首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 476 毫秒
1.
2.
3.
4.
One form of inherited long QT syndrome, LQT2, results from mutations in HERG1, the human ether-a-go-go-related gene, which encodes a voltage-gated K(+) channel alpha subunit. Heterologous expression of HERG1 gives rise to K(+) currents that are similar (but not identical) to the rapid component of delayed rectification, I(Kr), in cardiac myocytes. In addition, N-terminal splice variants of HERG1 and MERG1 (mouse ERG1) referred to as HERG1b and MERG1b have been cloned and suggested to play roles in the generation of functional I(Kr) channels. In the experiments here, antibodies generated against HERG1 were used to examine ERG1 protein expression in heart and in brain. In Western blots of extracts of QT-6 cells expressing HERG1, MERG1, or RERG1 (rat ERG1) probed with antibodies targeted against the C terminus of HERG1, a single 155-kDa protein is identified, whereas a 95-kDa band is evident in blots of extracts from cells expressing MERG1b or HERG1b. In immunoblots of fractionated rat (and mouse) brain and heart membrane proteins, however, two prominent high molecular mass proteins of 165 and 205 kDa were detected. Following treatment with glycopeptidase F, the 165- and 205-kDa proteins were replaced by two new bands at 175 and 130 kDa, suggesting that ERG1 is differentially glycosylated in rat/mouse brain and heart. In human heart, a single HERG1 protein with an apparent molecular mass of 145 kDa is evident. In rats, ERG1 protein (and I(Kr)) expression is higher in atria than ventricles, whereas in humans, HERG1 expression is higher in ventricular, than atrial, tissue. Taken together, these results suggest that the N-terminal alternatively spliced variants of ERG1 (i.e. ERG1b) are not expressed at the protein level in rat, mouse, or human heart and that these variants do not, therefore, play roles in the generation of functional cardiac I(Kr) channels.  相似文献   

5.
6.
7.
GLUT4 shows decreased levels in failing human adult hearts. We speculated that GLUT4 expression in cardiac muscle may be fine-tuned by microRNAs. Forced expression of miR-133 decreased GLUT4 expression and reduced insulin-mediated glucose uptake in cardiomyocytes. A computational miRNA target prediction algorithm showed that KLF15 is one of the targets of miR-133. It was confirmed that over-expression of miR-133 reduced the protein level of KLF15, which reduced the level of the downstream target GLUT4. Cardiac myocytes infected with lenti-decoy, in which the 3′UTR with tandem sequences complementary to miR-133 was linked to the luciferase reporter gene, had decreased miR-133 levels and increased levels of GLUT4. The expression levels of KLF15 and GLUT4 were decreased at the left ventricular hypertrophy and congestive heart failure stage in a rat model. The present results indicated that miR-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiomyocytes.  相似文献   

8.
We tested the hypothesis that miR-133a regulates DNA methylation by inhibiting Dnmt-1 (maintenance) and Dnmt-3a and -3b (de novo) methyl transferases in diabetic hearts by using Ins2(+/-) Akita (diabetic) and C57BL/6J (WT), mice and HL1 cardiomyocytes. The specific role of miR-133a in DNA methylation in diabetes was assessed by two treatment groups (1) scrambled, miR-133a mimic, anti-miR-133a, and (2) 5mM glucose (CT), 25mM glucose (HG) and HG+miR-133a mimic. The levels of miR-133a, Dnmt-1, -3a and -3b were measured by multiplex RT-PCR, qPCR and Western blotting. The results revealed that miR-133a is inhibited but Dnmt-1 and -3b are induced in Akita suggesting that attenuation of miR-133a induces both maintenance (Dnmt-1) - and de novo - methylation (Dnmt-3b) in diabetes. The up regulation of Dnmt-3a in Akita hearts elicits intricate and antagonizing interaction between Dnmt-3a and -3b. In cardiomyocytes, over expression of miR-133a inhibits but silencing of miR-133a induces Dnmt-1, -3a and -3b elucidating the involvement of miR-133a in regulation of DNA methylation. The HG treatment up regulates only Dnmt-1 and not Dnmt-3a and -3b suggesting that acute hyperglycemia triggers only maintenance methylation. The over expression of miR-133a mitigates glucose mediated induction of Dnmt-1 illustrating the role of miR-133a in regulation of DNA methylation in diabetes.  相似文献   

