首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Questions: Which environmental and management factors determine plant species composition in semi‐natural grasslands within a local study area? Are vegetation and explanatory factors scale‐dependent? Location: Semi‐natural grasslands in Lærdal, Sognog Fjordane County, western Norway. Methods: We recorded plant species composition and explanatory variables in six grassland sites using a hierarchically nested sampling design with three levels: plots randomly placed within blocks selected within sites. We evaluated vegetation‐environment relationships at all three levels by means of DCA ordination and split‐plot GLM analyses. Results: The most important complex gradient determining variation in grassland species composition showed a broad‐scale relationship with management. Soil moisture conditions were related to vegetation variation on block scale, whereas element concentrations in the soil were significantly related to variation in species composition on all spatial scales. Our results show that vegetation‐environment relationships are dependent on the scale of observation. We suggest that scale‐related (and therefore methodological) issues may explain the wide range of vegetation‐environment relationships reported in the literature, for semi‐natural grassland in particular but also for other ecosystems. Conclusions: Interpretation of the variation in species composition of semi‐natural grasslands requires consideration of the spatial scales on which important environmental variables vary.  相似文献   

2.
Question: Which are the gradients of floristic differentiation in Greek beech (Fagus sylvatica) forests? Which is the role of geographical and ecological factors in this differentiation? Location: Beech forests of the plant geographical regions Northeast, North Central and East Central Greece. Methods: A total of 1404 published and unpublished phytoso‐ciological relevés were used in the analyses. TWINSPAN and DCA were applied to classify and ordinate the relevés. Altitude, Indicator Values of relevés and their X and Y coordinates were used in a posteriori interpretation of the ordination axes. Kendall's correlation coefficients were calculated between DCA relevé scores and explanatory variables. Multiple linear regression was used to partition the variation explained by the first two DCA axes, between the geographical and the ecological variables. Results: Classification resulted in 14 vegetation units defined by species composition. Two types of gradients, ecological and geographical, were revealed by the DCA of all releves. The partition of the variation accounted for by the first and second DCA axis was attributed mainly to ecological and geographical variables, respectively. Conclusions: Beech forests of northeast and Central Greece show phytogeographical differences, while ecologically similar vegetation units occur in both regions. A west‐east gradient is revealed in Greek beech forest vegetation. The extent of the study area, its position along regional gradients and the comprehensiveness of the data set that is analysed determine the types of the gradients which can be revealed in a vegetation study.  相似文献   

3.
Abstract. A hierarchic classification of Danish semi‐natural grassland vegetation on well‐drained soils is presented. TWINSPAN was used for clustering of 614 samples of grassland vegetation showing floristic gradients and turnover in species composition in more dimensions. The optimal hierarchic level of clustering was determined by indicator species analysis. The classification was interpreted in terms of variables relating to abiotic environment and vegetation structure and to major ecoclines previously identified by gradient analysis. The 12 final clusters were compared to syntaxa of formal phytosociology and to communities in the British Vegetation Classification. Criteria for achieving floristically homogeneous clusters without sacrificing the ecological interpretability and validity of the clusters in time and along geographical gradients are discussed.  相似文献   

4.
Tertiary‐relict Hyrcanian (Caspian) forest along the shores of the southern Caspian Sea is a center of biodiversity. Still, there is little information on plant diversity patterns in this area. This study evaluated plant diversity, variation in life forms, and geographical distribution of the zonal vegetation types and their relationships with environmental variables, in the educational and experimental forest of Kheyrudkenar, an important protected area in the central Hyrcanian forest of northern Iran. For this purpose, 226 vegetation plots of 400 m2 were laid out along two altitudinal transects from the lowlands (100 m a.s.l.) to the timberline (2000 m a.s.l.). Four vegetation types were identified using modified TWINSPAN, indirect and direct gradient analyses. Species‐related (species diversity indices, life form and phytogeographical elements) and environmental variables (climate, topographic and soil variables) were calculated and subjected to one‐way ANOVA among the vegetation types. Both constrained (CCA) and unconstrained (DCA) ordination analyses showed an almost identical variation of the floristic composition along their axes and demonstrated that there are two main gradients in the Hyrcanian forest. Elevation together with annual precipitation and mean annual temperature were the most important factors controlling the floristic composition in the area. Topographic features such as slope inclination and heat index were found to be important within an elevation zone/vegetation type. Soil physical and chemical properties were of secondary importance for the separation of the vegetation types. This knowledge will be useful for forest management and conservation practices in the Hyrcanian area with its distinct and unique flora and vegetation.  相似文献   

