首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed mitochondrial DNA polymorphisms to search for evidence of the genetic structure and patterns of admixture in 124 populations (N = 1407 trees) across the distribution of Scots pine in Europe and Asia. The markers revealed only a weak population structure in Central and Eastern Europe and suggested postglacial expansion to middle and northern latitudes from multiple sources. Major mitotype variants include the remnants of Scots pine at the north-western extreme of the distribution in the Scottish Highlands; two main variants (western and central European) that contributed to the contemporary populations in Norway and Sweden; the central-eastern European variant present in the Balkan region, Finland, and Russian Karelia; and a separate one common to most eastern European parts of Russia and western Siberia. We also observe signatures of a distinct refugium located in the northern parts of the Black Sea basin that contributed to the patterns of genetic variation observed in several populations in the Balkans, Ukraine, and western Russia. Some common haplotypes of putative ancient origin were shared among distant populations from Europe and Asia, including the most southern refugial stands that did not participate in postglacial recolonization of northern latitudes. The study indicates different genetic lineages of the species in Europe and provides a set of genetic markers for its finer-scale population history and divergence inference.  相似文献   

2.
We have analyzed human genetic diversity in 33 Old World populations including 23 populations obtained through Genographic Project studies. A set of 1,536 SNPs in five X chromosome regions were genotyped in 1,288 individuals (mostly males). We use a novel analysis employing subARG network construction with recombining chromosomal segments. Here, a subARG is constructed independently for each of five gene-free regions across the X chromosome, and the results are aggregated across them. For PCA, MDS and ancestry inference with STRUCTURE, the subARG is processed to obtain feature vectors of samples and pairwise distances between samples. The observed population structure, estimated from the five short X chromosomal segments, supports genome-wide frequency-based analyses: African populations show higher genetic diversity, and the general trend of shared variation is seen across the globe from Africa through Middle East, Europe, Central Asia, Southeast Asia, and East Asia in broad patterns. The recombinational analysis was also compared with established methods based on SNPs and haplotypes. For haplotypes, we also employed a fixed-length approach based on information-content optimization. Our recombinational analysis suggested a southern migration route out of Africa, and it also supports a single, rapid human expansion from Africa to East Asia through South Asia.  相似文献   

3.
The inference of historical demography of a species is helpful for understanding species’ differentiation and its population dynamics. However, such inference has been previously difficult due to the lack of proper analytical methods and availability of genetic data. A recently developed method called Pairwise Sequentially Markovian Coalescent (PSMC) offers the capability for estimation of the trajectories of historical populations over considerable time periods using genomic sequences. In this study, we applied this approach to infer the historical demography of the common carp using samples collected from Europe, Asia and the Americas. Comparison between Asian and European common carp populations showed that the last glacial period starting 100 ka BP likely caused a significant decline in population size of the wild common carp in Europe, while it did not have much of an impact on its counterparts in Asia. This was probably caused by differences in glacial activities in East Asia and Europe, and suggesting a separation of the European and Asian clades before the last glacial maximum. The North American clade which is an invasive population shared a similar demographic history as those from Europe, consistent with the idea that the North American common carp probably had European ancestral origins. Our analysis represents the first reconstruction of the historical population demography of the common carp, which is important to elucidate the separation of European and Asian common carp clades during the Quaternary glaciation, as well as the dispersal of common carp across the world.  相似文献   

4.
Common genetic polymorphisms may explain a portion of the heritable risk for common diseases. Within candidate genes, the number of common polymorphisms is finite, but direct assay of all existing common polymorphism is inefficient, because genotypes at many of these sites are strongly correlated. Thus, it is not necessary to assay all common variants if the patterns of allelic association between common variants can be described. We have developed an algorithm to select the maximally informative set of common single-nucleotide polymorphisms (tagSNPs) to assay in candidate-gene association studies, such that all known common polymorphisms either are directly assayed or exceed a threshold level of association with a tagSNP. The algorithm is based on the r(2) linkage disequilibrium (LD) statistic, because r(2) is directly related to statistical power to detect disease associations with unassayed sites. We show that, at a relatively stringent r(2) threshold (r2>0.8), the LD-selected tagSNPs resolve >80% of all haplotypes across a set of 100 candidate genes, regardless of recombination, and tag specific haplotypes and clades of related haplotypes in nonrecombinant regions. Thus, if the patterns of common variation are described for a candidate gene, analysis of the tagSNP set can comprehensively interrogate for main effects from common functional variation. We demonstrate that, although common variation tends to be shared between populations, tagSNPs should be selected separately for populations with different ancestries.  相似文献   

