首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
Bergmann's and Rensch's rules describe common large-scale patterns of body size variation, but their underlying causes remain elusive. Bergmann's rule states that organisms are larger at higher latitudes (or in colder climates). Rensch's rule states that male body size varies (or evolutionarily diverges) more than female body size among species, resulting in slopes greater than one when male size is regressed on female size. We use published studies of sex-specific latitudinal body size clines in vertebrates and invertebrates to investigate patterns equivalent to Rensch's rule among populations within species and to evaluate their possible relation to Bergmann's rule. Consistent with previous studies, we found a continuum of Bergmann (larger at higher latitudes: 58 species) and converse Bergmann body size clines (larger at lower latitudes: 40 species). Ignoring latitude, male size was more variable than female size in only 55 of 98 species, suggesting that intraspecific variation in sexual size dimorphism does not generally conform to Rensch's rule. In contrast, in a significant majority of species (66 of 98) male latitudinal body size clines were steeper than those of females. This pattern is consistent with a latitudinal version of Rensch's rule, and suggests that some factor that varies systematically with latitude is responsible for producing Rensch's rule among populations within species. Identifying the underlying mechanisms will require studies quantifying latitudinal variation in sex-specific natural and sexual selection on body size.  相似文献   

2.
Rensch's rule refers to a pattern in sexual size dimorphism (SSD) in which SSD decreases with body size when females are the larger sex and increases with body size when males are the larger sex. Many animal taxa conform to Rensch's rule, but it has yet to be investigated in plants. Using herbarium collections from New Zealand, we characterized the size of leaves and stems of 297 individuals from 38 dioecious plant species belonging to three distantly related phylogenetic lineages. Statistical comparisons of leaf sizes between males and females showed evidence for Rensch's rule in two of the three lineages, indicating SSD decreases with leaf size when females produce larger leaves and increases with leaf size when males produce larger leaves. A similar pattern in SSD was observed for stem sizes. However, in this instance, females of small-stemmed species produced much larger stems than did males, but as stem sizes increased, SSD often disappeared. We hypothesize that sexual dimorphism in stem sizes results from selection for larger stems in females, which must provide mechanical support for seeds, fruits, and dispersal vectors, and that scaling relationships in leaf sizes result from correlated evolution with stem sizes. The overall results suggest that selection for larger female stem sizes to support the weight of offspring can give rise to Rensch's rule in dioecious plants.  相似文献   

3.
Sexual size dimorphism and sex ratios in dragonflies (Odonata)   总被引:1,自引:0,他引:1  
Sexual size dimorphism and biased sex ratios are common in animals. Rensch's rule states that sexual size dimorphism (SSD) would increase with body size in taxa where males are larger than females and decrease with body size in taxa where females are larger. We tested this trend in dragonflies (Odonata) by analysing body size of 21 species and found support for Rensch's rule. The increase in SSD with increasing size among species can be explained by sexual selection favouring large males. We also estimated the slope of the relationship between sex ratio and size ratio in populations of the 21 species. A negative slope would suggest that the larger sex suffers from high mortality in the larval stage, consistent with riskier foraging. The slope of this relationship was negative, but after correcting for phylogentic non-independence with independent contrasts the relationship was no longer statistically significant, perhaps because of phylogenic inertia or low sample size.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 86 , 507–513.  相似文献   

4.
A prominent interspecific pattern of sexual size dimorphism (SSD) is Rensch's rule, according to which male body size is more variable or evolutionarily divergent than female body size. Assuming equal growth rates of males and females, SSD would be entirely mediated, and Rensch's rule proximately caused, by sexual differences in development times, or sexual bimaturism (SBM), with the larger sex developing for a proportionately longer time. Only a subset of the seven arthropod groups investigated in this study exhibits Rensch's rule. Furthermore, we found only a weak positive relationship between SSD and SBM overall, suggesting that growth rate differences between the sexes are more important than development time differences in proximately mediating SSD in a wide but by no means comprehensive range of arthropod taxa. Except when protandry is of selective advantage (as in many butterflies, Hymenoptera, and spiders), male development time was equal to (in water striders and beetles) or even longer than (in drosophilid and sepsid flies) that of females. Because all taxa show female-biased SSD, this implies faster growth of females in general, a pattern markedly different from that of primates and birds (analyzed here for comparison). We discuss three potential explanations for this pattern based on life-history trade-offs and sexual selection.  相似文献   

