首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 420 毫秒
1.
The apple rootstock A2 can be readily propagated in vitro both in the juvenile and in the adult growth phase. Shoots were produced by meristem tip culture from the apple rootstock A2 in different growth phases. The influence of growth phases and different concentrations of PG and IBA was investigated as to rooting percentage, survival percentage, number of roots per rooted shoot, root length, shoot length and formation of callus. IBA at 15 μ M without PG gave a significantly lower rooting percentage than 5 and 10 μ M IBA. PG together with IBA stimulated rooting, the optimum concentrations of PG being, however, not the same for the different growth phases. For the adult growth phase, 10−4 M PG promoted rooting, whereas 10−3 M PG markedly inhibited rooting. In the juvenile growth phases, both 10−4 and 10−3 M PG stimulated rooting. PG at 10−4 M also increased the number of roots. The longest roots were obtained at 10−3 M PG and 5 μ M IBA. PG at 10−3 M reduced callus formation at all IBA concentrations used. Neither shoot length nor root length influenced the survival percentage.  相似文献   

2.
In vitro propagation of a semi-dwarfing cherry rootstock   总被引:2,自引:0,他引:2  
A successful in vitro propagation system for the semi-dwarfing cherry rootstock Maxma-14 (Prunus avium L.) has been developed. Shoot tips and axillary buds were successfully established in vitro. Multiplication rate of about 6 was achieved over a 4-week period using Murashige and Skoog medium with 4.44 μM benzyladenine and 0.49 μM indole-3-butyric acid (IBA). Rooting occurred within 4 weeks on liquid and agar-gelled media containing 0.49 μM NAA or 0.49, 2.45 μM IBA. On liquid media, a maximum rooting efficiency of up to 100% was obtained. However, high concentrations of auxins delayed the time of root initiation for 3–5 days. Acclimatization was affected directly by rooting conditions. Survival was best when plantlets were transferred to pots after a short period of root emergence on rooting media. Multiplication medium was also important for successful acclimatization. Shoots transferred to rooting media from that with kinetin resulted in better acclimatization and survival than that derived from media with benzyladenine. Further, plantlets rooted on liquid media had better survival than that rooted on agar-gelled media. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Plantlet regeneration through shoot formation from young leaf explant-derived callus of Camptotheca acuminata is described. Calli were obtained by placing leaf explants on Woody plant medium (WPM) supplemented with various concentrations of 6-benzyladenine (BA) and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Callus induction was observed in all media evaluated. On the shoot induction medium, the callus induced on the WPM medium containing 19.8 μM BA and 5.8 μM NAA was the most effective, providing high shoot regeneration frequency (70.3 %) as well as the highest number of shoots (11.2 shoots explant−1). The good rooting percentage and root quality (98 %, 5.9 roots shoot−1) were achieved on WPM medium supplemented with 9.6 μM indole-3-butyric acid (IBA). 96 % of the in vitro rooted plantlets with well developed shoots and roots survived transfer to soil.  相似文献   

4.
The influence of exogenous IBA (indol-3yl-butyric acid) on rootand callus formation was studied in shoots of the apple rootstocksA2 and M26. The shoots grown in vitro were derived originallyfrom meristems of both juvenile and adult trees. Endogenousindol-3yl-acetic acid (IAA) concentrations in leaves and stemswere correlated with the responses to applied IAA. After 30 subcultures shoots from A2 and M26 rooted easily, butA2 did so more readily and even without IBA. Treatment withIBA improved percentage rooting and number of roots in bothrootstocks. Ex-adult and ex-juvenile shoots of A2 formed rootsto the same extent. However, ex-adult shoots of A2 showed ahigher IBA optimum for root number than ex-juvenile A2 and werealso less sensitive to supra-optimal IBA concentrations. Incontrast, in M26, there were no differences between ex-adultand ex-juvenile shoots. The results imply that rooting ability is associated more withdifferences between cultivars than with the origin of the explants.The best rooting occurred in ex-adult shoots of A2 which hadthe lowest endogenous IAA concentration, while callus formationwas correlated with high endogenous auxin concentration. Ex-adultA2 produced almost no callus even after exposure to high IBAconcentrations (25µM) whereas ex-adult M26 formed muchmore callus at 1/10 of the IBA concentration. Malus sylvestris (L.) Mill. var. domestica Borkh., Malus pumila Mill., apple rootstocks A2 and M26, in vitro culture, root and callus formation, HPLC analyses of IAA  相似文献   

