首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 411 毫秒
1.
The level of genetic diversity in a population can affect ecological processes and plant responses to disturbance. In turn, disturbance can alter population genetic diversity and structure. Populations in fragmented and logged habitats often show reduced genetic diversity and increased inbreeding and differentiation. Long‐term harvesting of wild plants (for foliage, bark, and roots), can affect population genetic diversity by altering individual fitness and genetic contribution. Our understanding of these changes in genetic diversity due to the harvesting of plant organs is still limited. We used nine microsatellite markers to study the effect of long‐term bark and foliage harvest by Fulani people on the genetic diversity and structure of 12 populations of African mahogany (Khaya senegalensis) in Benin. We sampled 20 individuals in each population to test the effect of harvesting. For each population, we divided the samples equally between seedling and adults to test if the effects are stronger in seedlings. We found moderate genetic diversity (H= 0.53 ± 0.04) and weak but significant differentiation among local populations (FST = 0.043, < 0.001). There was no significant effect of harvest on genetic diversity or structure, although previous work found significant negative effects of harvest on the reproduction of adults, offspring density, and population fitness. Our results suggest that demographic responses to disturbance precede a detectable genetic response. Future studies should focus on using parentage analysis to test if genotypes of harvested parents are directly represented in the offspring populations.  相似文献   

2.
Levels and distribution of genetic variation were investigated in ten populations of the perennialArabis serrata distributed along a latitudinal gradient throughout Japan. Populations of this endemic species occupy predominantly three types of habitats: limestone and derived soils, volcanic and disturbed sites. Previous studies showed that plants ofA. serrata are differentiated in morphological and ecological traits under both natural conditions and common garden experiments suggesting genetic differentiation among populations. To assess the degree of genetic differentiation under different habitats ofA. serrata populations, we analyzed the isozyme genetic structure. Ten populations, located in mountains of central and northern Honshu and Hokkaido, were analyzed by starch gel enzyme electrophoresis. Fourteen loci of eight enzymes were resolved and six loci were monomorphic for all the populations. Populations sampled maintain low levels of genetic variation (P=0.16;H=0.05;A=1.16) compared to that maintained by other outcrossing seed plants. In some cases, few or no heterozygous individuals were detected, and consequently, mean observed heterozygosity was zero or near zero. Six (29%) of the fixation indices,F, estimated deviated significantly from Hardy Weinberg genotypic expectations indicating a deficiency of heterozygotes in most of the cases. The mean genetic identity (Nei'sI) between population pairs was 0.852 and indicates a moderate level of genetic differentiation among populations.Arabis serrata has most of its genetic variation distributed among rather than within populations. The among-population component of the total genetic diversity (G ST mean value) was 0.416, indicating genetic differentiation between populations. There groups of populations were recognized in an unrooted tree generated by the Neighbor-Joining method. These results suggest groups of populations differentiated regionally. Estimates of interpopulational gene flow (Nm) were very variable (range 0.049–3.718) with a meanNm=1.203 for all populations.  相似文献   

3.
Amplified fragment length polymorphism (AFLP) markers were used to estimate the genetic diversity of seven wild populations of Sinopodophyllum hexandrum (Royle) Ying from the Tibetan region of Sichuan Province, China. Six primer combinations generated a total of 428 discernible DNA fragments, of which 111 were polymorphic. The percentage of polymorphic bands (PPB) was 25.93 at the species level, and PPB within population ranged from 4.91 to 12.38%. Genetic diversity (H E) within populations varied from 0.01 to 0.04, averaging 0.05 at the species level. As revealed by the results of AMOVA analysis, 58.8% of the genetic differentiation occurred between populations, and 41.2% within populations. The genetic differentiation was, perhaps, due to the limited gene flow (N m=0.43) of the species. The correlation coefficient (r) between genetic and geographical distance using Mantel's test for all populations was 0.698 (P=0.014). The UPGMA cluster analysis revealed a similar result in that the genetic distances among the populations show, to a certain extent, a spatial pattern corresponding to their geographic locations. On the basis of the genetic and ecological information, we propose some appropriate strategies for conserving the endangered S. hexandrum in this region.  相似文献   