5.
Within any given clade, male size and female size typically covary, but male size often varies more than female size. This generates a pattern of allometry for sexual size dimorphism (SSD) known as Rensch's rule. I use allometry for SSD among populations of the water strider Aquarius remigis (Hemiptera, Gerridae) to test the hypothesis that Rensch's rule evolves in response to sexual selection on male secondary sexual traits and an alternative hypothesis that it is caused by greater phenotypic plasticity of body size in males. Comparisons of three populations reared under two temperature regimes are combined with an analysis of allometry for genital and somatic components of body size among 25 field populations. Contrary to the sexual-selection hypothesis, genital length, the target of sexual selection, shows the lowest allometric slope of all the assayed traits. Instead, the results support a novel interpretation of the differential-plasticity hypothesis: that the traits most closely associated with reproductive fitness (abdomen length in females and genital length in males) are "adaptively canalized." While this hypothesis is unlikely to explain Rensch's rule among species or higher clades, it may explain widespread patterns of intraspecific variation in SSD recently documented for many insect species.  相似文献   

6.
Body size is one of the most important quantitative traits under evolutionary scrutiny. Sexual size dimorphism (SSD) in a given species is expected to result if opposing selection forces equilibrate differently in both sexes. We document variation in the intensity of sexual and fecundity selection, male and female body size, and thus SSD among 31 and 27 populations of the two dung fly species, Scathophaga stercoraria and Sepsis cynipsea, across Switzerland. Whereas in S. cynipsea females are larger, the SSD is reversed in S. stercoraria. We comprehensively evaluated Fairbairn and Preziosi's (1994) general, three-tiered scenario, hypothesizing that sexual selection for large male size is the major driving force of SSD allometry within these two species. Sexual selection intensity on male size in the yellow dung fly, S. stercoraria, was overall positive, greater, and more variable among populations than fecundity selection on females. Also, sexual selection intensity in a given population correlated positively with mean male body size of that population for both the field-caught fathers and their laboratory-reared sons, indicating a response to selection. In S. cvnipsea, sexual selection intensity on males was lower overall and significantly positive, about equal in magnitude, but more variable than fecundity selection on females. However, there was no correlation between the intensity of sexual selection and mean male body size among populations. In both species, the laboratory-reared offspring indicate genetic differentiation among populations in body size. Despite fulfillment of all key prerequisites, at least in S. stercoraria, we did not find hypoallometry for SSD (Rensch's rule, i.e., greater evolutionary divergence in male size than female size) for the field-caught parents or the laboratory-reared offspring: Female size was isometric to male size in both species. We conclude that S. cynipsea does not fit some major requirements of Fairbairn and Preziosi's (1994) scenario, whereas for S. stercoraria we found partial support for it. Failure to support Rensch's rule within the latter species may be due to phylogenetic or other constraints, power limitations, erroneous estimates of sexual selection, insufficient genetic isolation of populations, or sex differences in viability selection against large size.  相似文献   

7.
The Drosophila obscura clade consists of about 41 species, of which 20 were used for analyses of wing and thorax length. Our primary goal was to investigate the magnitude of sexual size dimorphism (SSD) of these traits within this clade and to test Rensch's Rule [when females are larger than males, SSD (e.g., female/male ratio) should decrease with body size]. Our secondary goal was methodological and involved evaluating for these flies alternative measures of SSD (female/male ratio, female/male absolute difference, female/male relative difference), developing a bootstrap method to estimate the magnitude of intraspecific variation in SSD, and applying a new method of estimating allometric relationships that is phylogenetically based and incorporates error variance in both traits. All indices of SSD were strongly correlated for both size traits. Nevertheless, female/male ratio is the best index here: it is easily interpretable and essentially independent of size. For both traits, SSD (F/M) varied interspecifically, showed a strong phylogenetic signal, but did not differ for the main phylogenetic subgroups or correlate with latitude. Factors underlying variation in SSD in this clade are elusive and might include genetic drift. SSD (wing) tended to decrease with increasing size, as predicted by Rensch's Rule, though not consistently so. SSD (thorax) was unrelated to size. However, analysis of published data for thorax length of Drosophila spp. (N=42) with a larger size range showed that SSD decreased significantly with increasing size (consistent with Rensch's Rule), suggesting our ability to detect SSD-size relations in the D. obscura data may be limited by low statistical power.  相似文献   