5.
Question: Does grazing by large herbivores affect species composition or community‐wide variation in plant functional traits? Location: Dune grasslands at the Belgian coast. Methods: Plant cover and soil data were collected in 146 plots that were randomly selected at 26 grazed and ungrazed grassland sites. Plant community composition was assessed by Detrended Correspondence Analysis and mean values of plant trait categories were calculated across the plots. Results: Differentiation of plant composition and community‐wide plant trait characteristics was largely determined by grazing, soil acidity and their interaction. In ungrazed situations, a clear floristic distinction appears between acidic (non‐calcareous) and alkaline (calcareous) grasslands. In grazed situations, these floristic differences largely disappeared, indicating that grazing results in a decrease of natural variation in species composition. At higher soil pH, a larger difference in plant community composition and community‐wide plant traits was observed between grazed and ungrazed plots. In ungrazed situations, shifts in plant functional traits along the acidity gradient were observed. Conclusions: Grazing is responsible for shifts in plant community composition, and hence a decrease in plant diversity among grasslands at opposing acidity conditions in coastal dune grasslands. Therefore, care should be taken when introducing grazing as a system approach for nature conservation in dune grasslands as it may eliminate part of the natural variation in plant diversity along existing abiotic gradients.  相似文献   

6.
Abstract. Effects of grazing and environment on vegetation structure have been widely acknowledged, but few studies have related both factors. We made 57 floristic samples in a highly variable landscape of mountain grasslands in central Argentina; 26 sample were in fence‐lines with contrasting vegetation. For each sample, we recorded topographic and edaphic parameters, as well as grazing intensity indicators. Floristic gradients were analysed with DCA and relations with abiotic and grazing‐related variables were detected with DCCA. Floristic axis 1 was explained by edaphic parameters associated to topography, ranging from communities in well drained soils on upper topographic positions to hydromorphic vegetation in poorly drained soils on lower topographic positions. Species richness decreased as soil moisture increased. Floristic axis 2 was associated with present and long‐term grazing indicators, and reflected shifts in vegetation physiognomy and species evenness. Tall tussock grasslands, with low species evenness and evidences of low or null grazing intensity were located at one extreme. Tussocks were gradually replaced by short graminoids and forbs towards the centre of the gradient, as grazing increased, and evenness reached a maximum. In degraded sites with heavy long‐term grazing intensities, short perennial species were replaced by an annual species, and evenness decreased. The magnitude of changes in floristic composition produced by grazing decreased with increasing soil moisture, and vegetation‐environment relationships were stronger in moderate to highly grazed situations than in lightly or non grazed situations.  相似文献   

7.
Abstract. Four classes of functional and morphological plant traits – established strategies (the CSR scheme sensu Grime 1979), life‐forms (sensu Raunkiaer 1934), morphology, and regenerative strategies – are used as tools for explaining vegetation gradients at summer farms in the mountains of western Norway. These farms are assembly points for free‐ranging domestic grazers, and differ floristically and ecologically from the surrounding heath or woodland vegetation. DCA and TWINSPAN are used to relate major gradients in a floristic data set from 12 summer farms to two sets of explanatory variables: (1) environmental variables representing physical factors, plot position, soils, and land use, and (2) the 4 classification schemes. The main floristic gradient parallels a spatial gradient from the centres of the farms to the surrounding vegetation. A functional interpretation based on the concurrent use of the 2 sets of explanatory variables suggests that the gradient is one of decreasing disturbance and increasing environmental stress caused by decreasing grazing and manure effects away from farms. Partial CCA is used to investigate the relationships between the 4 functional/morphological plant trait classes. The 4 classification schemes are partially redundant, and do not represent different trends of specialization within the landscape. There is no strong evidence for decoupling of the traits of the vegetative and regenerative phases within the data. The combination of general process‐based theories and specific plant attribute responses enhances the generality and interpretability of the study.  相似文献   