5.
为解决樟叶越桔(Vaccinium dunalianum)组培苗生根质量不佳、移栽成活率低的问题,该研究以樟叶越桔继代苗为材料,采用单因子试验从激素类型及浓度、培养基类型和蔗糖质量浓度对其生根的适宜条件进行筛选,进一步研究了不同基质配比对樟叶越桔移栽苗存活率的影响。结果表明:激素类型和浓度、培养基类型对樟叶越桔生根率的影响最大,其次为蔗糖质量浓度;最适合樟叶越桔生根的激素及浓度为IBA2.0 mg·L~(-1)、基本培养基类型为1/4MS、蔗糖质量浓度为15 g·L~(-1),樟叶越桔组培苗最佳生根培养基为1/4MS+IBA 2.0 mg·L~(-1)+活性炭0.1 g·L~(-1)+蔗糖15 g·L~(-1),生根率达100%,平均生根数为每株7.67条;根系呈辐射状、基部无愈伤组织,组培苗生长健壮、叶色浓绿;樟叶越桔组培苗移栽时以全腐殖土基质为佳,成活率为83.7%,植株叶片舒展,生长状况良好。该研究建立的优化体系有效地提高了樟叶越桔组培生根苗的生根率和生根质量,解决了后期移栽成活困难的问题,为优良的樟叶越桔植株规模化生产提供了科学依据和技术支持。  相似文献   

6.
Shoot explants from seedling-derived culture of Eucalyptus ficifoliaF. Muell. cultured on a rooting medium free from indole-3-butyricacid (IBA) develop a root system (Type I) consisting of a fewcomparatively long roots and only small amounts of callus. IBAat 5.0 µM in a rooting medium free from riboflavin inducesthe development, on the shoot explants, of a compact root system(Type II) consisting of callus and many short roots. Riboflavinwhen exposed to light, is able to photo-oxidize IBA; the degreeof photo-oxidation depends on the photon fluence of the lightreceived. The rooting response of the cultures reflects thedegree of photo-oxidation of IBA: concentrations of IBA fromabout 10–4M to 10–6M in the rooting medium induceformation of the Type II root system whilst photo-oxidationof the auxin to concentrations of about 10–8M or lowerinduces the formation of the Type I root system. Thus, exogenousriboflavin and exogenous IBA are linked in a distinct light-induced,riboflavin-mediated change in root morphogenesis. The anatomyof root development in the Type I and Type II root systems wasstudied and factors affecting the development were defined.Characteristics of riboflavin and IBA breakdown in various lightregimes were determined and related to root morphogenesis. Theresults and their implications are discussed. Key words: Auxin photo-oxidation, Riboflavin, Root morphogenesis, Tissue culture  相似文献   

7.
Whilst considerable efforts have been made to optimise shoot multiplication and rooting in oak, little attention has been paid to the impact of conditions used for multiplication on subsequent root formation. An optimised technique for rooting of oak microshoots has been developed to assess the effect of cytokinin treatments applied to shoot multiplication cultures on the subsequent rooting of microshoots. We found IBA to be more effective at inducing root formation in microshoots than NAA. Efficient rooting of oak microshoots (80%) was achieved after 35 days on medium supplemented with 1.0 mg litre-1 IBA. Lower concentrations of IBA reduced the frequency of root formation and significantly increased the time taken for microshoots to form roots. High concentrations of IBA (3.0 mg litre-1) produced similar rooting frequencies but with significantly increased numbers of roots formed by each microshoot. However, high concentrations of IBA stimulated the production of basal callus. Rooting of microshoots was unaffected by the concentration of BA used during shoot multiplication, although basal callusing was greater in microshoots taken from multiplication medium supplemented with the highest concentration of BA (1.0 mg litre-1) and rooted on medium supplemented with 3.0 mg litre IBA. Reducing the period of exposure to auxin to 7 days by transferring microshoots to auxin-free medium increased the frequency of root formation (84%), led to more rapid root formation and a reduction in basal callus formation.  相似文献   