8.
Sexual dimorphism is prevalent in most living organisms. The difference in size between sexes of a given species is generally known as sexual size dimorphism (SSD). The magnitude of the SSD is determined by Rensch's rule where size dimorphism increases with increasing body size when the male is the larger sex and decreases with increasing average body size when the female is the larger sex. The unique underground environment that zokors (Eospalax baileyi) live under in the severe habitat of the Qinghai‐Tibetan Plateau (QTP) could create SSD selection pressures that may or may not be supported by Rensch's rule, making this scientific question worthy of investigation. In this study, we investigated the individual variation between sexes in body size and SSD of plateau zokors using measurements of 19 morphological traits. We also investigated the evolutionary mechanisms underlying SSD in plateau zokors. Moreover, we applied Rensch's rule to all extant zokor species. Our results showed male‐biased SSD in plateau zokors: The body‐ and head‐related measurements were greater in males than in females. Linear regression analysis between body length, body weight, and carcass weight showed significant relationships with some traits such as skull length, lower incisor length, and tympanic bulla width, which might support our prediction that males have faster growth rates than females. Further, the SSD pattern corroborated the assumption of Rensch's rule in plateau zokors but not in the other zokor species. Our findings suggest that the natural underground habitat and behavioral differences between sexes can generate selection pressures on male traits and contribute to the evolution of SSD in plateau zokors.  相似文献   

9.
动物体型性别二态性(Sexual size dimorphism,SSD)是存在于动物界的普遍现象,作用于某一性别体型的选择压力与作用于另一性别体型的选择压力大小或方向的不同被认为是SSD 产生的原因。伦施法则认为,在雄性体型比雌性体型大的动物类群中,SSD 随体型增大而增大,相反地,在雌性体型比雄性体型大的生物类群中随体型增大而减小。本文从动物体型性别二态性产生的原因及规律方面概述了其研究现状,以及蝙蝠性别二态性研究的进展,并提出关于蝙蝠体型性别二态性尚未解决的科学问题及未来的研究展望。  相似文献   

10.
Rensch’s rule refers to a pattern in sexual size dimorphism (SSD) in which SSD increases with body size when males are the larger sex and decreases with body size when females are the larger sex. Using data on body size from 40 populations and age from 31 populations of the rice frog Rana limnochari with female-biased size dimorphism, I tested the consistency of allometric relationships between males and females with Rensch’s rule and evaluated the hypothesis that SSD was largely a function of age differences between the sexes. Statistical comparisons of body sizes between the sexes showed the evidence for the inverse of Rensch’s rule, indicating the level of SSD increased with increasing mean body size. One of the explanations for the occurrence of the inverse of Rensch’s rule may be the fecundity selection hypothesis assuming increased reproductive output in large females. However, differences in age between males and females among populations could explain mildly the variation in SSD.  相似文献   

11.
Sexual size dimorphism (SSD) is widespread within the animal kingdom. Rensch’s rule describes a relationship between SSD and body size: SSD increases with body size when males are the larger sex, and decreases with body size when females are the larger sex. Rensch’s rule is well supported for taxa that exhibit male-biased SSD but patterns of allometry among taxa with female-biased size dimorphism are mixed, there is evidence both for and against the rule. Furthermore, most studies have investigated Rensch’s rule across a variety of taxa; but among-population studies supporting Rensch’s rule are lacking, especially in taxa that display only slight SSD. Here, we tested whether patterns of intraspecific variation in SSD in greater horseshoe bats conform to Rensch’s rule, and evaluated the contribution of latitude to Rensch’s rule. Our results showed SSD was consistently female-biased in greater horseshoe bats, although female body size was only slightly larger than male body size. The slope of major axis regression of log10 (male) on log10 (female) was significantly different from 1. Forearm length for both sexes of greater horseshoe bats was significantly negatively correlated with latitude, and males displayed a slightly but nonsignificant steeper latitudinal cline in body size than females. We suggest that variation in patterns of SSD among greater horseshoe bat populations is consistent with Rensch’s rule indicating that males were the more variable sex. Males did not have a steeper body size–latitude relationship than females suggesting that sex-specific latitudinal variation in body size may not be an important contributing factor to Rensch’s rule. Future research on greater horseshoe bats might best focus on more comprehensive mechanisms driving the pattern of female-biased SSD variation.  相似文献   

