impaired contractile vacuole (CV) fusion (drainin knockout [KO] cells) displayed increased swelling but intact ATP release. One hundred micromolar Gd3+ caused cell swelling while blocking any recovery by βγ-imidoATP. ATP release was 4-fold higher in the presence of Gd3+. Cell swelling was associated with an increase in intracellular nitric oxide (NO), with NO-scavenging agents causing cell swelling. Swelling-induced NO production was inhibited by both apyrase and Gd3+, while NO donors rescued apyrase- and Gd3+-induced swelling. These data suggest extracellular ATP released during cell swelling is an important signal that elicits RVD. Though the cell surface receptor for ATP in Dictyostelium remains elusive, we suggest ATP operates through a Gd3+-sensitive receptor that is coupled with intracellular NO production.  相似文献   

11.
Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca2+ ([Ca2+]cyt) elevation was partially blocked, and exogenous Ca2+-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca2+ increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca2+, and microtubules are essential for ABA signaling.  相似文献   

12.
R6K-encoded π protein can bind to the seven, 22 bp tandem iterons of the γ origin. In this work, we use a variant of π, His-π·F107S, that is hyperactive in replication. In vitro, His-π·F107S-dependent local DNA melting (open complex formation) occurs in the absence of host proteins (IHF/HU or DnaA) and it is positioned in the A + T-rich region adjacent to iterons. Experiments described here examine the effects of ATP, Mg2+ and temperature on the opening reaction. We show that the opening of the γ origin can occur in the presence of ATP as well as AMP-PCP (a non-hydrolyzable ATP analog). This suggests that, for γ origin, ATP hydrolysis may be unnecessary for open complex formation facilitated by His-π·F107S. In the absence of ATP or Mg2+, His-π·F107S yielded data suggestive of distortions in the iteron attributable to DNA bending rather than DNA melting. Our findings also demonstrate that ATP and π stimulate open complex formation over a wide range of temperatures, but not at 0°C. These and other results indicate that ATP and/or Mg2+ are not needed for His-π·F107S binding to iterons and that ATP effects an allosteric change in the protein bound to γ origin.  相似文献   

13.
Polymerase δ is widely accepted as the lagging strand replicative DNA polymerase in eukaryotic cells. It forms a replication complex in the presence of replication factor C and proliferating cell nuclear antigen to perform efficient DNA synthesis in vivo. In this study, the human lagging strand holoenzyme was reconstituted in vitro. The rate of DNA synthesis of this holoenzyme, measured with a singly primed ssM13 DNA substrate, is 4.0 ± 0.4 nucleotides. Results from adenosine 5′-(3-thiotriphosphate) tetralithium salt (ATPγS) inhibition experiments revealed the nonprocessive characteristic of the human DNA polymerase (Pol δ) holoenzyme (150 bp for one binding event), consistent with data from chase experiments with catalytically inactive mutant Pol δAA. The ATPase activity of replication factor C was characterized and found to be stimulated ∼10-fold in the presence of both proliferating cell nuclear antigen and DNA, but the activity was not shut down by Pol δ in accord with rapid association/dissociation of the holoenzyme to/from DNA. It is noted that high concentrations of ATP inhibit the holoenzyme DNA synthesis activity, most likely due to its inhibition of the clamp loading process.  相似文献   

14.
Recent evidence has demonstrated that both copper amine oxidase (CuAO; EC 1.4.3.6) and phospholipase D (PLD; EC 3.1.4.4) are involved in abscisic acid (ABA)-induced stomatal closure. In this study, we investigated the interaction between CuAO and PLD in the ABA response. Pretreatment with either CuAO or PLD inhibitors alone or that with both additively led to impairment of ABA-induced H2O2 production and stomatal closure in Vicia faba. ABA-stimulated PLD activation could not be inhibited by the CuAO inhibitor, and CuAO activity was not affected by the PLD inhibitor. These data suggest that CuAO and PLD act independently in the ABA response. To further examine PLD and CuAO activities in ABA responses, we used the Arabidopsis mutants cuaoζ and pldα1. Ablation of guard cell-expressed CuAOζ or PLDα1 gene retarded ABA-induced H2O2 generation and stomatal closure. As a product of PLD, phosphatidic acid (PA) substantially enhanced H2O2 production and stomatal closure in wide type, pldα1, and cuaoζ. Moreover, putrescine (Put), a substrate of CuAO as well as an activator of PLD, induced H2O2 production and stomatal closure in WT but not in both mutants. These results suggest that CuAO and PLD act independently in ABA-induced stomatal closure.  相似文献   