8.
Question: Which environmental variables affect floristic species composition of acid grasslands in the Atlantic biogeographic region of Europe along a gradient of atmospheric N deposition? Location: Transect across the Atlantic biogeographic region of Europe including Ireland, Great Britain, Isle of Man, France, Belgium, The Netherlands, Germany, Norway, Denmark and Sweden. Materials and Methods: In 153 acid grasslands we assessed plant and bryophyte species composition, soil chemistry (pH, base cations, metals, nitrate and ammonium concentrations, total C and N, and Olsen plant available phosphorus), climatic variables, N deposition and S deposition. Ordination and variation partitioning were used to determine the relative importance of different drivers on the species composition of the studied grasslands. Results: Climate, soil and deposition variables explained 24% of the total variation in species composition. Variance partitioning showed that soil variables explained the most variation in the data set and that climate and geographic variables accounted for slightly less variation. Deposition variables (N and S deposition) explained 9.8% of the variation in the ordination. Species positively associated with N deposition included Holcus mollis and Leontodon hispidus. Species negatively associated with N deposition included Agrostis curtisii, Leontodon autumnalis, Campanula rotundifolia and Hylocomium splendens. Conclusion: Although secondary to climate gradients and soil biogeochemistry, and not as strong as for species richness, the impact of N and S deposition on species composition can be detected in acid grasslands, influencing community composition both directly and indirectly, presumably through soil‐mediated effects.  相似文献   

9.
Conservation planning in the face of global change is still in its infancy. A suggested approach is to incorporate environmental gradients into conservation planning as they reflect the ecological and evolutionary processes generating and maintaining diversity. Our study provides a framework to identify the dominant environmental gradients determining floristic composition and pattern. Nonmetric multidimensional scaling was used on 2155 sampling plots in savanna and grassland habitat located across the province of KwaZulu‐Natal, South Africa (94 697 km2), a floristically rich region having steep environmental gradients, to determine the dominant gradients. Hierarchical cluster analysis was used to group similar plots which were then used in a Classification and Regression Tree analysis to determine the environmental delimiters of the identified vegetation clusters. Temperature‐related variables were the strongest delimiters of floristic composition across the province, in particular mean annual temperature. Frost duration was the primary variable in the Classification and Regression Tree analysis with important implications for savanna/grassland dynamics. Soil properties (base, pH status) and moisture variables accounted for most of the variation for the second and third axes of floristic variation. Given that climatic and edaphic variables were well correlated with floristic composition, it is anticipated that a changing climate will have a marked influence on floristic composition. We predict warmer temperatures may facilitate the spread of frost sensitive savanna species into previously cooler, grassland areas. Species associated with specific soil types will not easily be able to move up the altitudinal gradient to cooler climes because geology is aligned in an approximately north‐south direction compared with increasing altitude from east‐west. Future conservation planning should take cognisance of these gradients which are surrogates for ecological and evolutionary processes promoting persistence.  相似文献   

10.
Abstract. On Tenerife, the occurrence of environmental gradients over short distances provides a unique opportunity to investigate the relationship between vegetation and environmental factors. In the semi‐arid coastal region of Tenerife, floristic composition, species richness and vegetation structure of perennial plants have been studied in 67 locations covering the existing precipitation gradient. On the island as a whole, variation in species composition could be best explained by mean annual precipitation; at coastal sites, substrate age and soil characteristics also played a significant role. On the other hand, substrate chemistry and the type of eruptive material explained little of the floristic variation. Stand biomass was strongly correlated with mean annual precipitation and was, on the youngest lava flows studied, also affected by substrate age. The native stem succulent species made up the bulk of total biomass along the whole precipitation gradient. Disturbed and undisturbed sites differed significantly in stand biomass and cover. Species richness was correlated with precipitation and substrate age. Distribution of plant functional types was also related to the precipitation gradient. The relative abundance of hemicryptophytes and shrubs with non‐hairy leaves increased with increasing precipitation whereas the ratio of shrubs with hairy/non‐hairy leaves and succulent plants decreased. Some alien plants were quite frequent at disturbed sites but, on the whole, they contributed little to the species spectrum and to the stand biomass. Undisturbed sites remained almost free of introduced species not considering annuals.  相似文献   

