首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Adenosine 2'-monophospho-5'-diphosphoribose (P-ADP-Rib) is a structural analog of NADPH which was reported to competitively inhibit (Kiapp = 21.7 microM) solubilized rat liver 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (Tanazawa, K., and A. Endo. 1979. Eur. J. Biochem. 98: 195-201). However, microsomal HMG-CoA reductase, which at low thiol concentrations exhibits allosteric properties, is only poorly inhibited by P-ADP-Rib (Kiapp = 550 microM at 4.5 mM GSH). Gradual shift of the microsomal reductase towards a non-allosteric form by increasing glutathione (GSH) concentrations resulted in a higher inhibition by P-ADP-Rib. Under these conditions, Ki values for P-ADP-Rib were 165 microM and 53 microM at 9 mM and 27 mM GSH, respectively. The largest change in the degree of inhibition by P-ADP-Rib was observed within the 10 mM range of GSH. By contrast, freeze-thaw solubilized HMG-CoA reductase, which does not display allosteric properties, is readily inhibited by P-ADP-Rib, even when assayed at a low concentration of GSH (Kiapp = 50 microM at 4.5 mM GSH). Assaying the solubilized reductase in the presence of increased thiol concentration results in a minor decrease in the apparent Ki for P-ADP-Rib (22 microM at 27 mM GSH). Microsomal HMG-CoA reductase is allosterically activated by various nucleotides. When activated by NADH, the enzyme is effectively inhibited by P-ADP-Rib even at a 4.5-mM GSH concentration (Kiapp = 175 microM in the presence of 300 microM NADH).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase catalyzes the rate-limiting step in the cholesterogenic pathway and was proposed to be composed in situ of 2 noncovalently linked subunits (Edwards, P.A., Kempner, E.S., Lan, S.-F., and Erickson, S.K. (1985) J. Biol. Chem. 260, 10278-10282). In the present report, the activities and kinetic properties of HMG-CoA reductase in microsomes isolated from livers of rats fed on diets supplemented with either ground Amberlite XAD-2 ("X"), cholestyramine/mevinolin ("CM"), or unsupplemented, normal rat chow ("N"), were compared. The specific activities of HMG-CoA reductase in X and CM microsomes were, respectively, 5- and 83-fold higher than that of N microsomes. In NADPH-dependent kinetics of HMG-CoA reductase activated with 4.5 mM GSH, the concentration of NADPH required for half-maximal velocity (S0.5) was 209 +/- 23, 76 +/- 23, and 40 +/- 4 microM for the N, X, and CM microsomes, respectively. While reductase from X microsomes displays cooperative kinetics toward NADPH (Hill coefficient (nH) = 1.97 +/- 0.07), the enzyme from CM microsomes does not (nH = 1.04 +/- 0.07). Similarly to HMG-CoA reductase from CM microsomes, the freeze-thaw solubilized enzyme ("SOL") displays no cooperativity toward NADPH and its Km for this substrate is 34 microM. At 4.5 mM GSH, HMG-CoA reductase from X, CM, and SOL preparations has a similar Km value for [DL]-HMG-CoA, ranging between 13-16 microM, while reductase from N microsomes had a higher Km value (42 microM) for this substrate. No cooperativity towards HMG-CoA was observed in any of the tested enzyme preparations. Immunoblotting analyses of the different preparations demonstrated that the observed altered kinetics of HMG-CoA reductase in the microsomes is not due to preferential proteolytic cleavage of the native 97-100 kDa subunit of the enzyme to the noncooperative 50-55 kDa species. Moreover, it was found that the ratio enzymatic activity/immunoreactivity of the reductase increased in the order N less than X less than CM approximately equal to SOL, indicating that the activity per reductase molecule increases with the induction of the enzyme. These results are compatible with a model suggesting that dietary induction of hepatic HMG-CoA reductase may change the state of functional aggregation of its subunits.  相似文献   