5.
Abstract: Range expansion from Pleistocene refugia and anthropogenic influences contribute to the present distribution pattern of Arabidopsis thaliana. We scored a genome-wide set of CAPSs and found two markers with an east-west geographic distribution across the Eurasian range of the species. Regions around the two SNPs were sequenced in 98 accessions, including newly collected plants from Middle Asia and Western Siberia. These regions correspond to a gene (∼ 1500 bp) and a non-coding region (∼ 500 bp) 300 kbp apart on chromosome 2. Nucleotide diversities, π, of the two sequenced fragments were 0.0032 and 0.0130. The haplotypes of both sequences belonged to one of two groups: a rather uniform "Asian" and a more variable "European" haplotype group, on the basis of non-disjunct clusters of SNPs. Recombination between "Asian" and "European" haplotypes occurs where they meet. Especially in the "European" haplotype, many rare SNP variants representing independent mutations are scattered among the shared haplotype-specific SNPs. This agrees with previous suggestions of two large haplotype groups in A. thaliana and the post-glacial colonization of central Europe from the east and the west. A clear correlation between climatic factors and the haplotype distribution may reflect the dispersal history rather than local climate adaptation. The pattern of SNP variation within the contiguous sequences explains why only a minority of SNPs selected across the genome show evidence of this geographic pattern.  相似文献   

6.
Mitochondrial DNA (mtDNA) diversity in European and Asian pigs was assessed using 1536 samples representing 45 European and 21 Chinese breeds. Diagnostic nucleotide differences in the cytochrome b (Cytb) gene between the European and Asian mtDNA variants were determined by pyrosequencing as a rapid screening method. Subsequently, 637bp of the hypervariable control region was sequenced to further characterize mtDNA diversity. All sequences belonged to the D1 and D2 clusters of pig mtDNA originating from ancestral wild boar populations in Europe and Asia, respectively. The average frequency of Asian mtDNA haplotypes was 29% across European breeds, but varied from 0 to 100% within individual breeds. A neighbour-joining (NJ) tree of control region sequences showed that European and Asian haplotypes form distinct clusters consistent with the independent domestication of pigs in Asia and Europe. The Asian haplotypes found in the European pigs were identical or closely related to those found in domestic pigs from Southeast China. The star-like pattern detected by network analysis for both the European and Asian haplotypes was consistent with a previous demographic expansion. Mismatch analysis supported this notion and suggested that the expansion was initiated before domestication.  相似文献   

7.
We have explored the use of multilocus microsatellite haplotypes to study introgression from cultivated (Malus domestica) into wild apple (Malus sylvestris), and to study gene flow among remnant populations of M. sylvestris. A haplotype consisted of alleles at microsatellite loci along one chromosome. As destruction of haplotypes through recombination occurs much faster than loss of alleles due to genetic drift, the lifespan of a multilocus haplotype is much shorter than that of the underlying alleles. When different populations share the same haplotype, this may indicate recent gene flow between populations. Similarly, haplotypes shared between two species would be a strong signal for introgression. As the expected lifespan of a haplotype depends on the strength of the linkage, the length [in centiMorgans (cM)] of the haplotype shared contains information on the number of generations passed. This application of shared haplotypes is distinct from using haplotype-sharing to detect association between markers and a certain trait. We inferred haplotypes for four to eight microsatellite loci on Linkage Group 10 of apple from genotype data using the program phase, and then identified those haplotypes shared between populations and species. Compared with a Bayesian analysis of unlinked microsatellite loci using the program structure, haplotype-sharing detected a partially different set of putative hybrids. Cultivated haplotypes present in M. sylvestris were short (< 1.5 cM), indicating that introgression had taken place many generations ago, except for two Belgian plants that contained a haplotype of 47.1 cM, indicating recent introgression. In the estimation of gene flow, F(ST) based on unlinked loci indicated small (0.032-0.058) but statistically significant differentiation between some populations only. However, various M. sylvestris haplotypes were shared in nearly all pairwise comparisons of populations, and their length indicated recent gene flow. Hence, all Dutch populations should be considered as one conservation unit. The added value of using sharing of multilocus microsatellite haplotypes as a source of population genetic information is discussed.  相似文献   