9.
Congestive heart failure (CHF) is associated with susceptibility to lethal arrhythmias and typically increases levels of tumor necrosis factor-alpha (TNF-alpha) and its receptor, TNFR1. CHF down-regulates rapid delayed-rectifier K(+) current (I(Kr)) and delays cardiac repolarization. We studied the effects of TNF-alpha on cloned HERG K(+) channel (human ether-a-go-go-related gene) in HEK293 cells and native I(Kr) in canine cardiomyocytes with whole-cell patch clamp techniques. TNF-alpha consistently and reversibly decreased HERG current (I(HERG)). Effects of TNF-alpha were concentration-dependent, increased with longer incubation period, and occurred at clinically relevant concentrations. TNF-alpha had similar inhibitory effects on I(Kr) and markedly prolonged action potential duration (APD) in canine cardiomyocytes. Immunoblotting analysis demonstrated that HERG protein level was slightly higher in canine hearts with tachypacing-induced CHF than in healthy hearts, and TNF-alpha slightly increased HERG protein level in CHF but not in healthy hearts. In cells pretreated with the inhibitory anti-TNFR1 antibody, TNF-alpha lost its ability to suppress I(HERG), indicating a requirement of TNFR1 activation for HERG suppression. Vitamin E or MnTBAP (Mn(III) tetrakis(4-benzoic acid) porphyrin chloride), a superoxide dismutase mimic) prevented, whereas the superoxide anion generating system xanthine/xanthine oxidase mimicked, TNF-alpha-induced I(HERG) depression. TNF-alpha caused robust increases in intracellular reactive oxygen species, and vitamin E and MnTBAP abolished the increases, in both HEK293 cells and canine ventricular myocytes. We conclude that the TNF-alpha/TNFR1 system impairs HERG/I(Kr) function mainly by stimulating reactive oxygen species, particularly superoxide anion, but not by altering HERG expression; the effect may contribute to APD prolongation by TNF-alpha and may be a novel mechanism for electrophysiological abnormalities and sudden death in CHF.  相似文献   

10.
11.
12.
13.
Oxidative stress is involved in the etiology of diabetes-induced cardiac dysfunction while microRNAs (miRNAs) are known as regulators for genes involved in cardiac remodeling. However, a functional link between miRNAs and diabetes-induced cardiac dysfunction remains to be investigated. Here, we aimed to identify whether the expression levels of miRNAs are associated with oxidative stress/diabetic heart and if proteins responsible from contractile activity during diabetes might be directly modulated by miRNAs. Diabetic cardiomyopathy developed with streptozotocin, is characterized with marked changes in sarcomere and mitochondria, depressed left ventricular developed pressure, and a massive oxidative stress that is particularly evident in the heart. miRNA profiling was performed in freshly isolated left ventricular cells from diabetic rats. Using microarray analysis, we identified marked changes in the expression of 43 miRNAs (37 of them were downregulated while 6 miRNAs were upregulated) out of examined total of 351 miRNAs. Among them, 6 miRNAs were further validated by real-time PCR. The expression levels of miR-1, miR-499, miR-133a, and miR-133b were markedly depressed in the diabetic cardiomyocytes while miR-21 level increased and miR-16 level was unchanged. Notably, normalization of cardiac function and oxidant/antioxidant level after N-acetylcysteine (NAC)-treatment of diabetic rats resulted with a significant restoration in the expression levels of miR-499, miR-1, miR-133a, and miR-133b in the myocardium. Since changes in the level of muscle-specific miR-1 has been implicated in cardiac diseases and its specific molecular targets involved in its action, in part, associated with oxidative stress are limited, we first examined the protein levels of some SR-associated proteins such as junctin and triadin. Junctin but not triadin is markedly overexpressed in diabetic cardiomyocytes while its level was normalized in NAC-treated diabetics. Luciferase reporter assay showed that junctin is targetted by miR-1. Taken together, our data demonstrates that intervention with an antioxidant treatment for 4-week leads to significant cardioprotection against diabetes-induced injury, controlling oxidant/antioxidant level, which may directly control the levels of some miRNAs including miR-1 and its target protein junctin, which is involved in the development of diabetic cardiomyopathy.  相似文献   