11.
This paper is an attempt, using statistical modelling techniques, to understand the patterns of vascular plant species richness at the poorly studied meso-scale within a relatively unexplored subarctic zone. Species richness is related to floristic-environmental composite variables, using occurrence data of vascular plants and environmental and spatial predictor variables in 362 1 km2 grid squares in the Kevo Nature Reserve. Species richness is modelled in two different way. First, by detecting the major floristic-environmental gradients with the ordination procedure of canonical correspondence analysis, and subsequently relating these ordination axes to species richness by generalized linear modelling. Second, species richness is directly related to the composite environmental factors of explanatory variables, using partial least squares regression. The most important explanatory variables, as suggested by both approaches, are relatively similar, and largely reflect the influence of altitude or altitudinally related variables in the models. The most prominent floristic gradient in the data runs from alpine habitats to river valleys, and this gradient is the main source of variation in species richness. Some local environmental variables are also relatively important predictors; the grid squares rich in vascular plant taxa are mainly located in the lowlands of the reserve and are characterised by rivers and brooks, as well as by abundant cliff walls. The two statistical models account for approximately the same amount of variation in the species richness, with more than half of the variation unexplained. Potential reasons for the relatively modest fit are discussed, and the results are compared to the characteristics of the diversity-environment relationships at both broader- and finer-scales.  相似文献   

12.
We assessed if the relative importance of biotic and abiotic factors for plant community composition differs along environmental gradients and between functional groups, and asked which implications this may have in a warmer and wetter future. The study location is a unique grid of sites spanning regional-scale temperature and precipitation gradients in boreal and alpine grasslands in southern Norway. Within each site we sampled vegetation and associated biotic and abiotic factors, and combined broad- and fine-scale ordination analyses to assess the relative explanatory power of these factors for species composition. Although the community responses to biotic and abiotic factors did not consistently change as predicted along the bioclimatic gradients, abiotic variables tended to explain a larger proportion of the variation in species composition towards colder sites, whereas biotic variables explained more towards warmer sites, supporting the stress gradient hypothesis. Significant interactions with precipitation suggest that biotic variables explained more towards wetter climates in the sub alpine and boreal sites, but more towards drier climates in the colder alpine. Thus, we predict that biotic interactions may become more important in alpine and boreal grasslands in a warmer future, although more winter precipitation may counteract this trend in oceanic alpine climates. Our results show that both local and regional scales analyses are needed to disentangle the local vegetation-environment relationships and their regional-scale drivers, and biotic interactions and precipitation must be included when predicting future species assemblages.  相似文献   

13.
Aim To develop a landscape‐level model that partitions variance in plant community composition among local environmental, regional environmental, and purely spatial predictive variables for pyrogenic grasslands (prairies, savannas and woodlands) throughout northern and central Florida. Location North and central Florida, USA. Methods We measured plant species composition and cover in 271 plots throughout the study region. A variation‐partitioning model was used to quantify components of variation in species composition associated with the main and interaction effects of soil and topographic variables, climate variables and spatial coordinates. Partial correlations of environmental variables with community variation were identified using direct gradient analysis (redundancy analysis and partial redundancy analysis) and Monte Carlo tests of significance. Results Community composition was most strongly related to edaphic variables at local scales in association with topographic gradients, although geographically structured edaphic, climatic and pure spatial effects were also evident. Edaphic variables explained the largest portion of total variation explained (TVE) as a main effect (48%) compared with the main effects of climate (9%) and pure spatial factors (9%). The remaining TVE was explained by the interaction effect of climate and spatial factors (13%) and the three‐way interaction (22%). Correlation analyses revealed that the primary compositional gradient was related to soil fertility and topographic position corresponding to soil moisture. A second gradient represented distinct geographical separation between the Florida panhandle and peninsular regions, concurrent with differences in soil characteristics. Gradients in composition corresponded to species richness, which was lower in the Florida peninsula. Main conclusions Environmental variables have the strongest influence on the species composition of Florida pyrogenic grasslands at both local and regional scales. However, the limited distributions of many plant taxa suggest historical constraints on species distributions from one physiographical region to the other (Florida panhandle and peninsula), although this pattern is partially confounded by regionally spatially structured environmental variables. Our model provides insight into the relative importance of local‐ and regional‐scale environmental effects as well as possible historical constraints on floristic variation in pine‐dominated pyrogenic grasslands of the south‐eastern USA.  相似文献   