4.
We determined the genetic diversity and population structures ofCarex breviculmis (Cyperaceae) populations in Korea, using genetic variations at 23 allozyme loci.C. breviculmis is a long-lived herbaceous species that is widely distributed in eastern Asia. A high level of genetic variation was found in 15 populations. Twelve enzymes revealed 23 loci, of which 11 were polymorphic (47.8%). Genetic diversity at the speciesand population levels were 0.174 and 0.146, respectively. Total genetic diversity (HT = 0.363) and within-population genetic diversity (Hs = 0.346) were high, whereas the extent of the population divergence was relatively low (GST = 0.063). Deviation from random mating (Fis) within the 15 populations was 0.206. An indirect estimate of the number of migrants per generation(Nm = 3.69) indicated that gene flow was extensive among Korean populations of this species. Analysis of fixation indices revealed a substantial heterozygote deficiency in some populations and at some loci. Genetic identity between popu-lations was high, exceeding 0.956.  相似文献   

5.
The genetic diversity and population structure of eighteenPotentilla fragariodes var.major (Rosaceae) populations in Korea were determined using genetic variations at 22 allozyme loci. The percent of polymorphic loci within the enzymes was 66.7%. Genetic diversity at the species level and at the population level was high (Hes = 0.203; Hep = 0.185, respectively), whereas the extent of the population divergence was relatively low (GST = 0.069). FIS, a measure of the deviation from random mating within the 18 populations, was 0.075. An indirect estimate of the number of migrants per generation (Nm = 3.36) indicated that gene flow was high among Korean populations of the species. In addition, analysis of fixation indices revealed a slight heterozygote deficiency in some populations and at some loci. Wide geographic ranges, perennial herbaceous nature and the persistence of multiple generations are associated with the high level of genetic variation. AlthoughP. fragariodes var.major usually propagated by asexually-produced ramets, we could not rule out the possibility that sexual reproduction occurred at a low rate because each ramet may produce terminal flowers. Mean genetic identity between populations was 0.983. It is highly probable that directional movement toward genetic uniformity in a relatively homogeneous habitat operates among Korean populations ofP. fragariodes var.major.  相似文献   

6.
The genetic variation within and among eight Tunisian natural populations of Lavandula multifida L., from different bioclimatic zones was assessed using random amplified polymorphic DNA (RAPDs). Of a total of 97 generated bands from seven selected primers, 84 bands were polymorphic. The genetic diversity within a population was high and varied according to the populations (0.308 < H’ < 0.459) without relationships to altitudes or pluviothermic indices of sites. The genetic differentiation among populations was high (GST = 0.395 and ΦST = 0.318). All population pairs were significantly differentiated. Among populations, within ecological groups genetic structure was high (0.219); whilst among them it was low (ΦCT = 0.049; P < 0.05). The correlation between ΦST and geographic distance matrices among pairs of populations was not significant, suggesting that genetic connectivity between populations has a stochastic component at all spatial scales. The neighbour‐joining cluster analysis showed that individuals from each population clustered together. UPGMA cluster analysis showed that population groupings are not strictly in accordance with bioclimates or geographic location. The genetic differentiation in L. multifida could have occurred at local scales because of genetic drift. Efforts should be made to protect all populations. The maintenance of substantial population size should be initiated via fencing and controlling collection to restore the regeneration of populations.  相似文献   

7.
The existence of Oryza glumaepatula is threatened by devastation and, thus, the implementation of conservation strategies is extremely relevant. This study aimed to characterize the genetic variability and estimate population parameters of 30 O. glumaepatula populations from three Brazilian biomes using 10 microsatellite markers. The levels of allelic variability for the SSR loci presented a mean of 10.3 alleles per locus and a value of 0.10 for the average allelic frequency value. The expected total heterozygosity (He) ranged from 0.63 to 0.86. For the 30 populations tested, the mean observed (Ho) and expected heterozygosities (He) were 0.03 and 0.11within population, respectively, indicating an excess of homozygotes resulting from the preferentially self-pollinating reproduction habit. The estimated fixation index ( IS ) was 0.79 that differed significantly from zero, indicating high inbreeding within each O. glumaepatula population. The total inbreeding of the species (IT ) was 0.98 and the genetic diversity indexes among populations, ST and ST, were 0.85 and 0.90, respectively, indicating high genetic variability among them. Thus, especially for populations located in regions threatened with devastation, it is urgent that in situ preservation conditions should be created or that collections be made for ex situ preservation to prevent loss of the species genetic variability.  相似文献   