14.
Isolation of the rapidly activating delayed rectifier potassium current (I(Kr)) from other cardiac currents has been a difficult task for quantitative study of this current. The present study was designed to separate I(Kr) using Cs+ in cardiac myocytes. Cs+ have been known to block a variety of K+ channels, including many of those involved in the cardiac action potential such as inward rectifier potassium current I(K1) and the transient outward potassium current I(to). However, under isotonic Cs+ conditions (135 mM Cs+), a significant membrane current was recorded in isolated rabbit ventricular myocytes. This current displayed the voltage-dependent onset of and recovery from inactivation that are characteristic to I(Kr). Consistently, the current was selectively inhibited by the specific I(Kr) blockers. The biophysical and pharmacological properties of the Cs+-carried human ether-a-go-go-related gene (hERG) current were very similar to those of the Cs+-carried I(Kr) in ventricular myocytes. The primary sequence of the selectivity filter in hERG was in part responsible for the Cs+ permeability, which was lost when the sequence was changed from GFG to GYG, characteristic of other, Cs+-impermeable K+ channels. Thus the unique high Cs+ permeability in I(Kr) channels provides an effective way to isolate I(Kr) current. Although the biophysical and pharmacological properties of the Cs+-carried I(Kr) are different from those of the K+-carried I(Kr), such an assay enables I(Kr) current to be recorded at a level that is large enough and sufficiently robust to evaluate any I(Kr) alterations in native tissues in response to physiological or pathological changes. It is particularly useful for exploring the role of reduction of I(Kr) in arrhythmias associated with heart failure and long QT syndrome due to the reduced hERG channel membrane expression.  相似文献   

15.
16.
Recently, many studies suggest that microRNAs (miRNAs) contribute to the development, invasion and metastasis of various types of human cancers. Our recent study revealed that expression of microRNA-133a (miR-133a) was significantly reduced in head and neck squamous cell carcinoma (HNSCC) and that restoration of miR-133a inhibited cell proliferation, migration and invasion in HNSCC cell lines, suggesting that miR-133a function as a tumor suppressor. Genome-wide gene expression analysis of miR-133a transfectants and TargetScan database showed that moesin (MSN) was a promising candidate of miR-133a target gene. MSN is a member of the ERM (ezrin, radixin and moesin) protein family and ERM function as cross-linkers between plasma membrane and actin-based cytoskeleton. The functions of MSN in cancers are controversial in previous reports. In this study, we focused on MSN and investigated whether MSN was regulated by tumor suppressive miR-133a and contributed to HNSCC oncogenesis. Restoration of miR-133a in HNSCC cell lines (FaDu, HSC3, IMC-3 and SAS) suppressed the MSN expression both in mRNA and protein level. Silencing study of MSN in HNSCC cell lines demonstrated significant inhibitions of cell proliferation, migration and invasion activities in si-MSN transfectants. In clinical specimen with HNSCC, the expression level of MSN was significantly up-regulated in cancer tissues compared to adjacent non-cancerous tissues. These data suggest that MSN may function as oncogene and is regulated by tumor suppressive miR-133a. Our analysis data of novel tumor-suppressive miR-133a-mediated cancer pathways could provide new insights into the potential mechanisms of HNSCC oncogenesis.  相似文献   

