首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Homoserine kinase (HSK) produces O-phospho-l-homoserine (HserP) used by cystathionine gamma-synthase (CGS) for Met synthesis and threonine synthase (TS) for Thr synthesis. The effects of overexpressing Arabidopsis thaliana HSK, CGS, and Escherichia coli TS (eTS), each controlled by the 35S promoter, were compared. The results indicate that in Arabidopsis Hser supply is the major factor limiting the synthesis of HserP, Met and Thr. HSK is not limiting and CGS or TS control the partitioning of HserP. HSK overexpression had no effect on the level of soluble HserP, Met or Thr, however, when treated with Hser these plants produced far more HserP than wild type. Met and Thr also accumulated markedly after Hser treatment but the increase was similar in HSK overexpressing and wild-type plants. CGS overexpression was previously shown to increase Met content, but had no effect on Thr. After Hser treatment Met accumulation increased in CGS-overexpressing plants compared with wild type, whereas HserP declined and Thr was unaffected. Arabidopsis responded differentially to eTS expression depending on the level of the enzyme. At the highest eTS level the Thr content was not increased, but the phenotype was negatively affected and the T1 plants died before reproducing. Comparatively low eTS did not affect phenotype or Thr/Met level, however after Hser treatment HserP and Met accumulation were reduced compared with wild type and Thr was increased slightly. At intermediate eTS activity seedling growth was retarded unless Met was supplied and CGS expression was induced, indicating that eTS limited HserP availability for Met synthesis.  相似文献   

4.
Liu J  Jambunathan N  McNellis TW 《Planta》2005,221(1):85-94
The copines are a newly identified, widely distributed class of Ca2+-dependent, phospholipid-binding proteins that may be involved in cellular signaling. The copines have a characteristic domain structure: two C2 domains in the N-terminal region and a von Willebrand A (VWA) domain in the C-terminal region. Studies suggest that copines interact with target protein(s) via their VWA domain and recruit the proteins to a membrane location through the activity of the C2 domains. Arabidopsis thaliana (L.) Heynh. plants with loss-of-function mutations in the BONZAI 1/COPINE 1 (BON1/CPN1) gene display aberrant regulation of defense responses, including development of a lesion-mimic phenotype, an accelerated hypersensitive response, and increased resistance to a bacterial and an oomycetous pathogen. The phenotype of mutants in BON1/CPN1 is both humidity- and temperature-sensitive. In this study, we generated transgenic plants expressing either the VWA or the C2 portions of BON1/CPN1 in the wild-type Columbia-0 (Col-0) genetic background. Transgenic plants expressing the BON1/CPN1 C2 domain portion appeared like wild-type plants. However, transgenic plants expressing the BON1/CPN1 VWA domain exhibited a lesion-mimic phenotype that partially phenocopied bon1/cpn1 mutant plants. Our data suggest that BON1/CPN1 VWA domain fragments may interfere with the function of the full-length endogenous BON1/CPN1 protein, possibly by competing with the full-length BON1/CPN1 protein for association with target proteins normally bound to the full-length BON1/CPN1 protein.  相似文献   

5.
Transgenic tomato plants expressing wild-type or mutated BV1 or BC1 movement proteins from Bean dwarf mosaic virus (BDMV) were generated and examined for phenotypic effects and resistance to Tomato mottle virus (ToMoV). Fewer transgenic plants were recovered with the wild-type or mutated BC1 genes, compared with the wild-type or mutated BV1 genes. Transgenic tomato plants expressing the wild-type or mutated BV1 proteins appeared normal. Interestingly, although BDMV induces only a symptomless infection in tomato (i.e., BDMV is not well adapted to tomato), transgenic tomato plants expressing the BDMV BC1 protein showed a viral disease-like phenotype (i.e., stunted growth, and leaf mottling, curling, and distortion). This suggests that the symptomless phenotype of BDMV in tomato is not due to a host-specific defect in the BC1 protein. One transgenic line expressing the BC1 gene did not show the viral disease-like phenotype. This was associated with a deletion in the 3' region of the gene, which resulted in expression of a truncated BC1 protein. Several R0 plants, expressing either wild-type or mutated BV1 or BC1 proteins, showed a significant delay in ToMoV infection, compared with non-transformed plants. R1 progeny plants also showed a significant delay in ToMoV infection, but this delay was less than that in the R0 parents. These results also demonstrate that expression of viral movement proteins, in transgenic plants, can have deleterious effects on various aspects of plant development.  相似文献   