8.
9.
Abstract Genetic diversity of Korean populations in Hosta clausa was investigated using starch gel electrophoresis. Hosta clausa is widespread, grows only along streamsides, and has both sexual and asexual reproduction. Populations of the species are small and isolated. Thirty-two percent of the loci examined were polymorphic, and mean genetic diversity within populations (Hep=0.082) was lower than mean estimates for species with very similar life history characteristics (0.131), particularly for its congener H. yingeri (0.250). The mean number of multilocus genotypes per population was 8.7, and genotypic diversity index (DG) was 0.84. Significant differences in allele frequencies among populations were found in all seven polymorphic loci (P < 0.001). About one-fifth of the total allozyme variation was among populations (GST=0.192). Indirect estimate of the number of migrants per generation (Nm=0.48, calculated from mean GST) and nine private alleles found indicate that gene movement among populations was low. The low levels of genetic diversity within populations and the relatively high levels of genetic diversity among populations suggest that strong moist habitat preferences, clonal reproduction, low level of gene flow among populations, genetic drift, and historical events may have played roles in the genetic structuring of the species.  相似文献   

10.
不同种源马尾松ISSR遗传结构及影响因素分析   总被引:1,自引:0,他引:1  
杜明凤  丁贵杰 《广西植物》2016,36(9):1068-1075
应用ISSR分子标记技术,对来自广西、贵州3个种源的马尾松开展遗传多样性、遗传结构及遗传距离等研究。结果表明:从100条引物中筛选出12条引物,共扩增出92个条带,86条具有多态性。 POPGENE分析显示:马尾松群体水平上的Nei’ s基因多样性指数的变化范围为0.1824~0.2065,Shannon遗传多样性指数的变化范围为0.2818~0.3178,3个群体的多态性水平差异不大;物种水平上的多态性百分率为93.48%, Nei’ s基因多样性指数为0.2842,Shannon信息指数为0.4381;表明马尾松在物种水平上具有较高水平的遗传多样性。遗传结构分析显示:马尾松的基因分化系数( Gst)为0.3153,表明遗传变异主要来源于群体内;基因流Nm为1.0853,表明不同群体间存在一定的基因流动。 AMOVA分析显示:马尾松的遗传分化指数( Fst)为0.246( P=0.001),表明群体间已出现明显的遗传分化。 UPGMA聚类和Mantel检测结果显示:每个群体内的个体均能很好地首先聚集为一个分支,群体间的遗传距离与地理距离之间存在显著相关性( r=0.972, P=0.001)。这说明马尾松在裸子植物界中具有较高水平的遗传多样性,遗传变异主要分布于群体内,群体间已出现了明显的遗传分化,这种分化并非由遗传漂变引起,可能与地理生境的差异有关。  相似文献   

11.
Microsatellites are powerful markers to infer population genetic parameters. We used 10 microsatellite loci to characterize the genetic diversity and structure of 79 samples of Sclerotinia sclerotiorum isolated from four Brazilian dry bean populations and observed that eight of them were polymorphic within populations. We identified 102 different haplotypes ranging from 6 to 18 per locus. Analyses based on genetic diversity and fixation indices indicated variability among and within populations of 28.79% (FST = 28793) and 71.21%, respectively. To examine genetic relatedness among S. sclerotiorum isolates, we used internal spacer (ITS1‐5.8S‐ITS2) restriction fragment length polymorphism (PCR‐RFLP) and sequencing analysis. PCR‐RFLP analysis of these regions failed to show any genetic differences among isolates. However, we detected variability within the sequence, which does not support the hypothesis of clonal populations within each population. High variability within and among populations may indicate the introduction of new genotypes in the areas analysed, in addition to the occurrence of clonal and sexual reproduction in the populations of S. sclerotiorum in the Brazilian Cerrado.  相似文献   

