首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Advanced backcross QTL (AB-QTL) analysis was deployed to identify allelic variation in wild barley (Hordeum vulgare ssp. spontaneum) of value in the improvement of grain yield and other agronomically important traits in barley (Hordeum vulgare ssp. vulgare) grown under conditions of water deficit in Mediterranean countries. A population of 123 double haploid (DH) lines obtained from BC1F2 plants derived from a cross between Barke (European two-row cultivar) and HOR11508 (wild barley accession) were tested in replicated field trials, under varying conditions of water availability in Italy, Morocco and Tunisia, for seven quantitative traits. Significant QTL effects at one (P 0.001) or more trial sites (P 0.01) were identified for all traits. At 42 (52%) of the 80 putative QTLs identified, the allele increasing a “traits' value” was contributed by H. spontaneum. For example, though the majority (67%) of QTL alleles increasing grain yield were contributed by H. vulgare, H. spontaneum contributed the alleles increasing grain yield at six regions on chromosomes 2H, 3H, 5H and 7H. Among them, two QTLs (associated to Bmac0093 on chromosome 2H and to Bmac0684 on chromosome 5H) were identified in all three locations and had the highest additive effects. The present study shows the validity of deploying AB-QTL analysis for identifying favourable QTL alleles from wild germplasm and indicates its potential as an enhancement strategy for the genetic improvement of cultivars better adapted to drought-prone environments.  相似文献   

2.
A malting quality quantitative trait locus (QTL) study was conducted using a set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs). Each S42IL harbors a single marker-defined chromosomal segment from the wild barley accession ‘ISR 42-8’ (Hordeum vulgare ssp. spontaneum) within the genetic background of the elite spring barley cultivar ‘Scarlett’ (Hordeum vulgare ssp. vulgare). The aim of the study was (1) to verify genetic effects previously identified in the advanced backcross population S42, (2) to detect new QTLs, and (3) to identify S42ILs exhibiting multiple QTL effects. For this, grain samples from field tests in three different environments were subjected to micro malting. Subsequently, a line × phenotype association study was performed with the S42ILs in order to localize putative QTL effects. A QTL was accepted if the trait value of a particular S42IL was significantly (P < 0.05) different from the recurrent parent as a control, either across all tested environments or in a particular environment. For eight malting quality traits, altogether 40 QTLs were localized, among which 35 QTLs (87.5%) were stable across all environments. Six QTLs (15.0%) revealed a trait improving wild barley effect. Out of 36 QTLs detected in a previous advanced backcross QTL study with the parent BC2DH population S42, 18 QTLs (50.0%) could be verified with the S42IL set. For the quality parameters α-amylase activity and Hartong 45°C, all QTLs assessed in population S42 were verified by S42ILs. In addition, eight new QTL effects and 17 QTLs affecting two newly investigated traits were localized. Two QTL clusters harboring simultaneous effects on eight and six traits, respectively, were mapped to chromosomes 1H and 4H. In future, fine-mapping of these QTL regions will be conducted in order to shed further light on the genetic basis of the most interesting QTLs.  相似文献   

3.
A set of 39 wild barley introgression lines (hereafter abbreviated with S42ILs) was subjected to a QTL study to verify genetic effects for agronomic traits, previously detected in the BC2DH population S42 (von Korff et al. 2006 in Theor Appl Genet 112:1221–1231) and, in addition, to identify new QTLs and favorable wild barley alleles. Each line within the S42IL set contains a single marker-defined chromosomal introgression from wild barley (Hordeum vulgare ssp. spontaneum), whereas the remaining part of the genome is exclusively derived from elite spring barley (H. vulgare ssp. vulgare). Agronomic field data of the S42ILs were collected for seven traits from three different environments during the 2007 growing season. For detection of putative QTLs, a two-factorial mixed model ANOVA and, subsequently, a Dunnett test with the recurrent parent as a control were conducted. The presence of a QTL effect on a wild barley introgression was accepted, if the trait value of a particular S42IL was significantly (P < 0.05) different from the control, either across all environments and/or in a particular environment. A total of 47 QTLs were localized in the S42IL set, among which 39 QTLs were significant across all tested environments. For 19 QTLs (40.4%), the wild barley introgression was associated with a favorable effect on trait performance. Von Korff et al. (2006 in Theor Appl Genet 112:1221–1231) mapped altogether 44 QTLs for six agronomic traits to genomic regions, which are represented by wild barley introgressions of the S42IL set. Here, 18 QTLs (40.9%) revealed a favorable wild barley effect on the trait performance. By means of the S42ILs, 20 out of the 44 QTLs (45.5%) and ten out of the 18 favorable effects (55.6%) were verified. Most QTL effects were confirmed for the traits days until heading and plant height. For the six corresponding traits, a total of 17 new QTLs were identified, where at six QTLs (35.3%) the exotic introgression caused an improved trait performance. In addition, eight QTLs for the newly studied trait grains per ear were detected. Here, no QTL from wild barley exhibited a favorable effect. The introgression line S42IL-107, which carries an introgression on chromosome 2H, 17–42 cM is an example for S42ILs carrying several QTL effects simultaneously. This line exhibited improved performance across all tested environments for the traits days until heading, plant height and thousand grain weight. The line can be directly used to transfer valuable Hsp alleles into modern elite cultivars, and, thus, for breeding of improved varieties.  相似文献   