3.
Summary The levels of the water-soluble reductants ascorbic acid and glutathione and the activities of the enzymatic antioxidants superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate and dehydroascorbate reductases and glutathione reductase were determined in a fully habituated nonorganogenic sugarbeet callus line (considered a neoplasm) compared with a normal hormone-dependent callus of the same plant. Ascorbic acid was not recovered from either of the two calluses, irrespective of the technique used. Glutathione was titrated at a slightly higher level in the normal callus. Catalase activity was almost nonexistent in the habituated callus. The other enzymes (superoxide dismutase, glutathione reductase, monodehydroascorbate reductase, dehydroascorbate reductase, and ascorbate peroxidase) were found to have higher activities in the habituated callus. The results are interpreted as a higher protection of the neoplastic habituated cells against oxygen-free radicals and hydroperoxide-dependent oxidations. Such strong scavenging properties of the habituated cell line could explain previous results already reported, namely the stimulation of cell division at the expense of cell differentiation.  相似文献   

4.
Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia.  相似文献   

5.
Protoplasts, vacuoles, and chloroplasts were isolated from leaves of 8-d-old barley (Hordeum vulgare L. cv Gerbel) seedlings. Transport of ascorbate and dehydroascorbate into protoplasts and vacuoles was investigated. Contents of ascorbic acid, glutathione, and [alpha]-tocopherol and ascorbate peroxidase activity and glutathione reductase activity were analyzed in protoplasts, vacuoles, and chloroplasts. Uptake of ascorbate and dehydroascorbate by protoplasts showed saturation kinetics (Km = 90 [mu]M reduced ascorbic acid, 20 [mu]M dyhydroascorbic acid). Effects of various membrane transport inhibitors suggested that transport was carrier mediated and driven by a proton electrochemical gradient. Translocation of ascorbate and dehydroascorbate into vacuoles did not show saturation kinetics. Neither was it influenced by effectors or by ATP but only by Mg2+, suggesting that translocation did not occur by carrier. Ascorbic acid was predominantly localized in the cytosol. Contents in the chloroplasts and vacuoles were low. The results are consistent with the view that ascorbate is synthesized in the cytosol and released to chloroplasts, apoplast, and vacuole following a concentration gradient. Translocation from the apoplast into the cytosol is against a steep gradient and appears to control the concentration of ascorbic acid in the apoplast. In its function as an antioxidant, ascorbate in the apoplast may be oxidized to dehydroascorbate, which can be efficiently transported back into the cytosol for regeneration to ascorbate.  相似文献   

6.
We have investigated the enzymatic reduction and accumulation of vitamin C in HaCaT epithelial cells. The subcellular localization and the activities of ascorbyl free radical reductase and dehydroascorbate reductase showed that mitochondrial, microsomal and plasma membranes fractions express high levels of ascorbyl free radical reductase activity, whereas dehydroascorbate reductase activity was found at low levels only in the post microsomal supernatant. We have also investigated cell proliferation and vitamin C accumulation induced by ascorbic acid 2-phosphate. This derivative caused no inhibition of cell growth, was uptaken from the extracellular medium and accumulated as ascorbic acid in mM concentrations. These results show that HaCaT cells possess very efficient systems to maintain high levels of both intracellular and extracellular ascorbic acid. The regeneration and uptake of ascorbic acid from extracellular medium contributes to the intracellular antioxidant capacity, as evaluated by 2',7'-dihydrodichlorofluorescein staining. Consequently, cells became more resistant to free radical generation and cell death induced by UV-B irradiation.  相似文献   