12.
Sex-specific plasticity in body size has been recently proposed to cause intraspecific patterns of variation in sexual size dimorphism (SSD). We reared juvenile male and female Mediterranean tarantulas (Lycosa tarantula) under two feeding regimes and monitored their growth until maturation. Selection gradients calculated across studies show how maturation size is under net stabilizing selection in females and under directional selection in males. This pattern was used to predict that body size should be more canalized in females than in males. As expected, feeding affected male but not female maturation size. The sex-specific response of maturation size was related to a dramatic divergence between subadult male and female growth pathways. These results demonstrate the existence of sex-specific canalization and resource allocation to maturation size in this species, which causes variation in SSD depending on developmental conditions consistent with the differential-plasticity hypothesis explaining Rensch's Rule.  相似文献   

13.
Rensch's rule states that degree of sexual dimorphism increases with body size in species with larger males, and decreases with body size in those with larger females. To test this rule, we assessed the pattern of sexual size dimorphism in tinamous using a comparative analysis of independent contrasts. Tinamous are a monophyletic group of primitive birds comprising at least 47 ground dwelling species with prominent or exclusive paternal care of eggs and offspring. Although the size of females exceeded that of males in most considered species, we found an isometric relationship between males and females, instead of the negative allometric one predicted by Rensch's rule. Previous studies in Strigiformes and Falconiformes found positive allometric and isometric relationships respectively, and, considering these findings with our results, we conclude that Rensch's rule is not supported by birds with exclusively female-biased sexual dimorphism in size.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 519–527  相似文献   

14.
Aim  We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location  The Sunda Shelf islands of Southeast Asia.
Methods  Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results  We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions  The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule.  相似文献   

15.
Sexual size dimorphism (SSD), i.e. the difference in sizes of males and females, is a key evolutionary feature that is related to ecology, behaviour and life histories of organisms. Although the basic patterns of SSD are well documented for several major taxa, the processes generating SSD are poorly understood. Domesticated animals offer excellent opportunities for testing predictions of functional explanations of SSD theory because domestic stocks were often selected by humans for particular desirable traits. Here, we analyse SSD in 139 breeds of domestic chickens Gallus gallus domesticus and compare them to their wild relatives (pheasants, partridges and grouse; Phasianidae, 53 species). SSD was male-biased in all chicken breeds, because males were 21.5 ± 0.55% (mean ± SE) heavier than females. The extent of SSD did not differ among breed categories (cock fighting, ornamental and breeds selected for egg and meat production). SSD of chicken breeds was not different from wild pheasants and allies (23.5 ± 3.43%), although the wild ancestor of chickens, the red jungle fowl G. gallus, had more extreme SSD (male 68.8% heavier) than any domesticated breed. Male mass and female mass exhibited positive allometry among pheasants and allies, consistently with the Rensch's rule reported from various taxa. However, body mass scaled isometrically across chicken breeds. The latter results suggest that sex-specific selection on males vs. females is necessary to generate positive allometry, i.e. the Rensch's rule, in wild populations.  相似文献   

16.
Rensch's rule states that sexual size dimorphism (SSD) increases with body size in taxa where males are larger, and decreases when females are larger. The dominant explanation for the trend is currently that competitive advantage for males is greater in larger individuals, whereas female size is constrained by the energetics of rearing offspring. This rule holds for a variety of vertebrate taxa, and opposing trends are rare. We examine the allometry of SSD within the Musteloidea and demonstrate a hypo‐allometry contrary to Rensch's rule, with lower SSD associated with larger body size. We provide evidence that feeding ecology is involved. Where diet promotes group‐living, the optimal strategy for the males of larger species is often not to attempt to defend access to multiple females, obviating any competitive advantage of relatively greater size. We conclude that the effect of feeding ecology on mating systems may be a hitherto neglected factor explaining variation in SSD.  相似文献   