4.
We report here the second advanced backcross quantitative trait locus (AB-QTL) analysis carried out in winter wheat. Seven agronomic traits were studied in a BC2F1population derived from a cross between the German winter wheat variety Flair and the synthetic wheat line XX86 developed in Japan. We selected 111 BC2F1 lines and genotyped these with 197 microsatellite markers. Field data for seven agronomic traits were collected from corresponding BC2F3 families that were grown at up to six locations in Germany. QTL analyses for yield and yield components were performed using single-marker regression and interval mapping. A total of 57 putative QTLs derived from XX86 were detected, of which 24 (42.1%) were found to have a positive effect from the synthetic wheat XX86. These favourable QTLs were mainly associated with thousand-grain weight and grain weight per ear. Many QTLs for correlated traits were mapped in similar chromosomal regions. The AB-QTL data obtained in the present study are discussed and compared with results from previous QTL analyses.  相似文献   

5.
Malting quality is genetically determined by the complex interaction of numerous traits which are expressed prior to and, in particular, during the malting process. Here, we applied the advanced backcross quantitative trait locus (AB-QTL) strategy (Tanksley and Nelson, Theor Appl Genet 92:191–203, 1996), to detect QTLs for malting quality traits and, in addition, to identify favourable exotic alleles for the improvement of malting quality. For this, the BC2DH population S42 was generated from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). A QTL analysis in S42 for seven malting parameters measured in two different environments yielded 48 QTLs. The exotic genotype improved the trait performance at 18 (37.5%) of 48 QTLs. These favourable exotic alleles were detected, in particular, on the chromosome arms 3HL, 4HS, 4HL and 6HL. The exotic allele on 4HL, for example, improved α-amylase activity by 16.3%, fermentability by 0.8% and reduced raw protein by 2.4%. On chromosome 6HL, the exotic allele increased α-amylase by 16.0%, fermentability by 1.3%, friability by 7.3% and reduced viscosity by 2.9%. Favourable transgressive segregation, i.e. S42 lines exhibiting significantly better performance than the recurrent parent Scarlett, was recorded for four traits. For α-amylase, fermentability, fine-grind extract and VZ45 20, 16, 2 and 26 S42 lines, respectively, surpassed the recurrent parent Scarlett. The present study hence demonstrates that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve malting quality traits.  相似文献   

6.
 Advanced backcross QTL (AB-QTL) analysis is a new strategy for studying the effect of unadapted alleles on the agronomic performance of elite cultivated lines. In this paper we report results from the application of the AB-QTL strategy to cultivated tomato using the wild species Lycopersicon hirsutum LA1777 as the donor parent. RFLP genomic fingerprints were determined for 315 BC2 plants and phenotypic data were collected for 19 agronomic traits from approximately 200 derived BC3 lines which were grown in replicated field trials in three locations worldwide. Between 1 and 12 significant QTLs were identified for each of the 19 traits evaluated, with a total of 121 QTLs identified for all traits. For 25 of the QTLs (20%) corresponding to 12 traits (60%), the L. hirsutum allele was associated with an improvement of the trait from a horticultural perspective, despite the fact that L. hirsutum is overall phenotypically inferior to the elite parent. For example, L. hirsutum has fruit that remains green when ripe (lack of red pigment) yet alleles were found in this species that significantly increase red color when transferred into cultivated tomatoes. Wild alleles were also associated with increases in total yield and soluble solids (up to 15%) and brix×red yield (up to 41%). These results support the idea that one cannot predict the genetic potential of exotic germplasm based on phenotype alone and that marker-based methods, such as the AB-QTL strategy, should be applied to fully exploit exotic germplasm. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