7.
The localization of reactive cysteines and characterization of the HMG-CoA binding domain of rat liver HMG-CoA reductase were studied using iodoacetamide (IAAD) and short-chain acyl-CoA thioesters. Freeze-thaw-solubilized HMG-CoA reductase is irreversibly inactivated by IAAD with a second order rate constant of 0.78 M-1 sec-1 at 37 degrees C and pH 7.2. This IAAD inactivation is slowed down by pretreatment of the enzyme with disulfides, indicating that inactivation of HMG-CoA reductase occurs mainly through alkylation of specific cysteine residues in the protein. The substrate HMG-CoA, but not NADP(H), effectively protects the reductase from IAAD inactivation. When both HMG-CoA and NADP(H) are present, the reductase is inactivated by IAAD at a rate much faster than the inactivation in the presence of HMG-CoA alone. Of the two moieties of the HMG-CoA thioester, the CoA moiety confers protection from IAAD inactivation whereas HMG is totally ineffective. A series of CoA-thioesters of mono- and dicarboxylic acids of various size were tested for their effect on the activity of HMG-CoA reductase. The CoA analog, desulfo-CoA (des-CoA), and all CoA-thioesters of monocarboxylic acids of up to 6 carbons in length exhibit mixed-type inhibition of reductase activity. The competitive inhibition constants (Ki) for these compounds vary between 1 and 2 mM, whereas the noncompetitive component (K'i) is relatively constant (540 +/- 20 microM). As the acyl chain length increases beyond 6 carbons, the thioesters of monocarboxylic acids become more potent and acquire the characteristics of pure noncompetitive inhibitors. In contrast, the monothioesters of dicarboxylic acids are pure competitive inhibitors with Ki values which are similar to the Ki values of the corresponding thioesters of monocarboxylates. HMG does not affect reductase activity in concentrations of up to 2 mM, yet it greatly enhances the inhibition of the enzyme by des-CoA. Specifically, HMG affects only the Ki value of des-CoA by decreasing it from 1030 microM to 280 microM. The results indicate that reactive cysteine(s) are localized in the catalytic site of HMG-CoA reductase. Within the active site, these cysteines are closely associated with and probably participate in the binding of the CoA moiety of the substrate HMG-CoA. The results are also consistent with the existence of a noncatalytic hydrophobic site in HMG-CoA reductase.  相似文献   

8.
Characterization of the ascorbic acid transport by 3T6 fibroblasts   总被引:2,自引:0,他引:2  
Ascorbic acid transport by 3T6 mouse skin fibroblasts has been characterized using radiometric technique with L-[1-14C]ascorbic acid under the conditions in which oxidation of ascorbic acid was prevented by addition of 1 mM thiourea. The ascorbate transport is temperature-dependent with the energy of activation E and Q10 of 13.3 kcal/mol and 2.0, respectively. The transport requires energy and exhibits Michaelis-Menten kinetics with an apparent Km of 112 microM and Vmax of 158 pmol/min per mg protein, when the extracellular Na+ concentration is 150 mM. The ascorbate transport requires presence of extracellular Na+ and can be inhibited by ouabain treatment. At 40 and 200 microM ascorbate concentrations, respectively, 1.4 and 1.0 moles of Na+ bound the transporter molecule per each mole of ascorbate transported. Increased Na+ binding to the transporter at lower ascorbate concentration may signify multiple Na+-binding sites or ascorbate concentration dependent conformational changes in the transporter molecule. Increasing Na+ concentration decreases Km without affecting Vmax, suggesting that Na+ increases affinity of ascorbate for the transporter molecule without affecting translocation process. An increase in ascorbate concentration reduces the number of Na+ bound to the transporter from 1.4 to 1.0. The ascorbate transport is stimulated by Ca2+ and other divalent cations. The mechanism of stimulation by Ca2+ is not clear. Calcium increases both the Km and Vmax. The data presented support the hypothesis that the ascorbate transport by 3T6 fibroblasts is an energy and temperature-dependent active process driven by the Na+ electrochemical gradient. A potent inhibitor of ascorbate transport is also demonstrated in human serum.  相似文献   