8.
Plant regeneration through shoot formation from callus of Areca catechu L.   总被引:2,自引:0,他引:2  
In order to establish and optimize an in vitro micropropagation protocol of Venus fly trap (Dionaea muscipula Ellis), a carnivorous plant, the effects of medium type, MS medium concentration, pH, and cytokinin and auxin types on shoot proliferation and root formation were investigated using 3-month-old shoots. The shoot proliferation was most effective in 2.3 M kinetin-supplemented 1/3MS medium at pH 5.5. The best conditions for rooting were 1/3MS medium supplemented with 0.5 M IBA. All subcultured shoots produced extensive root systems after 5–6 weeks culture. When plantlets after rooting were planted in plastic pots filled with 1:1 peat moss and sand, the survival rate of plantlets was almost 100%, exhibiting normal development. With subculture every 8 weeks, hundreds of the plants were propagated from a single plant within a year.  相似文献   

9.
The effects of six basal media on in vitro shoot proliferation of the greek grapevines Vitis vinifera L. cv. ‘Malagouzia’ and ‘Xinomavro’ were investigated. Galzy and Zlenco proved to be the most effective for ‘Malagouzia’ and ‘Xinomavro’, respectively. If only BA was present in the medium, shoot development was poor and the plantlets were chlorotic. When the medium was supplemented with BA and NAA, growth was enhanced. The best ratio (in μM) of growth regulators was 0.5/0.3 for ‘Malagouzia’, and 0.1/0.03 for ‘Xinomavro’, which resulted in the highest number of microshoots per explant and greatest proliferation rate. The development of ‘Malagouzia’ and ‘Xinomavro’ explants at 21±2 and 26±2°C was also investigated, revealing the higher temperature to be more effective. Regarding rooting, 0.5 μM IBA improved root formation at 26°C for ‘Malagouzia’ and 0.5 μM IBA at 21°C for ‘Xinomavro’. Moreover, 0.5 μM IBA resulted in a higher rooting percentage (>95%) and proved to be more beneficial for the overall morphological appearance of the plantlets of ‘Malagouzia’. After acclimatization, survival of microshoots cultivated in media with IBA was higher than those in NAA.  相似文献   

10.
Jatropha curcas L. is attaining worldwide interest as an important biofuel crop. Experiments were conducted to improve the prevailing micropropagation technique as well as to develop a new ex vitro rooting method for J. curcas plant regeneration. Regeneration and ex vitro rooting efficiency was enhanced by augmenting the culture medium with abscisic acid (ABA). Different concentrations of 6-benzylaminopurine (BAP) and indole-3-butyric acid (IBA) were tested for callus generation from both in vitro and in vivo explants (leaf and petiole) on Murashige and Skoog (MS) medium. The best regenerative callus was achieved on MS medium supplemented with BAP (4.44 μM) and IBA (2.45 μM) from in vitro-cultured petioles. Highest regeneration (91%) was achieved by culturing petiole callus on MS medium supplemented with BAP (8.88 μM), IBA (0.49 μM), and ABA (1.9 μM), whereas 61% regeneration was obtained from in vitro leaf callus. Shoot proliferation and elongation was achieved on BAP (2.22 μM) and IAA (8.56 μM) with 10–13 shoots per explants. Highest rooting (65%) was achieved from M1 shoots (BAP, IAA, and ABA) on MS medium supplemented with IBA (2.45 μM), naphthaleneacetic acid NAA (0.54 μM), and 0.02% activated charcoal. Ex vitro rooting of 1-mo-old M1 shoots obtained from the charcoal-containing medium resulted optimum rooting (>72%) when transferred to polybags containing sterile sand. The plantlets were successfully acclimatized in soil with more than 98% survival rate in the greenhouse.  相似文献   