7.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Theor Appl Genet (1998) 97 : 170–180 Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

8.
The advanced backcross QTL (AB-QTL) strategy was utilised to locate quantitative trait loci (QTLs) for baking quality traits in two BC2F3 populations of winter wheat. The backcrosses are derived from two German winter wheat cultivars, Batis and Zentos, and two synthetic, hexaploid wheat accessions, Syn022 and Syn086. The synthetics originate from hybridisations of wild emmer (T. turgidum spp. dicoccoides) and T. tauschii, rather than from durum wheat and T. tauschii and thus allowed for the first time to test for exotic QTL effects on wheat genomes A and B in addition to genome D. The investigated quality traits comprised hectolitre weight, grain hardness, flour yield Type 550, falling number, grain protein content, sedimentation volume and baking volume. One hundred and forty-nine SSR markers were applied to genotype a total of 400 BC2F3 lines. For QTL detection, a mixed-model ANOVA was conducted, including the effects DNA marker, BC2F3 line, environment and marker × environment interaction. Overall 38 QTLs significant for a marker main effect were detected. The exotic allele improved trait performance at 14 QTLs (36.8%), while the elite genotype contributed the favourable effect at 24 QTLs (63.2%). The favourable exotic alleles were mainly associated with grain protein content, though the greatest improvement of trait performance due to the exotic alleles was achieved for the traits falling number and sedimentation volume. At the QTL on chromosome 4B the exotic allele increased the falling number by 19.6% and at the QTL on chromosome 6D the exotic allele led to an increase of the sedimentation volume by 21.7%. The results indicate that synthetic wheat derived from wild emmer × T. tauschii carries favourable QTL alleles for baking quality traits, which might be useful for breeding improved wheat varieties by marker-assisted selection.  相似文献   

9.
 To detect quantitative trait loci (QTLs) controlling seed dormancy, 98 BC1F5 lines (backcross inbred lines) derived from a backcross of Nipponbare (japonica)/Kasalath (indica)//Nipponbare were analyzed genetically. We used 245 RFLP markers to construct a framework linkage map. Five putative QTLs affecting seed dormancy were detected on chromosomes 3, 5, 7 (two regions) and 8, respectively. Phenotypic variations explained by each QTL ranged from 6.7% to 22.5% and the five putative QTLs explained about 48% of the total phenotypic variation in the BC1F5 lines. Except for those of the QTLs on chromosome 8, the Nipponbare alleles increased the germination rate. Five putative QTLs controlling heading date were detected on chromosomes 2, 3, 4, 6 and 7, respectively. The phenotypic variation explained by each QTL for heading date ranged from 5.7% to 23.4% and the five putative QTLs explained about 52% of the total phenotypic variation. The Nipponbare alleles increased the number of days to heading, except for those of two QTLs on chromosomes 2 and 3. The map location of a putative QTL for heading date coincided with that of a major QTL for seed dormancy on chromosome 3, although two major heading-date QTLs did not coincide with any seed dormancy QTLs detected in this study. Received: 10 October 1997 / Accepted: 12 January 1998  相似文献   

10.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

11.
Lycopersicon parviflorum is a sexually compatible, wild tomato species which has been largely unutilized in tomato breeding. The Advanced Backcross QTL (AB-QTL) strategy was used to explore this genome for QTLs affecting traits of agronomic importance in an interspecific cross between a tomato elite processing inbred, Lycopersicon esculentum E6203, and the wild species L. parviflorum (LA2133). A total of 170 BC2 plants were genotyped by means of 133 genetic markers (131 RFLPs; one PCR-based marker, I-2, and one morphological marker, u, uniform ripening). Approximately 170 BC3 families were grown in replicated field trials, in California, Spain and Israel, and were scored for 30 horticultural traits. Significant putative QTLs were identified for all traits, for a total of 199 QTLs, ranging from 1 to 19 QTLs detected for each trait. For 19 (70%) traits (excluding traits for which effects of either direction are not necessarily favourable or unfavourable) at least one QTL was identified for which the L. parviflorum allele was associated with an agronomically favourable effect, despite the overall inferior phenotype of the wild species. Received: 14 September 1999 / Accepted: 7 October 1999  相似文献   