9.
Antioxidant defences of the apoplast   总被引:1,自引:0,他引:1  
Summary The apoplast of barley and oat leaves contained superoxide dismutase (SOD), catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase activities. The activities of these enzymes in the apoplastic extracts were greatly modified 24 h after inoculation with the biotrophic fungal pathogenBlumeria graminis. The quantum efficiency of photosystem II, which is related to photosynthetic electron transport flux, was comparable in inoculated and healthy leaves during this period. Apoplastic soluble acid invertase activity was also modified in inoculated leaves. Inoculation-dependent increases in apoplastic SOD activity were observed in all lines. Major bands of SOD activity, observed in apoplastic protein extracts by activity staining of gels following isoelectric focusing, were similar to those observed in whole leaves but two additional minor bands were found in the apoplastic fraction. The apoplastic extracts contained substantial amounts of dehydroascorbate (DHA) but little or no glutathione (GSH). Biotic stress decreased apoplastic ascorbate and DHA but increased apoplastic GSH in resistant lines. The antioxidant cycle enzymes may function to remove apoplastic H2O2 with ascorbate and GSH derived from the cytoplasm. DHA and oxidized glutathione may be reduced in the apoplast or returned to the cytosol for rereduction.Abbreviations AA reduced ascorbate - APX ascorbate peroxidase - DHA dehydroascorbate (oxidised ascorbate) - DHAR dehydroascorbate reductase - G6PDH glucose-6-phosphate dehydrogenase - GSH reduced glutathione - GSSG glutathione disulphide - GR glutathione reductase - MDHA monodehydroascorbate - MDHAR monodehydroascorbate reductase - SOD superoxide dismutase  相似文献   

10.
A preliminary study (J.M. Mata, R. Assad, and B. Peterkofsky (1981) Arch. Biochem. Biophys. 206, 93-104) suggested that chick embryo limb bone microsomes took up and concentrated [14C]ascorbate in the presence of cofactors for prolyl hydroxylase. In the present study, we found that the apparent Km for ascorbate in the hydroxylation of intracisternal unhydroxylated procollagen by endogenous prolyl hydroxylase was approximately an order of magnitude less than the value obtained when enzyme solubilized from microsomes was used with an exogenous substrate. These results are compatible with a concentrative uptake of ascorbate into microsomes. The uptake of [14C]ascorbate into microsomes was confirmed and it required only iron, in either the ferrous or ferric form, and was time and temperature dependent, proportional to microsome concentration, and substrate saturable at 2-3 mM ascorbate. Iron-dependent ascorbate uptake also was observed with L-929 cell microsomes. [14C]Ascorbate seemed to be taken up without prior oxidation, since only unlabeled ascorbate, and not dehydroascorbate, competed for uptake into limb bone microsomes. A functional requirement for Fe2+ in ascorbate transport was demonstrated using the intracisternal proline hydroxylating system. L-929 cell microsomes were preincubated with ascorbate with or without the metal and then external ascorbate was oxidized to inactive dehydroascorbate using ascorbic acid oxidase, which cannot penetrate the microsomal membrane. Samples which did not receive iron during the preincubation received it, along with other requirements for prolyl hydroxylase, in a final incubation to measure hydroxylation. Significant hydroxylation was obtained only in samples incubated with iron prior to oxidase treatment, consistent with the conclusion that an iron-dependent process was required to translocate ascorbate and protect it from the oxidase.  相似文献   