6.
Gamble RL  Qu X  Schaller GE 《Plant physiology》2002,128(4):1428-1438
The ethylene receptor family of Arabidopsis consists of five members, one of these being ETR1. The N-terminal half of ETR1 contains a hydrophobic domain responsible for ethylene binding and membrane localization. The C-terminal half of the polypeptide contains domains with homology to histidine (His) kinases and response regulators, signaling motifs originally identified in bacteria. The role of the His kinase domain in ethylene signaling was examined in planta. For this purpose, site-directed mutations were introduced into the full-length wild-type ETR1 gene and into etr1-1, a mutant allele that confers dominant ethylene insensitivity on plants. The mutant forms of the receptor were expressed in Arabidopsis and the transgenic plants characterized for their ethylene responses. A mutation that eliminated His kinase activity did not affect the ability of etr1-1 to confer ethylene insensitivity. A truncated version of etr1-1 that lacks the His kinase domain also conferred ethylene insensitivity. Possible mechanisms by which a truncated version of etr1-1 could exert dominance are discussed.  相似文献   

7.
To investigate the role of cystathionine gamma-synthase (CGS) in the regulation of methionine synthesis Arabidopsis plants were transformed with a full-length antisense CGS cDNA and transformants analysed. Plants that were heterozygous for the transgene showed a 20-fold reduction of CGS activity that was accompanied by severe growth retardation and morphological abnormalities, from germination to flowering. Application of exogenous methionine to the transgenic lines restored normal growth. Surprisingly, transformed Arabidopsis plants exhibited a modest decrease in methionine content (35% reduction of the wild-type level) but a seven-fold decrease in the soluble pool of S-methylmethionine (SMM), a compound that plays a major role in storage and transport of reduced sulphur and labile methyl moieties. Several mechanisms can account for the maintenance of the soluble pool of methionine. First, the observed 20-fold increase in O-phosphohomoserine, a substrate of CGS, could compensate for the depressed level of CGS polypeptide by increasing the net rate of catalysis supported by the remaining enzyme. Second, the transgenic plants exhibited a two-fold increased level of cystathionine beta-lyase, the second enzyme in the methionine biosynthetic pathway. This indicates that enzymes other than CGS are subjected to a regulatory control by methionine or one of its metabolites. In addition to these mechanisms affecting de novo methionine synthesis, the recruitment of SMM to produce methionine may account for the small change of methionine levels in transgenic lines.  相似文献   

8.
Bipartite geminiviruses, such as squash leaf curl virus (SqLCV), encode two movement proteins (MPs), BR1 and BL1, that are essential for viral movement in and subsequent infection of the host plant. To elucidate the biochemical functions of these MPs and define their respective contributions to viral infection, we have generated transgenic Nicotiana benthamiana plants expressing SqLCV BR1 and BL1. Transgenic plants expressing BR1 or a truncated BL1 were phenotypically indistinguishable from wild-type N. benthamiana. In contrast, transgenic plants expressing full-length BL1, alone or in combination with BR1, were strikingly abnormal both in their growth properties and phenotypic appearance, with leaves that were mosaic and curled under, thus mimicking typical SqLCV disease symptoms in this host. BL1 was localized to the cell wall and plasma membrane fractions, whereas BR1 was predominantly in the microsomal membrane fraction. These findings demonstrate that expression of BL1 in transgenic plants is sufficient to produce viral disease symptoms, and they further suggest that BL1 and BR1 carry out distinct and independent functions in viral movement.  相似文献   

9.
Recently we reported on a plasma membrane tobacco protein (designated NtCBP4) that binds calmodulin. When overexpressed in transgenic plants, NtCBP4 confers Pb2+ hypersensitivity associated with enhanced accumulation of this toxic metal. To further investigate possible modulation of Pb2+ tolerance in plants, we prepared transgenic plants that express a truncated version of this protein (designated NtCBP4DeltaC) from which its C-terminal, with the calmodulin-binding domain and part of the putative cyclic nucleotide-binding domain, was removed. In contrast to the phenotype of transgenic plants expressing the full-length gene, transgenic plants expressing the truncated gene showed improved tolerance to Pb2+, in addition to attenuated accumulation of this metal. Furthermore, disruption by T-DNA insertion mutagenesis of the Arabidopsis CNGC1 gene, which encodes a homologous protein, also conferred Pb2+ tolerance. We suggest that NtCBP4 and AtCNGC1 are components of a transport pathway responsible for Pb2+ entry into plant cells.  相似文献   