12.
Advanced backcross QTL analysis in barley (Hordeum vulgare L.)   总被引:4,自引:0,他引:4  
This paper reports on the first advanced backcross-QTL (quantitative trait locus) project which utilizes spring barley as a model. A BC(2)F(2) population was derived from the initial cross Apex ( Hordeum vulgare ssp. vulgare, hereafter abbreviated with Hv) x ISR101-23 ( H. v. ssp. spontaneum, hereafter abbreviated with Hsp). Altogether 136 BC(2)F(2) individuals were genotyped with 45 SSR (simple sequence repeat) markers. Subsequently, field data for 136 BC(2)F(2) families were collected for 13 quantitative traits measured in a maximum of six environments. QTLs were detected by means of a two-factorial ANOVA with a significance level of P < 0.01 for a marker main effect and a marker x environment (M x E) interaction, respectively. Among 585 marker x trait combinations tested, 86 putative QTLs were identified. At 64 putative QTLs, the marker main effect and at 27 putative QTLs, the M x E interaction were significant. In five cases, both effects were significant. Among the putative QTLs, 29 (34%) favorable effects were identified from the exotic parent. At these marker loci the homozygous Hsp genotype was associated with an improvement of the trait compared to the homozygous Hv genotype. In one case, the Hsp allele was associated with a yield increase of 7.7% averaged across the six environments tested. A yield QTL in the same chromosomal region was already reported in earlier barley QTL studies.  相似文献   

13.
An advanced backcross breeding strategy was used to identify quantitative trait loci (QTLs) associated with eight agronomic traits in a BC2F2 population derived from an interspecific cross between Caiapo, an upland Oryza sativa subsp. japonica rice variety from Brazil, and an accession of Oryza rufipogon from Malaysia. Caiapo is one of the most-widely grown dryland cultivars in Latin America and may be planted as a monoculture or in a multicropping system with pastures. The objectives of this study were: (1) to determine whether trait-enhancing QTLs from O. rufipogon would be detected in 274 BC2F2 families grown under the drought-prone, acid soil conditions to which Caiapo was adapted, (2) to compare the performance with and without pasture competition, and (3) to compare putative QTL-containing regions identified in this study with those previously reported for populations adapted to irrigated, low-land conditions. Based on analyses of 125 SSLP and RFLP markers distributed throughout the genome and using single-point, interval, and composite interval mapping, two putative O. rufipogon derived QTLs were detected for yield, 13 for yield components, four for maturity and six for plant height.We conclude that advanced backcross QTL analysis offers a useful germplasm enhancement strategy for the genetic improvement of cultivars adapted to stress-prone environments. Although the phenotypic performance of the wild germplasm would not suggest its value as a breeding parent, it is noteworthy that 56% of the trait-enhancing QTLs identified in this study were derived from O. rufipogon. This figure is similar to the 51% of favorable QTLs derived from the same parent in crosses with a high-yielding hybrid rice cultivar evaluated under irrigated conditions in a previous study. In conclusion, parallel studies in rice using AB-QTL analysis provide increasing evidence that certain regions of the rice genome are likely to harbor genes of interest for plant improvement in multiple environments. Received: 3 September 1999 / Accepted: 16 May 2000  相似文献   

14.
Recombinant chromosome substitution lines (RCSLs) were developed in BC3 generation to introduce segments of a wild barley strain ‘H602’ (Hordeum vulgare ssp. spontaneum) into a barley cultivar ‘Haruna Nijo’ (H. vulgare ssp. vulgare) genetic background. One hundred thirty four RCSLs were genotyped by 25 SSR and 60 EST markers, which were localized on a linkage map of doubled haploid lines (DHLs) derived from the same cross combination. Graphical genotyping revealed that the observed average substitution ratio of H602 segment (12.9%) agreed with the expected substitution ratio (12.5%), and a minimum set of 19 RCSLs represented the entire H602 genome. Phenotypes of five qualitative and nine quantitative traits were scored in both the RCSLs and DHLs. Five qualitative traits were localized as morphological markers on the linkage map of the DHLs, and these molecular markers were aligned on the respective chromosomal regions in the RCSLs. Simple and composite interval mapping procedures detected a total of 18 and 24 QTLs for nine qualitative traits on the RCSLs and DHLs, respectively. Several QTLs were localized at coincident or very close regions on both linkage maps. In spite of general inferior agronomic performances in wild barley, several H602 QTL alleles showed agronomically positive effects. These RCSLs should contribute to substitution of favorable alleles from wild barley into cultivated barley. These RCSLs are also available as sources of near isogenic lines, with which we can apply advanced genetic analysis methods such as isolation of QTLs and detection of epistatic interactions among QTLs.  相似文献   