14.
Abstract

Helianthemetea guttati communities are pioneer spring and early summer ephemeral grasslands, dominated by non-nitrophilous therophytes. In Continental Portugal, these communities have not yet been fully investigated, and thus the objectives of the present study are: (1) to identify community types in therophytic grasslands; (2) to recognize those communities that configure the European priority habitat 6220* (pseudo-steppe with grasses and annuals); (3) to establish environmental gradients underlying their spatial variation; (4) to assess how floristic composition is affected by land use factors. Vegetation sampling using phytosociological methodology was carried out on 80 grasslands. Modified Twinspan classification and canonical correspondence analysis (CCA) was applied for the classification and ordination of relevés whereas partial CCA (pCCA) and variation partitioning were used to assess the relative influence of individual land use factors. Some 270 species were identified across 11 community types whose floristic patterns were mainly explained by environmental gradients related to altitude and soil type while land use variables could only explain a small part of the floristic variation. Based on biogeography and the determination of diagnostic species, four phytosociological new associations and a new subassociation are proposed: Holco-Brachypodietum distachyi, Holco-Micropyretum tenellae, Micropyro-Anthoxanthetum aristati and Leontodonto-Vulpietum bromoidis vulpietosum membranaceae.  相似文献   

15.
On the variation explained by ordination and constrained ordination axes   总被引:1,自引:0,他引:1  
Abstract. Total inertia (TI), the sum of eigenvalues for all ordination axes, is often used as a measure of total variation in a data set. By use of simulated data sets, I demonstrate that lack-of-fit of data to the response model implicit in any eigenvector ordination method results in polynomial distortion ordination axes, with eigenvalues that normally contribute 30–70% to TI (depending on data set properties). The amount of compositional variation extracted on ecologically interpretable ordination axes (structure axes) is thus underestimated by the eigenvalue-to-total-inertia ratio. I recommend that the current use of total inertia as a measure of compositional variation is discontinued. Eigenvalues of structure axes can, however, be used with some caution to indicate their relative importance. I also demonstrate that when the total inertia is partitioned on different sets of explanatory variables and unexplained variation by use of (partial) constrained ordination, (35) 50–85% of the variation ‘unexplained’ by the supplied explanatory variables represents lack-of-fit of data to model. Thus, the common interpretation of ‘unexplained variation’ as random variation (‘noise’) or coenoclinal variation caused by unmeasured explanatory variables, is generally inappropriate. I recommend a change of focus from the variation-explained-to-total inertia ratio and ‘unexplained’ variation to relative amounts of variation explained by different sets of explanatory variables.  相似文献   

16.
Scott L. Collins 《Oecologia》1983,59(2-3):246-252
The habitats occupied by species of wood warblers (Emberizidae) were compared at two study areas, Itasca State Park, Minnesota and Mount Blue State Park, Maine. Univariate comparisons of each variable of habitat structure show geographic differences for each species of warbler. Habitats available were also different because small trees were always more dense in Maine than in Minnesota. The Black-throated Green Warbler had the most dissimilar habitat with 9 of 11 variables different at the two sites.Cluster analysis identified four generalized habitat groups containing (1) species occupying territories with high percent shrub cover, (2) forest species from Maine, (3) forest species from Minnesota and (4) open country species. Reciprocal averaging ordination was used to identify habitat gradients at each site. The first axis of the Maine and Minnesota ordinations was a gradient from open country with dense ground cover to forest vegetation. The second axes differed, however. In Minnesota, the gradient separated medium deciduous trees from large conifers, whereas in Maine, vegetation graded from medium and large deciduous trees to coniferous habitats. Spearman rank correlation indicated that the warblers were similarly arranged along both habitat axes at each site despite differences in axis loadings of habitat variables.A combined reciprocal averaging ordination separated forest and shrub-forest edge species in Maine from the same two species groups in Minnesota along a smaller to larger tree axis. The results clearly demonstrate that habitat structure is not consistent throughout the range of many widely distributed species. It is suggested that the similar arrangement of species along the habitat axes probably results from an individualistic distribution of opportunistic bird species. Variation is probably induced at a site level by intraspecific competition for territories, small-scale vegetation dynamics, and resource fluctuation that occurs both within and between seasons.  相似文献   