11.
An efficient root induction system has been established for in vitro-regenerated Jatropha curcas L. shoots. Callus formation on shoots transferred to auxin containing medium was found to be a prominent and recurrent problem for rooting of in vitro-cultivated J. curcas. In particular, the type of auxins and cytokinins applied in the culture media were shown to strongly influence the severity of callus formation. Shoots cultivated on meta-methoxytopolin riboside (MemTR) were free of callus and produced elongated stems and well-developed leaves in comparison to the cytokinins benzyl adenine, zeatin, and thidiazuron. Subsequent root induction experiments were performed with shoots precultured on MemTR-containing medium. Shoots were excised and transferred to Murashige and Skoog (MS) medium supplemented with different concentrations of indole-3-butyric acid (IBA), indole-3-acetic acid (IAA), and α-naphtaleneacetic acid (NAA). The induction of excessive callus formation was avoided only on IBA-containing medium. The optimum rooting medium with good root induction (35%) and 1.2 roots per shoot contained half-strength MS salts supplemented with 2.5 μM IBA. The same medium supplemented with 0.25% (w/v) activated charcoal produced 46% rooted shoots. Further improvement of rooting was obtained by transferring in vitro grown shoots to woody plant medium containing phloroglucinol (PG). In the presence of 2.5 μM IBA and 238 μM PG, 83% of the shoots rooted with on average 3.1 roots per shoot. We also analyzed the impact of light quality on the rooting capacity of Jatropha in vitro grown shoots. In general, light-emitting diodes (LEDs) light sources were less efficient for root induction. Red LED light provided the most favorable growth conditions, inducing a rooting response in 65% of the shoots, which produced on average 5.5 roots per shoot. These results indicate that adventitious rooting in J. curcas is under control of photoreceptors and that optimal rooting requires fine-tuning of the salt concentration, auxin, and cytokinin balance and application of synergistic compounds.  相似文献   

12.
Shoots of apple rootstocks raised in vitro were transferred to various rooting media to study the effect of different factors on root initiation and development. Various concentrations of indole-3-butyric acid (IBA) initiated rooting but maximum rooting percentage was found with 2.0 and 2.5 mg l(-1) of IBA in M7 and with 1.0 mg l(-1) of IBA in MM106. The drawback was that the roots were thick, short and with profuse callus. The presence of activated charcoal (AC) in the rooting medium improved the rooting quality but reduced the rooting percentage in both the rootstocks. In high auxin dip of 70, 80 and 90 mg l(-1) IBA for 2, 2 and 1 hr showed 75-85 per cent rooting in M7, but lacked reproducibility of the results. Whereas in MM106, 66 - 70 % rooting was achieved with 70 mg l(-1) of IBA dip for 3 h. Root induction in shoots in IBA containing liquid medium (LM) in dark for few days and root elongation in IBA--free medium in light proved most effective. On the other hand, continuous light treatment showed reduced rooting. Reduction of MS salts and sucrose in root elongation medium showed decreased rooting. Plantlets from two--stage rooting procedure showed more rapid growth and satisfactory survival during hardening of plants and on transfer to field.  相似文献   

13.
Leaf explants of Jatropha curcas cultured on Murashige and Skoog’s (MS) medium supplemented with thidiazuron (TDZ; 0.90 μM) in combination with indole-3-butyric acid (IBA; 0.98μM) produced adventitious shoot buds directly on the surface of the explants without formation of intervening callus while shoot bud formation was accompanied with callus formation on medium supplemented with 6-benzylaminopurine (BAP; 13.3 μM) and IBA (2.46 μM). TDZ treatment resulted in more than twice higher rate of shoot bud induction than BAP. Shoot buds were multiplied and elongated following repeated transfers to medium containing BAP (2.22 μM) and gibberellic acid (GA3; 1.44 μM). The effect of copper sulphate on differentiation of shoot buds from leaf segments was also investigated. Both shoot induction and multiplication media were supplemented with different levels of CuSO4 (0–5 μM). Significant improvement in shoot bud induction was observed when the concentration of CuSO4 was increased to 10 times the normal MS level. Healthy elongated shoots were rooted on half strength MS medium supplemented with IBA (2.46 μM). Rooted plantlets were transferred to field and survived. Histological analysis revealed direct formation of shoot buds from leaf explants.  相似文献   