12.
Abstract

Brassica rupestris Raf. is a chasmophyte species that includes two subspecies, both endemic to Central-Western Sicily (Italy). Inter-Simple Sequence Repeat (ISSR) markers were used to detect genetic diversity within and among eight populations representative of the species' distribution range. High levels of genetic diversity were revealed both at the population (PPB = 53.88%, H S = 0.212, Sh = 0.309) and at the species level (PPB = 96.55%, H T = 0.307, Sh = 0.464). The correlation between genetic and geographical distances was negative (Mantel test, r = ?0.06, P < 0.95). The two subspecies of B. rupestris, subsp. rupestris and subsp. hispida, showed remarkable genetic similarity and molecular data did not unequivocally support their distinctness. The pattern of genetic variation revealed by our study bears important consequences for conservation management: It is desirable to preserve B. rupestris populations in situ with a “dynamic” strategy, while, ex situ conservation programmes might be improved to safeguard maximum genetic diversity.  相似文献   

13.
Ni X  Huang Y  Wu L  Zhou R  Deng S  Wu D  Wang B  Su G  Tang T  Shi S 《Genetica》2006,127(1-3):177-183
Primulina tabacum Hance, is a critically endangered perennial endemic to limestone area in South China. Genetic variability within and among four extant populations of this species was assessed using AFLP markers. We expected a low genetic diversity level of this narrowly distributed species, but our results revealed that a high level of genetic diversity remains, both at population level (55.5% of markers polymorphic, H E = 0.220, I S = 0.321), and at species level (P = 85.6% of markers polymorphic, H E = 0.339, I S = 0.495), probably resulting from its refugial history and/or breeding system. High levels of genetic differentiation among populations was apparent based on Nei’s genetic diversity analysis (G st=0.350). The restricted gene flow between populations is a potential reason for the high genetic differentiation. The population genetic diversity of P. tabacum revealed here has clear implications for conservation and management. To maintain present levels of genetic diversity, in situ conservation of all populations is necessary.  相似文献   

14.
Haruan (Channa striatus) is in great demand in the Malaysian domestic fish market. In the present study, mtDNA cyt b was used to investigate genetic variation of C. striatus among populations in Peninsular Malaysia. The overall population of C. striatus demonstrated a high level of haplotype diversity (h) and a low-to-moderate level of nucleotide diversity (π). Analysis of molecular variance (AMOVA) results showed a significantly different genetic differentiation among 6 populations (FST = 0.37566, P = 0.01). Gene flow (Nm) was high and ranged from 0.32469 to infinity (∞). No significant relationship between genetic distance and geographic distance was detected. A UPGMA tree based on the distance matrix of net interpopulation nucleotide divergence (dA) and haplotype network of mtDNA cyt b revealed that C. striatus is divided into 2 major clades. The neutrality and mismatch distribution tests for all populations suggested that C. striatus in the study areas had undergone population expansion. The estimated time of population expansion in the mtDNA cyt b of C. striatus populations occurred 0.72-6.19 million years ago. Genetic diversity of mtDNA cyt b and population structure among Haruan populations in Peninsular Malaysia will be useful in fisheries management for standardization for Good Agriculture Practices (GAP) in fish-farming technology, as well as providing the basis for Good Manufacturing Practices (GMP).  相似文献   