15.
In this study, the advanced backcross QTL (AB-QTL) mapping strategy was used to identify loci for yield, processing and fruit quality traits in a population derived from the interspecific cross Lycopersicon esculentum E6203 × Lycopersicon pennellii accession LA1657. A total of 175 BC2 plants were genotyped with 150 molecular markers and BC2F1 plots were grown and phenotyped for 25 traits in three locations in Israel and California, U.S.A. A total of 84 different QTLs were identified, 45% of which have been possibly identified in other wild-species-derived populations of tomato. Moreover, three fruit-weight/size and shape QTLs (fsz2b.1, fw3.1/fsz3.1 and fs8.1) appear to have putative orthologs in the related solanaceous species, pepper and eggplant. For the 23 traits for which allelic effects could be deemed as favorable or unfavorable, 26% of the identified loci had L. pennellii alleles that enhanced the performance of the elite parent. Alleles that could be targeted for further introgression into cultivated tomato were also identified.Communicated by G. Wenzel  相似文献   

16.
We have detected quantitative trait loci (QTLs) affecting vegetative propagation traits in Eucalyptus tereticornis and Eucalyptus globulus. Using amplified fragment length polymorphism (AFLP) genetic linkage maps, the inheritance of 199 markers was assessed in 94 F1 individuals with extreme adventitious rooting response, and in 221 randomly chosen F1 individuals. Phenotypes were scored in 1995 and 1996. QTL analyses were performed using chi-square tests (χ2), single-marker analysis (SMA), interval mapping (IM) and composite interval mapping (CIM). All approaches yielded similar QTL detection results. Three QTLs are hypothesized for mortality (MORT=% dead cuttings), nine for adventitious rooting (ROOT, RCT=% rooted cuttings relative to the surviving or total cuttings, respectively), four for petrification (PETR=% surviving unrooted cuttings), one for sprouting ability (SPR=number of stump sprout cuttings harvested in 1995) and four for the stability of adventitious rooting (STAB=absolute value of the difference ROOT95-ROOT96). All putative QTLs for MORT and PETR were located on the E. tereticornis map, and for SPR and STAB on the E. globulus map. We found different QTLs for MORT, ROOT, RCT, SPR and STAB. Putative QTLs accounted for 2.6–17.0% of the phenotypic variance of a trait (R2). Estimated standardized gene substitution effects varied between 0.13 and 0.49 phenotypic standard deviations (σp). These results indicate that the phenotypic variation in these traits has a meaningful genetic component and that stable QTLs can be found in a family of reasonable size where no previous knowledge of the trait was available. Received: 1 September 1998 / Accepted: 24 February 1999  相似文献   

17.
The objective of the present study was to identify favourable exotic Quantitative Trait Locus (QTL) alleles for the improvement of agronomic traits in the BC2DH population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 (Hordeum vulgare ssp. spontaneum). QTLs were detected as a marker main effect and/or a marker × environment interaction effect (M × E) in a three-factorial ANOVA. Using field data of up to eight environments and genotype data of 98 SSR loci, we detected 86 QTLs for nine agronomic traits. At 60 QTLs the marker main effect, at five QTLs the M × E interaction effect, and at 21 QTLs both the effects were significant. The majority of the M × E interaction effects were due to changes in magnitude and are, therefore, still valuable for marker assisted selection across environments. The exotic alleles improved performance in 31 (36.0%) of 86 QTLs detected for agronomic traits. The exotic alleles had favourable effects on all analysed quantitative traits. These favourable exotic alleles were detected, in particular on the short arm of chromosome 2H and the long arm of chromosome 4H. The exotic allele on 4HL, for example, improved yield by 7.1%. Furthermore, the presence of the exotic allele on 2HS increased the yield component traits ears per m2 and thousand grain weight by 16.4% and 3.2%, respectively. The present study, hence, demonstrated that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve quantitative agronomic traits.  相似文献   