14.
In vitro regeneration of Parkia timoriana (DC.) Merr. has been achieved using cotyledonary node explants. The ability to produce multiple shoots has been evaluated using semi-solid Murashige and Skoog (MS) basal medium and Gamborg’s B-5 basal medium supplemented with various concentrations of α-naphthalene acetic acid (NAA) and 6-benzylaminopurine (BA) either in single or in combinations. The explants cultured in MS medium supplemented with combinations of 2.7 μM NAA and 11 μM BA showed the maximum frequency of multiple shoots (96.66%) formation and number of shoots per explants (6.60), respectively. For rooting, full and half strength MS medium supplemented with various concentrations of indole-3-butyric acid (IBA) and NAA were studied and the highest number of root formation was observed in full-strength MS supplemented with 9.8 μM IBA. Using Agrobacterium tumefaciens strain EHA105 pCAMBIA2301 various optimum conditions for efficient transformation were determined by recording the percentage of GUS+ explants. Following the optimized conditions, the co-cultured explants were cultured on semi-solid shoot regeneration medium containing MS medium + 2.7 μM NAA + 11 μM BA + 100 mg/l kanamycin + 500 mg/l cefotaxime. After 8 weeks of culture, the regenerated shoots were rooted in rooting medium (RM) containing MS medium + 9.8 μM indole-3-butyric acid (IBA), 3% sucrose, 7.5 mg/l kanamycin and 500 mg/l cefotaxime. Successful transformation was confirmed by histochemical GUS activity of the regenerated shoots, nptII gene PCR analyses of the regenerated kanamycin resistant plantlets and Southern analysis of putative transgenic PCR+ plants.  相似文献   

15.
High rooting percentages and high-quality adventitious root systems for papaya (Carica papaya L.) were obtainedin vitro by appropriate auxin source, duration of exposure to auxin and use of riboflavin. Root initiation of papaya shoots was higher using IBA than IAA, NAA or PCPA. Maximum rooting percentage (96%) was achieved by exposure of shoots to a medium containing 10 µM IBA for 3 days before transfer to a hormone-free medium. However, the resultant plants had small shoots and callused roots. Shoot and root growth were improved when shoots were transferred after 2 days from medium containing 10 µM IBA to hormone-free medium containing 10 µM riboflavin. Good root initiation, and root and shoot growth were also obtained when shoots were incubated for 2 days in darkness on a medium containing 10 µM IBA and 31 µM riboflavin before transfer to light. Alternatively, cultures could be placed in the light on medium containing 10 µM IBA, and after 1 day the medium overlaid with 300 µM riboflavin (1 ml over 10 ml of medium).  相似文献   

16.
A B5-based culture medium containing 4.4 μ M N6-benzyladenine (BA) and 0.025 μ M indole-3-butyric acid (IBA) induced callus from seedling cotyledons, leaves and petioles of Glycine clandestina Wendl. Only hard, green, nodular callus tissues were capable of producing shoot buds and of five accessions examined, only two (G1231 and G1145) were morphogenetically competent. Callus that did not regenerate could often be induced to produce shoot buds after subculture to fresh regeneration medium. Buds developed into shoots following transfer of callus to a medium containing 0.9 μ M BA and 0.025 μ M IBA. Shoots were rooted in hormone-free, half-strength B5 medium supplemented with 0.2% activated charcoal. The application of these results is discussed in relation to somatic hybridisation between the cultivated soybean and wild Glycine species.  相似文献   

17.
A micropropagation method for Quercus euboica Pap. was developed. Nodal explants from seedlings gave higher multiplication rates than explants from adult plants. Cultures initiated at the beginning of May produced the highest percentage of shoot forming explants and multiplication rate. Woody Plant Medium (WPM) salts, with 100 mg l−1 myoinositol, 1 mg l−1 thiamine, 0.5 mg l−1 pyridoxine, 0.5 mg l−1 nicotinic acid and 3% sucrose was used as basal medium and several cytokinins at various concentrations were evaluated for their effect on shoot multiplication. The highest shoot multiplication rate was obtained with 4.44 μΜ BA. IBA at 9.84 μΜ in the culture medium during the first week of culture, and if followed by culture in hormone-free medium, gave the best rooting results. Darkness at the beginning of the rooting period did not improve rooting. The use of plastic wrap as a cover material of the culture vessels enhanced rooting percentage and root number. Plantlets acclimatized ex vitro in soil from the natural environment of the species survived at a higher percentage (up to 93%) and had more vigorous growth than plantlets grown in a compost–perlite (2:1 v/v) medium (up to 36%).  相似文献   