15.
Euterpe edulis (Arecaceae) Mart has high ecological and economic importance providing food resources for more than 58 species of birds and 20 species of mammals, including humans. E. edulis is the second most exploited nontimber product from Brazilian Atlantic Forest. Due to overexploitation and destruction of habitats, E. edulis is threatened by extinction. Euterpe edulis populations have large morphological variations, with individuals having green, red, or yellow leaf sheath. However, no study has related phenotypic distinctions between populations and their levels of genetic structure. Thus, this study aimed to evaluate the diversity and genetic structure of different E. edulis morphotypes. We sampled 250 adult individuals in eight populations with the different morphotypes. Using 14 microsatellite markers, we access genetic diversity through population genetic parameters calculated in the GenAlex program and the diveRsity package in R. We used the Wilcoxon test to verify population bottlenecks and the genetic distance of Nei and Bayesian analysis for genetic clusters. The eight populations showed low allele richness, low observed heterozygosity, and high inbreeding values (f). In addition, six of the eight populations experienced genetic bottlenecks, which would partly explain the low genetic diversity in populations. Cluster analysis identified two clusters (K = 2), with green morphotype genetically distinguishing from yellow and red morphotypes. Thus, we show, for the first time, a strong genetic structure among E. edulis morphotypes even for geographically close populations.  相似文献   

16.
Thirty polymorphic Oryza sativa microsatellite loci (SSRs) were used to study population genetic structure of O. rufipogon Griff. natural populations in Malaysia. A total of 445 alleles were detected with an average of 14.8 alleles per locus in 176 individuals of O. rufipogon sampled from the states of Penang, Kedah, Kelantan and Terengganu where the natural populations are still found. The Kelantan population in the northeast of Peninsular Malaysia had the highest level of genetic diversity as measured by the mean number of alleles per locus, Aa?=?7.67, average number of effective alleles, Ae?=?5.50, percentage of polymorphic loci, P?=?100%, observed heterozygosity, Ho?=?0.631 and expected heterozygosity, He?=?0.798. In contrast, the Terengganu population in the east showed the lowest level of genetic diversity measured by the same criteria (Aa?=?4.23, Ae?=?2.10, P?=?100%, Ho?=?0.549 and He?=?0.449). Model–based clustering analysis using the STRUCTURE 2.2 program placed all the individuals into 12 clusters that corresponded to the geographic sampling locations. Neighbour-joining tree was constructed based on Nei’s genetic distance to further assess the genetic structure of the O. rufipogon individuals, showed good agreement (93.8%) with the model-based cluster analysis. However, the neighbour-joining tree identified sub-populations that STRUCTURE could not identify. The classification of individuals from the same populations under the same cluster supported the population differentiation. These two analyses seemed to indicate expansion of populations from the northeast of Peninsular Malaysia (Tumpat, Pasir Mas and Kota Bahru, Kelantan) not only to the immediate south of the region i.e. Terengganu but also into the northwest (i.e. Penang and Kedah) with the former being more recent. Oryza rufipogon accession IRGC105491 and O. sativa ssp. indica cultivar MR219, which were included in this study for comparisons with the local wild rice accessions, indicated that introgression of cultivated rice could change genetic composition and affect the population genetic structure of wild rice. This possibility should be carefully considered in plans to conserve this wild rice.  相似文献   

17.
Aim This study aims to link demographic traits and post‐glacial recolonization processes with genetic traits in Himantoglossum hircinum (L.) Spreng (Orchidaceae), and to test the implications of the central–marginal concept (CMC) in Europe. Location Twenty sites covering the entire European distribution range of this species. Methods We employed amplified fragment length polymorphism (AFLP) markers and performed a plastid microsatellite survey to assess genetic variation in 20 populations of H. hircinum located along central–marginal gradients. We measured demographic traits to assess population fitness along geographical gradients and to test for correlations between demographic traits and genetic diversity. We used genetic diversity indices and analyses of molecular variance (AMOVA) to test hypotheses of reduced genetic diversity and increased genetic differentiation and isolation from central to peripheral sites. We used Bayesian simulations to analyse genetic relationships among populations. Results Genetic diversity decreased significantly with increasing latitudinal and longitudinal distance from the distribution centre when excluding outlying populations. The AMOVA revealed significant genetic differentiation among populations (FST = 0.146) and an increase in genetic differentiation from the centre of the geographical range to the margins (except for the Atlantic group). Population fitness, expressed as the ratio NR/N, decreased significantly with increasing latitudinal distance from the distribution centre. Flower production was lower in most eastern peripheral sites. The geographical distribution of microsatellite haplotypes suggests post‐glacial range expansion along three major migratory pathways, as also supported by individual membership fractions in six ancestral genetic clusters (C1–C6). No correlations between genetic diversity (e.g. diversity indices, haplotype frequency) and population demographic traits were detected. Main conclusions Reduced genetic diversity and haplotype frequency in H. hircinum at marginal sites reflect historical range expansions. Spatial variation in demographic traits could not explain genetic diversity patterns. For those sites that did not fit into the CMC, the genetic pattern is probably masked by other factors directly affecting either demography or population genetic structure. These include post‐glacial recolonization patterns and changes in habitat suitability due to climate change at the northern periphery. Our findings emphasize the importance of distinguishing historical effects from those caused by geographical variation in population demography of species when studying evolutionary and ecological processes at the range margins under global change.  相似文献   