18.
Drought is a major limiting factor for barley production, especially in the primary areas of its cultivation. Wild barley represents a major source of favourable alleles for increasing the genetic variation for multiple traits including resistance to both biotic and abiotic stresses. We used advanced backcross quantitative trait locus (AB-QTL) analysis of a BC3-doubled haploid population developed between the cultivated parent Brenda (Hordeum vulgare ssp. vulgare) and the wild accession HS584 (H. vulgare ssp. spontaneum) to study the contribution of wild barley in improving various agronomic and seed quality traits under post-anthesis drought. The experiment was carried out at two different locations (IPK, Gatersleben and Nordsaat, Böhnshausen) and terminal drought was imposed by withholding water or spraying with potassium iodide at 10 days after flowering under greenhouse or field conditions, respectively. QTL analysis indicated that wild barley contributed favourably to most of the traits studied under both control and drought conditions. A total of seven hot-spot QTL regions with co-localizing QTL for various traits harboured more than 80 % of the stable QTL detected in the present study. For yield and thousand-grain weight and their respective drought tolerance indices, most of the QTL were derived from Brenda. On the other hand, for traits like seed length and seed nitrogen content, all the QTL were contributed by HS584, the parent having higher trait value. A significantly reduced carbon/nitrogen (C/N) ratio in the selected contrasting inferior lines compared to superior ones suggests that C/N ratio could be a potential parameter for screening not just seed quality parameters but also grain weight performance under terminal drought.  相似文献   

19.
Advanced backcross QTL (AB-QTL) analysis was used to identify quantitative trait loci (QTLs) for yield and yield components in a BC(2)F(2) population derived from a cross between the German winter wheat variety 'Prinz' and the synthetic wheat line W-7984 developed by CIMMYT. Two hundred and ten microsatellite markers were employed to genotype 72 pre-selected BC(2)F(2) plants and phenotypic data were collected for five agronomic traits from corresponding BC(2)F(3) families that were grown at four locations in Germany. Using single-marker regression and interval mapping, a total of 40 putative QTLs derived from W-7984 were detected, of which 11 were for yield, 16 for yield components, eight for ear emergence time and five for plant height. For 24 (60.0%) of them, alleles from the synthetic wheat W-7984 were associated with a positive effect on agronomic traits, despite the fact that synthetic wheat was overall inferior with respect to agronomic appearance and performance. The present study indicated that favorable QTL alleles could be transferred from wild relatives of wheat into an elite wheat variety for improvement of quantitative trait loci like yield by the advanced backcross QTL strategy and molecular breeding. To our knowledge, the results presented here were the first report on AB-QTL analysis in wheat.  相似文献   

20.
 Osmotic adjustment (OA) was previously demonstrated to be an important adaptive mechanism of drought tolerance in cereals. In order to determine which genomic regions are involved in OA variation, 187 barley (Hordeum vulgare L.) recombinant inbred lines (RILs) derived from a cross between Tadmor (drought tolerant) and Er/Apm (susceptible) were studied in a growth chamber for their OA capacity (through correlated traits and by calculation), at an early growth stage and under two water treatments (soil moisture of 14% and 100% of field capacity). The continuous distribution of the traits and their broad-sense line heritabilities, ranging from 0.04 to 0.44, indicated that OA and related traits should have a polygenic nature. A subset of 167 RILs were also genotyped using 78 RFLP, 32 RAPD and three morphological markers and a linkage map was constructed. Despite strong environmental effects acting on the traits, interval mapping and single-marker ANOVA allowed the detection of three QTLs for relative water content (RWC), four QTLs for osmotic potential (ψπ), two QTLs of osmotic potential at full turgor (ψπ100) and one QTL for osmotic adjustment at a soil moisture of 14% field capacity. For the irrigated treatment, only two QTLs were detected: one for RWC and one for ψπ100. Two chromosomal regions were involved in several OA-related trait variations and could be considered as regions controlling OA; these were present on chromosome 1 (7H) and chromosome 6 (6H), whereas other regions were specific for one trait. No major QTL was found. However, the genomic region involved in OA-related traits on chromosome 1 (7H) in barley seemed to be conserved for OA variation among cereals. Epistatic effects, with or without additive effects, acted on the traits. Received: 15 July 1997 / Accepted: 29 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号