11.
Effect of high intracellular concentrations of the antioxidants ascorbate and glutathione on the extractable activity of the reducting enzymes dehydroascorbate reductase, monodehydroascorbate reductase, and glutathione reductase were investigated with spinach cells ( Spinacia oleracea ). An elevated ascorbate concentration was obtained by treatment with the ascorbate biosynthesis precursor L-galactono-1,4-lactone (GAL). To increase the intracellular level of glutathione, cells were treated with the 5-oxo-L-proline analog L-2-oxothiazolidin-4-carboxylate (OTC), or with the peroxidative herbicide acifluorfen (sodium 5-[2-chloro-4-(trifluoromethyl)phenoxy]-2-nitrobenzoic acid). Extractable monodehydroascorbate reductase activity increased in the presence of a high level of ascorbate or glutathione, and enzyme activity was at maximum when cells were treated with acifluorfen + OTC, or acifluorfen + GAL. Extractable dehydroascorbate reductase activity decreased when the intracellular concentration of glutathione was high and non-enzymatic reduction of dehydroascorbate by glutathione was the dominant reaction. Maximal decrease of enzyme activity was found in cells treated with acifluorfen + OTC. Extractable activity of glutathione reductase (GR) increased after treatment of cells with acifluorfen alone, or acifluorfen + OTC, but enzyme activity was unaffected by a high intracellular concentration of glutathione obtained by treatment of cells with OTC alone, or by treatment with acifluorfen + GAL. The degree of GR activation seemed to be controlled by several factors including inhibition by a high concentration of glutathione and possibly oxidative damage to the enzyme. Overall, the enzymes tested in this study, which provide the reduced forms of ascorbate and glutathione, were differently affected by high antioxidant levels.  相似文献   

12.
Homogeneous native and recombinant porcine liver thioltransferase (glutaredoxin), bovine thymus and human placenta thioltransferase (glutaredoxin) were examined for dehydroascorbate reductase activity (EC 1.8.5.1) involving the direct catalytic reduction of dehydroascorbic acid (DHA) by glutathione. Each enzyme had substantial activity with apparent Km and Vmax for dehydroascorbate between 0.2 and 2.2 mM and 6-27 nmol min-1, respectively, and for gluathione between 1.6 and 8.7 mM and 11-30 nmol min-1, respectively. In the presence of purified bovine liver thioredoxin reductase, homogeneous bovine liver thioredoxin failed to reduce DHA to ascorbic acid as measured by NADPH oxidation. Highly purified bovine liver protein disulfide isomerase (PDI) reacted directly with DHA and GSH to catalyze the reduction of DHA to ascorbic acid. The apparent Km for DHA was 1.0 mM and the Vmax was 8 nmol min-1, and for GSH were 3.9 mM and 14 nmol min-1, respectively. These results suggest that thioltransferase and PDI contribute to the regeneration of oxidized ascorbic acid in mammalian cells, and based on their cellular location, thioltransferase is proposed to be the major cytoplasmic activity, whereas interaction of DHA with microsomal membrane PDI may catalyze regeneration of ascorbic acid and initiate oxidation of intralumenal protein thiols to disulfides.  相似文献   

13.
Pseudomonas sp. M grown on mevalonate as the sole source of carbon has 200- to 800-fold induced levels of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. The enzyme, which was purified to a homogeneous state in 54% yield (final specific activity, 60.5 mumol of NAD+ reduced per min per mg of protein), converted R-mevalonate (Km = 0.15 mM) to S-HMG-CoA. Activity was sensitive to sulfhydryl modifying reagents. The apparent molecular weight of the holoenzyme was 178,000 and that of the subunit 43,000. The enzyme thus appears to be a tetramer. Comparison of a 23-residue amino-terminal sequence with the cDNA-derived sequence of Chinese hamster ovary cell HMG-CoA reductase showed little homology and antibody raised against the Pseudomonas enzyme did not appear to cross-react with rat liver HMG-CoA reductase. Addition of mevalonate to cells growing on glucose was followed by a rapid and biphasic induction of HMG-CoA reductase activity. During phase I, mevalonate or its catabolites may accumulate in intact cells of Pseudomonas sp. M and acetoacetate, a competitive inhibitor of HMG-CoA reductase (Ki = 3.2 mM), may feedback inhibit the enzyme under these conditions.  相似文献   