18.
Regulation of in vitro shoot and root formation and the histologicalorigin of newly formed shoots was studied in the apple cultivarÅkerö. Both composition of mineral elements and benzylaminopurine(BAP) concentration affected shoot multiplication. Similar numbersof shoots were obtained with Lepoivre and MS medium after twosucceeding subcultures, but Murashige and Skoog medium was preferabledue to production of longer shoots. The optimum BAP concentrationwax around 8.8 µM. Higher concentrations caused vitrifiedshoots. The rooting ability increased with numbers of subcultures.Also the concentration of indol-3-yl butyric acid (IBA) affectedrooting. A strong interaction between numbers of subculturesand IBA concentration was obtained. After insufficient numbersof subcultures, when shoots were still difficult to root, increasingIBA concentration exerted little effect on rooting. When shootshad reached an ‘easy-to-root condition’ root initiationdepended on IBA concentration, showing an optimum at 2.5 µM.Supraoptimal IBA concentrations delayed root initiation. Dark treatment of shoots during the root-initiation phase increasedrooting ability. The most positive effect was obtained at suboptimalIBA concentrations. Anatomical studies revealed both axillaryand adventitious shoots. Two kinds of adventitious structureswere demonstrated. Malus domestica Borkh. apple cultivar Åkerö, in vitro propagation, anatomy, origin of shoots  相似文献   

19.
The effects of abscisic acid (37.8 μM), polyethylene glycol (5%), proline (10 mM), tryptophan (490 μM) and indoleacetic acid (5.7 μM) on rice callus regeneration were studied at various doses of NaCl (0, 50 and 100 mM) on three month-old mature embryo-derived callus of two japonica (I Kong Pao and Aiwu) and two indica (IR 2153 and Nona Bokra) rice cultivars differing in salinity tolerance. NaCl strongly decreased the regeneration frequency of all cultivars but slightly increased the survival of regenerated plantlets. Tryptophan stimulated regeneration and increased subsequent survival rates of regenerated plantlets in all cultivars at all NaCl doses. Abscisic acid and polyethylene glycol, though not affecting the final regeneration percentages, delayed regeneration and reduced the mean number of plantlets produced per regenerating callus in all cultivars, as well as rooting ability and survival of regenerated plantlets in indica genotypes. Proline had no marked effect on regeneration, whatever the NaCl dose or cultivar, while indoleacetic acid reduced shoot regeneration and increased root regeneration. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Nodular meristematic callus was induced on the basal cut surface of apical shoot explants of salvia cultured on Murashige and Skoog (MS) medium supplemented with 4.5, 13.5, or 22.5 μM thidiazuron (TDZ). Cultures were incubated in the dark for 1 wk and then transferred to light conditions for 4 wk. A higher percentage of explants developing callus was observed on medium containing either 4.5 or 13.5 μM TDZ, although explants on 4.5 μM developed larger calluses. The callus was maintained on medium containing 4.5 μM TDZ and 0.45 mM ascorbic acid. Shoot differentiation, after each of three successive maintenance passages, was induced from callus grown on medium containing either 4.4 or 8.8 μM benzyladenine (BA). A greater number of shoots were harvested from callus differentiated on BA (4.4 or 8.8 μM) medium with 0.45 mM ascorbic acid added. Shoots developed roots on MS medium supplemented with 4.9 μM of indole-3-butyric acid. The addition of ascorbic acid to the shoot differentiation medium enhanced rooting, number of roots per shoot, and survival rate. Approximately 75% in vitro plantlets were acclimatized to ex vitro conditions. Histological investigations confirmed both adventitious meristem initiation during the callus induction phase, and subsequent organogenic shoot development on the differentiation medium. The novel protocol for the meristematic callus induction and plant regeneration in this study may be useful for biotechnological applications for salvia improvement via genetic transformation or mutagenesis and in vitro propagation approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号