8.
The genetic structure of populations of an arctic-montane herb, Saxifraga hirculus (Saxifragaceae), was analysed by means of chloroplast restriction fragment-length polymorphism. Sampled populations were distributed across Europe and North America (Alaska and Colorado). There was no evidence for geographically structured genetically divergent lineages, and although no haplotypes were shared between North America and Europe, the haplotypes from different continents were intermixed on a minimum spanning tree. European populations were much more highly differentiated and had much lower levels of haplotype diversity than their Alaskan counterparts. Centres of haplotype diversity were concentrated in those Alaskan populations located outside the limits of the last (Wisconsin) glaciation, suggesting that they may have acted as refugia during the Pleistocene. It was not possible to identify putative migration routes or corresponding refugia in the European genepool. One British population, from the Pentland Hills, was genetically very distant from all the others, for reasons that are as yet unknown.  相似文献   

9.
Genetic variation in the southern green stink bug Nezara viridula (Linnaeus) from 11 geographically separated sampling locations (Slovenia, France, Greece, Italy, Madeira, Japan, Guadeloupe, Galapagos, California, Brazil and Botswana) was studied by sequencing 16S and 28S rDNA, cytochrome b and cytochrome c oxidase subunit I gene fragments and random amplified polymorphic DNA (RAPD) analysis. Sequencing revealed 11 distinct haplotypes clustering into lineages A, B and C. Lineage C was characteristic for a single analysed specimen from Botswana. Lineage B was detected in Japan, and it probably arose in Asia. Haplotypes of European and American specimens belonged to lineage A; specimens from France, Slovenia, Madeira and Brazil shared highly similar haplotypes (>99%) from subgroup A1, while all the specimens from Greece, California, Galapagos and Guadeloupe shared a haplotype from subgroup A2. RAPD data were more variable but consistent with mtDNA sequences, revealing the same clustering. They separated the Botswanian specimen from Japanese specimens and from a group of more closely related specimens from Europe and America. Sequence and RAPD results both support the African origin of N. viridula, followed by dispersal to Asia (lineage B) and, more recently, by expansion to Europe and America (lineage A). RAPD analysis revealed two highly supported subgroups in Japan, congruent with mtDNA lineages A2 and B, suggesting multiple colonization of Japan. Invariant sequences at the 28S rDNA combined with other results do not support the hypothesis that cryptic (sibling) species exist within the populations investigated in this study.  相似文献   

10.
Whole-genome sequencing in an isolated population with few founders directly ascertains variants from the population bottleneck that may be rare elsewhere. In such populations, shared haplotypes allow imputation of variants in unsequenced samples without resorting to complex statistical methods as in studies of outbred cohorts. We focus on an isolated population cohort from the Pacific Island of Kosrae, Micronesia, where we previously collected SNP array and rich phenotype data for the majority of the population. We report identification of long regions with haplotypes co-inherited between pairs of individuals and methodology to leverage such shared genetic content for imputation. Our estimates show that sequencing as few as 40 personal genomes allows for inference in up to 60% of the 3000-person cohort at the average locus. We ascertained a pilot data set of whole-genome sequences from seven Kosraean individuals, with average 5× coverage. This assay identified 5,735,306 unique sites of which 1,212,831 were previously unknown. Additionally, these variants are unusually enriched for alleles that are rare in other populations when compared to geographic neighbors (published Korean genome SJK). We used the presence of shared haplotypes between the seven Kosraen individuals to estimate expected imputation accuracy of known and novel homozygous variants at 99.6% and 97.3%, respectively. This study presents whole-genome analysis of a homogenous isolate population with emphasis on optimal rare variant inference.  相似文献   