14.
Isoflavones identified as inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase in soybean paste were assayed using the catalytic portion of Syrian hamster HMG-CoA reductase, and the kinetic values were measured using HMG-CoA and NADPH. The inhibition of HMG-CoA reductase by these inhibitors was competitive with HMG-CoA and noncompetitive with NADPH. Ki values for genistein, daidzein, and glycitein were 27.7, 49.5, and 94.7 microM, respectively.  相似文献   

15.
The physiological effects of lanthanum(III) ions on the ferritin-regulated antioxidant process were studied in wheat (Triticum aestivum L.) seedlings under polyethylene glycol (PEG) stress. Treatment with 0.1 mM La3+ resulted in increased levels of chlorophyll, carotenoid, proline, ascorbate, and reduced glutathione. The activities of superoxide dismutase, catalase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase, glutathione reductase, and peroxidase were also increased after La3+ treatment. Treatment with La3+ seems to enhance the capacity of the reactive oxygen species scavenging system, affect the Fe2+ and Fe3+ electron-transfer process in ferritin, and restrain the formation of hydroxyl radical (OH.), alleviating the oxidative damage induced by PEG stress.  相似文献   

16.
The root endophytic basidiomycete Piriformospora indica has been shown to increase resistance against biotic stress and tolerance to abiotic stress in many plants. Biochemical mechanisms underlying P. indica-mediated salt tolerance were studied in barley (Hordeum vulgare) with special focus on antioxidants. Physiological markers for salt stress, such as metabolic activity, fatty acid composition, lipid peroxidation, ascorbate concentration and activities of catalase, ascorbate peroxidase, dehydroascorbate reductase, monodehydroascorbate reductase and glutathione reductase enzymes were assessed. Root colonization by P. indica increased plant growth and attenuated the NaCl-induced lipid peroxidation, metabolic heat efflux and fatty acid desaturation in leaves of the salt-sensitive barley cultivar Ingrid. The endophyte significantly elevated the amount of ascorbic acid and increased the activities of antioxidant enzymes in barley roots under salt stress conditions. Likewise, a sustained up-regulation of the antioxidative system was demonstrated in NaCl-treated roots of the salt-tolerant barley cultivar California Mariout, irrespective of plant colonization by P. indica. These findings suggest that antioxidants might play a role in both inherited and endophyte-mediated plant tolerance to salinity.  相似文献   

17.
臭氧浓度升高对油松抗氧化系统活性的影响   总被引:4,自引:0,他引:4  
以生长在开顶箱内的油松为试材,对高浓度臭氧(80 nmol·mol-1)条件下油松(Pinus tabulaeformis)针叶中超氧阴离子自由基(O2·)产生速率、过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性与抗坏血酸(ASA)含量进行测定.结果表明:高浓度臭氧使O2·产生速率提高,H2O2 和MDA含量增加.ASA含量与SOD、抗坏血酸过氧化物酶、脱氢抗坏血酸还原酶、单脱氢抗坏血酸还原酶、谷胱甘肽还原酶活性在高浓度臭氧熏蒸的前期升高,随后下降并低于对照.说明生长季前期,油松抗氧化系统对高浓度臭氧存在适应性反应,但不能抵抗长期臭氧胁迫带来的氧化伤害.  相似文献   

18.
The kinetic properties of the rat intestinal microsomal 1-naphthol:UDPglucuronosyltransferase (EC 2.4.1.17) were investigated in fully activated microsomes prepared from isolated mucosal cells. The enzyme appeared to follow an ordered sequential bireactant mechanism in which 1-naphthol and UDP-glucuronic acid (UDPGlcUA) are the first and second binding substrates and UDP and 1-naphthol glucuronide the first and second products, respectively. Bisubstrate kinetic analysis yielded the following kinetic constants: Vmax = 102 +/- 6 nmol/min per mg microsomal protein, Km (UDPGlcUA) = 1.26 +/- 0.10 mM, Km (1-naphthol) = 96 +/- 10 microM and Ki (1-naphthol) = 25 +/- 7 microM. The rapid equilibrium random or ordered bireactant mechanisms, as well as the iso-Theorell-Chance mechanism, could be excluded by endproduct inhibition studies with UDP.UDP-N-acetylglucosamine (UDPGlcNAc), usually found to be an activator of UDP glucuronosyltransferase in liver microsomes, acted as a full competitive inhibitor towards UDPGlcUA in rat intestinal microsomes. With regard to 1-naphthol UDPGlcNAc exhibited a dual effect: both inhibition and activation was observed. The effect of activation by MgCl2 and Triton X-100 on the kinetic constants and the inhibition patterns of UDP and UDPGlcNAc were investigated. The results obtained suggest that latency in rat intestinal microsomes may be due to endproduct inhibition by UDP. This endproduct inhibition could be abolished by in vitro treatment with MgCl2 and Triton X-100.  相似文献   