17.
Many animal lineages exhibit allometry in sexual size dimorphism (SSD), known as ‘Rensch’s rule’. When applied to the interspecific level, this rule states that males are more evolutionary plastic in body size than females and that male‐biased SSD increases with body size. One of the explanations for the occurrence of Rensch’s rule is the differential‐plasticity hypothesis assuming that higher evolutionary plasticity in males is a consequence of larger sensitivity of male growth to environmental cues. We have confirmed the pattern consistent with Rensch’s rule among species of the gecko genus Paroedura and followed the ontogeny of SSD at three constant temperatures in a male‐larger species (Paroedura picta). In this species, males exhibited larger temperature‐induced phenotypic plasticity in final body size than females, and body size and SSD correlated across temperatures. This result supports the differential‐plasticity hypothesis and points to the role phenotypic plasticity plays in generating of evolutionary novelties.  相似文献   

18.
Fecundity selection predicts Bergmann's rule in syngnathid fishes   总被引:2,自引:2,他引:0  
The study of latitudinal increases in organismal body size (Bergmann's rule) predates even Darwin's evolutionary theory. While research has long concentrated on identifying general evolutionary explanations for this phenomenon, recent work suggests that different factors operating on local evolutionary timescales may be the cause of this widespread trend. Bergmann's rule explains body size variation in a diversity of warm-blooded organisms and there is increasing evidence that Bergmann's rule is also widespread in ectotherms. Bergmann's rule acts differentially in species of the Syngnathidae, a family of teleost fishes noted for extreme adaptations for male parental care. While variation in body size of polygamous Syngnathus pipefish is consistent with Bergmann's rule, body size is uncorrelated with latitude in monogamous Hippocampus seahorses. A study of populations of Syngnathus leptorhynchus along a natural latitudinal and thermal gradient indicates that increases in body size with latitude maintain the potential reproductive rate of males despite significant decreases in ambient temperatures. Polygyny is necessary in order to maximize male reproductive success in S. leptorhynchus , suggesting a possible a link between fecundity selection and Bergmann's rule in this species.  相似文献   

19.
Odonata (dragonflies and damselflies) exhibit a range of sexual size dimorphism (SSD) that includes species with male-biased (males > females) or female-biased SSD (males < females) and species exhibiting nonterritorial or territorial mating strategies. Here, we use phylogenetic comparative analyses to investigate the influence of sexual selection on SSD in both suborders: dragonflies (Anisoptera) and damselflies (Zygoptera). First, we show that damselflies have male-biased SSD, and exhibit an allometric relationship between body size and SSD, that is consistent with Rensch's rule. Second, SSD of dragonflies is not different from unit, and this suborder does not exhibit Rensch's rule. Third, we test the influence of sexual selection on SSD using proxy variables of territorial mating strategy and male agility. Using generalized least squares to account for phylogenetic relationships between species, we show that male-biased SSD increases with territoriality in damselflies, but not in dragonflies. Finally, we show that nonagile territorial odonates exhibit male-biased SSD, whereas male agility is not related to SSD in nonterritorial odonates. These results suggest that sexual selection acting on male sizes influences SSD in Odonata. Taken together, our results, along with avian studies (bustards and shorebirds), suggest that male agility influences SSD, although this influence is modulated by territorial mating strategy and thus the likely advantage of being large. Other evolutionary processes, such as fecundity selection and viability selection, however, need further investigation.  相似文献   

20.
The magnitude and direction of sexual size dimorphism (SSD) may vary considerably within and among taxa, and the primary causes of such variation have not been thoroughly elucidated. For example, the effect of abiotic factors is frequently attributed to explain intra‐ and interspecific variation in SSD. Rensch's rule, which states that males vary more in size than females when body size increases, has rarely been tested in bats. Therefore, whether bats follow Rensch's rule remains unclear, particularly when females are larger than males. We investigated whether four bat species presented SSD, as well as whether their body sizes varied within each sex across localities, testing the hypothesis that intraspecific SSD varies substantially depending of sampling localities. We finally examined whether bats followed Rensch's rule by simultaneously using intraspecific and interspecific approaches. Although SSD was not observed for most bat species within each locality, the females of three of the four captured species exhibited differences in body size between particular localities. Usually the females varied more in size than did males across localities, mostly exhibiting a female‐biased SSD. Significant differences in SSD were observed (i.e. mean values of the sexual dimorphism index), even though Rensch's rule was not followed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号