11.
Grivet D  Petit RJ 《Molecular ecology》2002,11(8):1351-1362
We studied the phylogeography of ivy (Hedera sp.), a liana widespread in Europe, throughout its natural range. The populations sampled belong to four closely related species differing by ploidy levels and morphological characters. Chloroplast (cp) markers were used and 13 haplotypes were detected, usually shared across species, contrary to ribosomal internal transcribed spacer (ITS) variants. We demonstrated the existence of a strong overall cpDNA phylogeographical structure. Several methods of data analysis were conducted to describe how this structure and the genetic diversity change through space and time. Southern populations, especially those from Spain, are the most divergent. Pairwise estimates of differentiation point to isolation by distance, and the existence of a latitudinal gradient of divergence was demonstrated using a regression procedure. Similarly, latitudinal differences in haplotype richness and diversity exist, as shown by population permutations ('differentiation through space'). Finally, we measured differentiation by taking into account successive levels of divergence between haplotypes ('differentiation through time'). Genetic differentiation turns out to be much greater when differences between closely related haplotypes are not considered. Further, these results indicate that the phylogeographical structure is essentially due to the relative distribution of the most similar haplotypes. Diversity decreases from south to north, whereas haplotype frequencies change longitudinally. It appears that Hedera survived in Spanish and Balkan refugia during the last ice age. A third refugium must have been present in the Alps or in Italy. During the northward expansion, the decrease in overall diversity was attenuated by some mixing of lineages at intermediate latitudes, resulting in comparatively higher levels of differentiation in the south.  相似文献   

12.
Whole-exome or gene targeted resequencing in hundreds to thousands of individuals has shown that the majority of genetic variants are at low frequency in human populations. Rare variants are enriched for functional mutations and are expected to explain an important fraction of the genetic etiology of human disease, therefore having a potential medical interest. In this work, we analyze the whole-exome sequences of French-Canadian individuals, a founder population with a unique demographic history that includes an original population bottleneck less than 20 generations ago, followed by a demographic explosion, and the whole exomes of French individuals sampled from France. We show that in less than 20 generations of genetic isolation from the French population, the genetic pool of French-Canadians shows reduced levels of diversity, higher homozygosity, and an excess of rare variants with low variant sharing with Europeans. Furthermore, the French-Canadian population contains a larger proportion of putatively damaging functional variants, which could partially explain the increased incidence of genetic disease in the province. Our results highlight the impact of population demography on genetic fitness and the contribution of rare variants to the human genetic variation landscape, emphasizing the need for deep cataloguing of genetic variants by resequencing worldwide human populations in order to truly assess disease risk.  相似文献   

13.
The early marsh orchid, Dactylorhiza incarnata (L.) Soó s. l., grows in medium-rich to rich fens and marshes over much of Europe and parts of Asia. The species is highly polymorphic and different forms may grow together at the same site. In the present study, I tested the hypothesis that these forms represent different migrant populations that have colonized Scandinavia independently of each other, possibly from different source areas. Accessions from Scandinavia and elsewhere were screened for variation at three size-variable plastid marker loci, one polyA repeat, one polyA-polyTA-polyT repeat and one 9 bp indel. Ten haplotypes were defined on basis on the combined variation pattern. The common occurrence of several haplotypes in southern Scandinavia and adjacent areas to the south and the east of the Baltic Sea suggests that D. incarnata has been dispersed on repeated occasions across the Baltic. Also, there was some correlation between haplotype composition and morphological form on the island of Gotland, in agreement with the independent colonization hypothesis. Material from northernmost Sweden, Finland and northwest Russia was fixed for a single widespread haplotype, indicating that populations in this area are located farther away from the Pleistocene refugia. Dactylorhiza incarnata ssp. lobelii from southwest Norway was characterized by a haplotype that was not encountered elsewhere in Scandinavia. Given its proximity to British populations dominated by the same haplotype, it is suggested that D. incarnata ssp. lobelii was established independently of the other Scandinavian populations, from coastal refugia located in western Europe.  相似文献   