15.
The SOS response, a set of cellular phenomena exhibited by eubacteria, is initiated by various causes that include DNA damage-induced replication arrest, and is positively regulated by the co- protease activity of RecA. Escherichia coli DinI, a LexA-regulated SOS gene product, shuts off the initiation of the SOS response when overexpressed in vivo. Biochemical and genetic studies indicated that DinI physically interacts with RecA to inhibit its co-protease activity. Using nuclear magnetic resonance (NMR) spectroscopy, we show that DinI tightly binds to the central region of RecA (between the N- and C-terminal domains) and that this interaction is enhanced upon the oligomerisation of RecA. On the other hand, DinI did not inhibit the interaction between 4mer single-stranded (ss)DNA and RecA– ATPγS, but had a slight effect on the structure of ssDNA–RecA–ATPγS complexes involving 8mer and 12mer ssDNA. We hypothesise that prevention of repressor binding to the intermolecular cleft region of RecA protomers by DinI, with the possibility of a slight conformational change induced in the DinI-bound ssDNA–RecA–ATPγS complex, together function to inhibit the co-protease activity of RecA.  相似文献   

16.
17.
Previously it was shown that the Arabidopsis apyrase genes AtAPY1 and AtAPY2 are crucial for male fertility because mutant pollen (apy1-1; apy2-1) with T-DNA insertions in both genes could not germinate (Steinebrunner et al. (2003) Plant Physiol. 131: 1638–1647). In this study, pollen germination was restored and apyrase T-DNA double knockouts (DKO) apy1-1/apy1-1; apy2-1/apy2-1 were generated by complementation with AtAPY2 under the control of a pollen-specific promoter. The DKO phenotype displayed developmental defects including the lack of functional root and shoot meristems. In cotyledons, morphogenetic and patterning abnormalities were apparent, e.g., unlobed pavement cells and stomatal clusters. Another set of lines was created which carried either AtAPY1 or AtAPY2 under a dexamethasone-(DEX)-inducible promoter as an additional transgene to the pollen-specific gene construct. Application of DEX did not reverse the DKO phenotype to wild-type, but some inducible lines exhibited less severe defects even in the absence of the inducer, probably due to some background expression. However, even these DKO mutants were seedling-lethal and shared other defects regarding cell division, cell expansion and stomatal patterning. Taken together, the defects in the DKO mutants demonstrate that AtAPY1 and AtAPY2 are essential for normal plant development.  相似文献   

18.
We found that glutathione (GSH) is involved in abscisic acid (ABA)-induced stomatal closure. Regulation of ABA signaling by GSH in guard cells was investigated using an Arabidopsis mutant, cad2-1, that is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase, and a GSH-decreasing chemical, 1-chloro-2,4-dinitrobenzene (CDNB). Glutathione contents in guard cells decreased along with ABA-induced stomatal closure. Decreasing GSH by both the cad2-1 mutation and CDNB treatment enhanced ABA-induced stomatal closure. Glutathione monoethyl ester (GSHmee) restored the GSH level in cad2-1 guard cells and complemented the stomatal phenotype of the mutant. Depletion of GSH did not significantly increase ABA-induced production of reactive oxygen species in guard cells and GSH did not affect either activation of plasma membrane Ca2+-permeable channel currents by ABA or oscillation of the cytosolic free Ca2+ concentration induced by ABA. These results indicate that GSH negatively modulates a signal component other than ROS production and Ca2+ oscillation in ABA signal pathway of Arabidopsis guard cells.  相似文献   

19.
Sequence-specific recognition of DNA is a critical step in gene targeting. Here we describe unique oligonucleotide (ON) hybrids that can stably pair to both strands of a linear DNA target in a RecA-dependent reaction with ATP or ATPγS. One strand of the hybrids is a 30-mer DNA ON that contains a 15-nt-long A/T-rich central core. The core sequence, which is substituted with 2-aminoadenine and 2-thiothymine, is weakly hybridized to complementary locked nucleic acid or 2′-OMe RNA ONs that are also substituted with the same base analogs. Robust targeting reactions took place in the presence of ATPγS and generated metastable double D-loop joints. Since the hybrids had pseudocomplementary character, the component ONs hybridized less strongly to each other than to complementary target DNA sequences composed of regular bases. This difference in pairing strength promoted the formation of joints capable of accommodating a single mismatch. If similar joints can form in vivo, virtually any A/T-rich site in genomic DNA could be selectively targeted. By designing the constructs so that the DNA ON is mismatched to its complementary sequence in DNA, joint formation might allow the ON to function as a template for targeted point mutation and gene correction.  相似文献   

20.
Schwartz A 《Plant physiology》1985,79(4):1003-1005
Ca2+ (0.1-1.0 millimolar) accelerated dark-induced stomatal closure and reduced stomatal apertures in the light in epidermal peels of Commelina communis L. In contrast, ethyleneglycol-bis-(β-aminoethyl ether) N,N′tetraacetic acid (EGTA) (2 millimolar), a Ca2+ chelator, prevented closure in the dark and accelerated opening in the light. EGTA did not promote significant opening in the dark. It is therefore concluded that EGTA does not increase ion uptake into guard cells, but rather prevents ion efflux. Addition of EGTA to incubating solutions with 10 millimolar KCl resulted in steady state apertures of 15.6 micrometers, whereas in the absence of EGTA similar apertures required 55 millimolar KCl and 150 millimolar KCl was needed in the presence of 1 millimolar CaCl2. The results demonstrate the importance of Ca2+ in the regulation of stomatal closure and point to a role of Ca2+ in the regulation of K+ efflux from stomatal guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号