19.
Phenylmethylsulfonyl fluoride (PMSF), a reagent commonly employed for the inhibition of serine proteases, has been found to cause significant inhibition of the incorporation of labeled acetate, but not mevalonate, into nonsaponifiable lipid and digitonin-precipitable sterols in the 10,000 X g supernatant fraction of rat liver homogenate preparations. In two experiments, the extent of inhibition of the synthesis of digitonin-precipitable sterols from acetate by PMSF at 1 mM was 81 and 65%. PMSF inhibited the synthesis of nonsaponifiable lipid from acetate at concentrations as low as 0.1 microM. Preincubation of the 10,000 X g supernatant fraction of rat liver homogenates with PMSF (1 mM) resulted in a significant reduction of the activities of acetate thiokinase and 3-hydroxy-3-methylglutaric acid (HMG)-CoA synthase, but did not affect the activities of acetoacetyl-CoA thiolase. Preincubation of rat liver microsomes with PMSF (1 mM) caused a 50% reduction in the level of HMG-CoA reductase activity. The combined results indicate that major sites of action of PMSF in the inhibition of sterol biosynthesis from labeled acetate appear to be on the activities of acetate thiokinase, HMG-CoA synthase, and HMG-CoA reductase. Another reagent used to inhibit serine proteases, diisopropylfluorophosphate, had (at a concentration of 1 mM) no effect on the activities of cytosolic acetoacetyl-CoA thiolase, HMG-CoA synthase, and HMG-CoA reductase.  相似文献   

20.
Characteristics of glutamine transport, its substrate specificity, and its pattern of competitive and non-competitive inhibition in response to amino acid analogues were determined in peripheral human lymphocytes, incubated with or without concanavalin A (Con A). Maximum capacity of transport (Vmax) at 37 degrees C and 136.9 mM Na+ was 30 pmol/10(6) cells/30 seconds, while the apparent Km was 142 microM. In cells exposed to 10 mM histidine, asparagine, serine, or leucine transport of glutamine declined to 28%, 15%, 17%, and 21%, respectively, of the rates in controls. Inhibition by histidine (Ki = 0.58 mM) and serine (Ki = 0.25 mM) was competitive, by leucine was non-competitive (Ki = 0.64), while alpha-methylamino-isobutyric acid and 2-amino carboxy-bicyclo (2.2.1)-heptane had no effect. In cells cultured for 24 hours with or without 10 micrograms/ml Con A, the apparent Km was 70 microM vs. 89 microM and Vmax 73 vs. 26 pmol/10(6) cells/30 seconds. Sodium depletion (9.0 mM NaCl) greatly diminished glutamine transport in resting and stimulated cells. Inhibition of glutamine transport by serine was sodium sensitive, while inhibition by histidine and asparagine was not. Serine had no competitive effect in sodium-depleted media. The data demonstrate what appear to be two carrier systems for glutamine, sodium sensitive and sodium insensitive. It is suggested that glutamine transport into lymphocytes occurs via processes similar to System N and System ASC described in other cells, with System ASC as the sodium-sensitive component. Con A augments the capacity rather than the affinity of glutamine transporting systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号