14.
Natural selection is a significant force that shapes the architecture of the human genome and introduces diversity across global populations. The question of whether advantageous mutations have arisen in the human genome as a result of single or multiple mutation events remains unanswered except for the fact that there exist a handful of genes such as those that confer lactase persistence, affect skin pigmentation, or cause sickle cell anemia. We have developed a long-range-haplotype method for identifying genomic signatures of positive selection to complement existing methods, such as the integrated haplotype score (iHS) or cross-population extended haplotype homozygosity (XP-EHH), for locating signals across the entire allele frequency spectrum. Our method also locates the founder haplotypes that carry the advantageous variants and infers their corresponding population frequencies. This presents an opportunity to systematically interrogate the whole human genome whether a selection signal shared across different populations is the consequence of a single mutation process followed subsequently by gene flow between populations or of convergent evolution due to the occurrence of multiple independent mutation events either at the same variant or within the same gene. The application of our method to data from 14 populations across the world revealed that positive-selection events tend to cluster in populations of the same ancestry. Comparing the founder haplotypes for events that are present across different populations revealed that convergent evolution is a rare occurrence and that the majority of shared signals stem from the same evolutionary event.  相似文献   

15.
In depth genetic comparisons of populations of Cutleria multifida (Tilopteridales, Phaeophyceae) collected from Europe, the northwestern Pacific Ocean, Australia and New Zealand using the DNA sequences of four gene regions (the mitochondrial cox2 and cox3 genes, the intergeneric spacer region adjacent to cox3, and the open reading frame) suggested that the northwestern European and Japanese populations were considerably greater in terms of their genetic divergence than Mediterranean, Australian or New Zealand populations. The haplotypes of the populations in northwestern European (distribution range including the type locality, seven haplotypes) and Japanese populations (seven haplotypes) were unique except for one shared haplotype. There were weak but positive correlations between the geographical distance and the genetic divergence among northwestern European and Japanese populations. Moreover, both female and male gametophytes occurred in eight of the nine Japanese localities, suggesting Japanese populations showed normal sexual heteromorphic life history of the species. In light of these results, it appears that Japanese populations were native to the area despite earlier hypothesis. In contrast, Australian and New Zealand populations were composed of only one haplotype that is very close to those found in northwestern Europe and Japan, suggesting a recent introduction history from Europe (or from northeastern Asia via Europe) by ship transport to Australia and New Zealand. The Mediterranean populations included two haplotypes identical to those found in northwestern Europe and Japan, and it is suggestive of transoceanic introductions of some populations between Mediterranean and Japanese coasts.  相似文献   

16.
Chloroplast DNA diversity in Prunus spinosa, a common shrub of European deciduous forests, was assessed using the polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) technique. Thirty-two haplotypes were detected in 25 populations spread across the European continent. Ten haplotypes were shared by two or more populations, and 22 were private. The major proportion of the total cpDNA diversity (H(T) = 0.73) was located within the populations (H(S) = 0.49), and differentiation between populations was low (G(ST) = 0.33) compared with other forest species. Haplotype diversity was higher in southern Europe than in northern Europe, indicating probable localization of glacial refugia in southern Europe. The minimum-length spanning tree of haplotypes showed incongruency between the phylogeny of haplotypes and their geographic locations. This might be the result of intensive seed movements following recolonization, which thereby erased the phylogeographic structure in P. spinosa.  相似文献   

17.
Testudo graeca is an endangered species of tortoise that inhabits Mediterranean areas of Africa, Asia, and Europe. Western populations are found on both sides of the Straits of Gibraltar. The effects of geographical isolation on genetic divergence were assessed by the sequence analysis of two mitochondrial DNA regions of the 12S rRNA and cytochrome b genes. Four different haplotypes were identified. A single haplotype was shared by all Spanish and some east Moroccan specimens. Two haplotypes were unique to the west Moroccan T. graeca populations and allowed the clear discrimination between individual specimens found west of the Moulouya River. Phylogenetic analysis based on the estimation of nucleotide sequence distances of the haplotypes suggests an African origin for the Spanish populations and a subspecies status for the west Moroccan pool.  相似文献   