17.
Reversine has been shown to induce dedifferentiation of C2C12 murine myoblasts into multipotent progenitor cells. However, little is known about the key regulators mediating the dedifferentiation induced by reversine. Here, we show that large scale miRNA gene expression profiling of reversine-treated C2C12 myoblasts identifies a down-regulated miRNA, miR-133a, involved in dedifferentiation of myoblasts. Reversine treatment results in up- and down-regulated miRNA profiles. Among miRNAs affected by reversine, the level of muscle-specific miR-133a, which has been shown to be up-regulated during muscle development and to suppress differentiation into other lineages, is markedly reduced by treatment of C2C12 myoblasts with reversine. In parallel, reversine decreases the expression and recruitment of myogenic factor, SRF, to the enhancer regions of miR-133a. Sequentially, down-regulation of miR-133a by reversine is accompanied by a decrease in active histone modifications including trimethylation of histone H3K4 and H3K36, phosphorylation of H3S10, and acetylation of H3K14 on the miR-133a promoter, leading to dissociation of RNA polymerase II from the promoter. Furthermore, inhibition of miR-133a by transfection of C2C12 myoblasts with miR-133a inhibitor increases the expression of osteogenic lineage marker, Ogn, and adipotenic lineage marker, ApoE, similar to that in response to reversine. In contrast, the co-overexpression of miR-133a mimic reversed the effect of reversine on C2C12 myoblast dedifferentiation. Taken together, the results indicate that reversine induces a multipotency of C2C12 myoblasts by suppression of miR-133a expression through depletion of active histone modifications, and suggest that miR-133a is a potential miRNA regulating the reversine-induced dedifferentiation. Collectively, our findings provide a mechanistic rationale for the application of reversine to dedifferentiation of somatic cells.  相似文献   

18.
19.
Various biochemical and genomic mechanisms are considered to be a hallmark of metabolic remodeling in the stressed heart, including the hypertrophied and failing heart. In this study, we used quantitative proteomic 2-D Fluorescence Difference In-Gel Electrophoresis (2-D DIGE) in conjunction with mass spectrometry to demonstrate differential protein expression in the hearts of transgenic rabbit models of Long QT Syndrome 1 (LQT1) and Long QT Syndrome 2 (LQT2) as compared to littermate controls (LMC). The results of our proteomic analysis revealed upregulation of key metabolic enzymes involved in all pathways associated with ATP generation, including creatine kinase in both LQT1 and LQT2 rabbit hearts. Additionally, the expression of lamin-A protein was increased in both LQT1 and LQT2 rabbit hearts as was the expression of mitochondrial aldehyde dehydrogenase and desmoplakin in LQT1 and LQT 2 rabbit hearts, respectively. Results of the proteomic analysis also demonstrated down regulation in the expression of protein disulfide-isomerase A3 precuorsor and dynamin-like 120 kDa protein (mitochondrial) in LQT1, and of alpha-actinin 2 in LQT2 rabbit hearts. Up regulation of the expression of the enzymes associated with ATP generation was substantiated by the results of selective enzyme assays in LQT1 and LQT2 hearts, as compared to LMC, which revealed increases in the activities of glycogen phosphorylase (+50%, +65%, respectively), lactate dehydrogenase (+25%, +25%) pyruvate dehydrogenase (+31%, +22%), and succinate dehydrogenase (+32%, +60%). The activity of cytochrome c-oxidase, a marker for the mitochondrial function was also found to be significantly elevated (+80%) in LQT1 rabbit hearts as compared with LMC. Western blot analysis in LQT1 and LQT2 hearts compared to LMC revealed an increase in the expression of very-long chain-specific acyl-CoA dehydrogenase (+35%, +33%), a rate-limiting enzymes in β-oxidation of fatty acids. Collectively, our results demonstrate similar increases in the expression and activities of key ATP-generating enzymes in LQT1 and LQT2 rabbit hearts, suggesting an increased demand, and in turn, increased energy supply across the entire metabolic pathway by virtue of the upregulation of enzymes involved in energy generation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号