18.
Pulsatilla vulgaris Mill. (Ranunculaceae) is a rare and rapidly declining grassland community species that was once widespread at a time when Central Germany was covered by steppe vegetation. Through the course of this study, the patterns of random-amplified polymorphic DNA (RAPD) variation among 11 populations of varying size were analysed to assess any possible local differentiation, in relation to spatial isolation, resulting from random genetic drift brought on by reduced population size and lack of migration between geographically isolated populations. Following results attained from methods including: multivariate analysis based on asymmetric Soerensen similarity, φST-statistics, and analysis of molecular variance, we were able to conclude that there is a high within-population variability (84.4%) and a weak, but significant, differentiation among populations (φST=0.17). A matrix correlation between genetic and geographical distances revealed that geographical differentiation was reflected in the RAPD profile (Mantel test: r=0.47,p=0.002). Further significant correlations were noted between population size and both percentage of polymorphic loci (p=0.02) and genetic diversity (p=0.03). An additional analysis of seed production showed that mean seed set, seed number, and mean seed mass per population could be attributed to differences in population size, whereas only seed mass was related to genetic variation.  相似文献   

19.
To examine the genetic structure of Japanese scallop populations (Mizuhopecten yessoensis) in Hokkaido prefecture, Japan, and compare it with those in the Aomori prefecture, we applied a method for lineage analysis based on sequence variation in a mitochondrial DNA segment (NcR2). After showing that there was a low probability of doubly uniparental inheritance of mitochondrial DNA in the scallop, we sequenced the NcR2 regions of 914 individuals from 15 populations (13 in Hokkaido and 2 in Aomori). In total, 103 different haplotypes were detected. Results of homogeneity tests for pairwise populations and the fixation indices indicated that significant heterogeneity (P < 0.0005) and structuring (pairwise fixation index FST = 0.1606–0.4444, P = 0.0000; fixation index among groups FCT = 0.1549, P = 0.0078) could be inferred between the Hokkaido and Aomori groups, but not among populations within the groups. Moreover, heterogeneity of the haplotype distribution between populations of the 1980s and 1990s or 2000s at the 4 culturing areas was not observed (P > 0.05), and the haplotype diversity between them was not significant (P = 0.05), suggesting that the culture operations had not imparted a significant effect on the genetic structure during these periods.  相似文献   

20.
The distribution of Nepenthes mirabilis ranges from Northeast (NE) to South (S) Thailand. Eleven individuals from NE, S and Suen Jatujak market in Bangkok, Central (C) Thailand, were collected and divided into four populations according to their geographical areas. These four populations were analyzed to determine a genetic diversity profile using thirteen inter-simple sequence repeat markers. The individuals produced 75.18% polymorphic banding profiles. The Shannon’s index was used to estimate genetic diversity. Total genetic diversity (H T) and inter-population genetic diversity (H S) were 0.854 and 0.678, respectively. The degree of genetic differentiation (G ST) of the species populations is 0.206, whereas the gene flow (Nm) among all the various geographical area populations is 1.016. Both the dendrogram and the results of the Shannon’s diversity index suggest great genetic diversity. These results support the broad range of distribution sites of Nepenthes mirabilis, which would require high genetic diversity to adapt to the environmental variations that can be found between NE, C, and S Thailand. ANOVA shows that the genetic diversity in each population is not significantly different (P > 0.05). Mantel tests reveal that geographical distance is an important factor for affecting the genetic distances among populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号