18.
Sequence variation present within the mitochondrial genome was used to investigate genetic diversity within sheep breeds from Asia and Europe. Comparison of 2027 bp of sequence from 121 animals revealed 44 phylogenetically informative nucleotide positions and a single insertion/deletion. A total of 57 haplotypes were observed which formed two distinct clades. Type A haplotypes were found in breeds from Asia (India, Indonesia, Mongolia, and Tibet), while type B haplotypes were observed at the highest frequency in breeds sourced from Europe (nine breeds from Austria, Aland, Finland, Spain, and northwestern Russia). The distribution of haplotypes indicates sheep appear to have the weakest population structure and the highest rate of intercontinental dispersal of any domestic animal reported to date. Only 2.7% of the sequence variation observed was partitioned between continents, which is lower than both goat (approximately 10%) and cattle (approximately 50%). Diagnostic restriction fragment length polymorphism polymerase chain reaction (RFLP-PCR) tests which distinguish type A and B haplotypes were used to test an additional 223 animals from 17 breeds of European and Asian origin. A mixture of the two lineages was found in every breed except Suffolk and the Indian Garole, indicating introgression has played a major part during breed development and subsequent selection.  相似文献   

19.
Population bottlenecks can restrict variation at functional genes, reducing the ability of populations to adapt to new and changing environments. Understanding how populations generate adaptive genetic variation following bottlenecks is therefore central to evolutionary biology. Genes of the major histocompatibility complex (MHC) are ideal models for studying adaptive genetic variation due to their central role in pathogen recognition. While de novo MHC sequence variation is generated by point mutation, gene conversion can generate new haplotypes by transferring sections of DNA within and across duplicated MHC loci. However, the extent to which gene conversion generates new MHC haplotypes in wild populations is poorly understood. We developed a 454 sequencing protocol to screen MHC class I exon 3 variation across all 13 island populations of Berthelot's pipit (Anthus berthelotii). We reveal that just 11-15 MHC haplotypes were retained when the Berthelot's pipit dispersed across its island range in the North Atlantic ca. 75,000 years ago. Since then, at least 26 new haplotypes have been generated in situ across populations. We show that most of these haplotypes were generated by gene conversion across divergent lineages, and that the rate of gene conversion exceeded that of point mutation by an order of magnitude. Gene conversion resulted in significantly more changes at nucleotide sites directly involved with pathogen recognition, indicating selection for functional variants. We suggest that the creation of new variants by gene conversion is the predominant mechanism generating MHC variation in genetically depauperate populations, thus allowing them to respond to pathogenic challenges.  相似文献   

20.
Although human bitter taste perception is hypothesized to be a dietary adaptation, little is known about genetic signatures of selection and patterns of bitter taste perception variability in ethnically diverse populations with different diets, particularly from Africa. To better understand the genetic basis and evolutionary history of bitter taste sensitivity, we sequenced a 2,975 bp region encompassing TAS2R38, a bitter taste receptor gene, in 611 Africans from 57 populations in West Central and East Africa with diverse subsistence patterns, as well as in a comparative sample of 132 non-Africans. We also examined the association between genetic variability at this locus and threshold levels of phenylthiocarbamide (PTC) bitterness in 463 Africans from the above populations to determine how variation influences bitter taste perception. Here, we report striking patterns of variation at TAS2R38, including a significant excess of novel rare nonsynonymous polymorphisms that recently arose only in Africa, high frequencies of haplotypes in Africa associated with intermediate bitter taste sensitivity, a remarkably similar frequency of common haplotypes across genetically and culturally distinct Africans, and an ancient coalescence time of common variation in global populations. Additionally, several of the rare nonsynonymous substitutions significantly modified levels of PTC bitter taste sensitivity in diverse Africans. While ancient balancing selection likely maintained common haplotype variation across global populations, we suggest that recent selection pressures may have also resulted in the unusually high level of rare nonsynonymous variants in Africa, implying a complex model of selection at the TAS2R38 locus in African populations. Furthermore, the distribution of common haplotypes in Africa is not correlated with diet, raising the possibility that common variation may be under selection due to their role in nondietary biological processes. In addition, our data indicate that novel rare mutations contribute to the phenotypic variance of PTC sensitivity, illustrating the influence of rare variation on a common trait, as well as the relatively recent evolution of functionally diverse alleles at this locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号