17.
An ordination study of 20Eucalyptus tetrodonta forest stands growing on deep earths in monsoonal Australia revealed two major gradients in understorey vegetation type. The first axis reflected both floristic and structural understorey variation, where litter and shrub cover were inversely related to grass cover. This axis is thought to reflect a complex fire-vegetation type interaction, where vegetation is primarily determined by the saturation of the soil profile in the wet season, as measured by the colour of the iron rich soils. On the second axis of the ordination, floristic composition but not vegetation structure, and stand height were found to vary with the intercorrelated measures of soil gravel and moisture supply.E. tetrodonta is able to regenerate in the absence of fire, but firing appears to stimulate regeneration. All stands contained some advance growth, which occurs in distinct clumps, probably reflecting these plants clonal origin. Sapling presence in the stands is variable and the recruitment of advance growth into this size class appears to be related to over-wood competition. The size class distribution of trees was found to be similar amongst the stands, therefore stand structure appeared to be independent of understorey type. In comparison to general models of temperate eucalypt regeneration processes the tropical eucalypts have evolved different regeneration strategies, possibly in response to the severe annual drought.Nomenclature: Chippendale (1971), unless otherwise indicated. Structural classification: Specht (1970).I acknowledge the help of Mr. Clyde Dunlop who identified plant specimens and provided stimulating discussion, and Dr. Peter Minchin for permission to use the computer package ECOPACK to prepare and handle the floristic data, and his invaluable assistance with the ordination analysis. Mr. Lee Belbin and CSIRO Division of Water and Land Resources kindly gave their permission to use the Numerical Taxonomy Package (NTP).  相似文献   

18.
19.
We explore factors responsible for vegetation differentiation in a small-scale serpentine area, and attempt to provide new insights in the complexity of the serpentine factor at community level. We sampled 49 quadrats. From each quadrat physical and chemical soil parameters were measured and species composition, altitude, inclination, aspect and coordinates were recorded. Quadrats were classified and ordination analyses were used to explore the environmental gradients and to estimate the explanatory power of the variables. Generalized linear models were used to investigate the response of species to environmental factors. Variance partitioning was applied to calculate the proportion of variance attributed to different groups of explanatory variables. The gradients revealed were related to soil texture, nutrient contents, calcium deficiency, chromium content, climatic parameters and grazing and disturbance intensity. Variance partitioning showed that the highest proportions of variance were attributed to the nutrients and physiographic (including soil texture) variables, while smaller but notable proportions of variance were attributed to geographical coordinates and to metal contents. Our study shows that vegetation differentiation at a local scale is determined by a complex factor of soil properties and climatic parameters, together with variation in disturbance and succession.  相似文献   

20.
A combined systematic and stratified sampling design was conducted in mountain forests of the Bavarian Alps to find the principal dimensions of compositional variation of vegetation and their environmental drivers. In 1,505 plots species composition, forest types and soil profiles were recorded. Data from 14 climate stations were included. As we hypothesized that the tree layer is more influenced by management than the understorey and that the former modifies the habitat of the latter, the two matrices were analysed separately and the species composition of the tree layer was used as a structural predictor variable for the understorey. We applied constrained ordination to reveal the main gradients in floristic composition and variance partitioning to examine the portions of climatic, edaphic, spatial and structural components. Ellenberg indicator values and a generalized linear model were used to test whether a significant spatial gradient exists from east to west, the main spatial extent of the investigation area. Forest types were used as an overlay to assess the underlying environmental factors. It turned out that explained variance of the tree layer was considerably lower than in the understorey. Tree layer composition was more influenced by climatic variables than by soil. In the understorey, edaphic and climatic variables contributed almost equally to explained variance, but the tree layer had an additional explanatory power. No continentality gradient could be detected within the investigation area. Plant communities were well separated along gradients of acidity, moisture, nutrients and climate, which broadly confirms the known gradients for montane and subalpine zonal forests in the region. The study provides a quantitative synthesis of the knowledge on a diverse set of community types, which has so far been subject to disparate and sectorial treatment in the Bavarian Alps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号