10.
The mitogen-activated protein kinase kinase kinase (MAPKKK) Constitutive Triple-Response1 (CTR1) plays a key role in mediating ethylene receptor signaling via its N-terminal interaction with the ethylene receptor C-terminal histidine kinase (HK) domain. Loss-of-function mutations of CTR1 prevent ethylene receptor signaling, and corresponding ctr1 mutants show a constitutive ethylene response phenotype. We recently reported in Plant Physiology that expression of the truncated ethylene receptor Ethylene Response1 (ETR1) isoforms etr11-349 and dominant ethylene-insensitive etr1-11-349, lacking the C-terminal HK and receiver domains, both suppressed the ctr1 mutant phenotype. Therefore, the ETR1 N terminus is capable of receptor signaling independent of CTR1. The constitutive ethylene response phenotype is stronger for ctr1-1 than ctr1-1 lines expressing the etr11-349 transgene, so N-terminal signaling by the full-length but not truncated ETR1 is inhibited by ctr1-1. We address possible modulations of ETR1 N-terminal signaling with docking of CTR1 on the ETR1 HK domain.  相似文献   

11.
Chlorophyll is a central player in harvesting light energy for photosynthesis, yet the rate-limiting steps of chlorophyll catabolism and the regulation of the catabolic enzymes remain unresolved. To study the role and regulation of chlorophyllase (Chlase), the first enzyme of the chlorophyll catabolic pathway, we expressed precursor and mature versions of citrus (Citrus sinensis) Chlase in two heterologous plant systems: (1) squash (Cucurbita pepo) plants using a viral vector expression system; and (2) transiently transformed tobacco (Nicotiana tabacum) protoplasts. Expression of full-length citrus Chlase resulted in limited chlorophyll breakdown in protoplasts and no visible leaf phenotype in whole plants, whereas expression of a Chlase version lacking the N-terminal 21 amino acids (ChlaseDeltaN), which corresponds to the mature protein, led to extensive chlorophyll breakdown in both tobacco protoplasts and squash leaves. ChlaseDeltaN-expressing squash leaves displayed a dramatic chlorotic phenotype in plants grown under low-intensity light, whereas under natural light a lesion-mimic phenotype occurred, which was demonstrated to follow the accumulation of chlorophyllide, a photodynamic chlorophyll breakdown product. Full-length and mature citrus Chlase versions were localized to the chloroplast membrane fraction in expressing tobacco protoplasts, where processing of the N-terminal 21 amino acids appears to occur. Results obtained in both plant systems suggest that Chlase functions as a rate-limiting enzyme in chlorophyll catabolism controlled via posttranslational regulation.  相似文献   

12.
13.
This study was designed to produce yeast (Schwanniomyces occidentalis) phytase in rice with a view to future applications in the animal feed industry. To achieve high-level production, chimeric genes with the secretory signal sequence of the rice chitinase-3 gene were constructed using either the original full-length or N-truncated yeast phytase gene, or a modified gene whose codon usage was changed to be more similar to that of rice, and then introduced into rice (Oryza sativa L.). When the original phytase genes were used, the phytase activity in the leaves of transgenic rice was of the same level as in wild-type plants, whose mean value was 0.039 U/g fresh weight (g-FW) (1 U of activity was defined as 1 micromol P released per min at 37 degrees C). In contrast, the enzyme activity was increased markedly when codon-modified phytase genes were introduced: up to 4.6 U/g-FW of leaves for full-length codon-modified phytase, and 10.6 U/g-FW for truncated codon-modified phytase. A decrease in the optimum temperature and thermal stability was observed in the truncated heterologous enzyme, suggesting that the N-terminal region plays an important role in enzymatic properties. In contrast, the optimum temperature and pH of full-length heterologous phytase were indistinguishable from those of the benchmark yeast phytase, although the heterologous enzyme was less glycosylated. Full-length heterologous phytase in leaf extract showed extreme stability. These results indicate that codon modification, combined with the use of a secretory signal sequence, can be used to produce substantial amounts of yeast phytase, and possibly any phytases from various organisms, in an active and stable form.  相似文献   

14.
The biosynthesis pathways of the essential amino acids methionine and threonine diverge from O-phosphohomoserine, an intermediate metabolite in the aspartate family of amino acids. Thus, the enzymes cystathionine-γ-synthase (CGS) in the methionine pathway and threonine synthase (TS), the last enzyme in the threonine pathway, compete for this common substrate. To study this branching point, we overexpressed TS in sense and antisense orientation in Arabidopsis plants with the aim to study its effect on the level of threonine but more importantly on the methionine content. Positive correlation was found not only between TS expression level and threonine content, but also between TS/threonine and CGS expression level. Plants expressing the sense orientation of TS showed a higher level of threonine, increased expression level of CGS, and a significantly higher level of S-methylmethionine, the transport form of methionine. By contrast, plants expressing the antisense form of TS showed lower levels of threonine and of CGS expression level. In these antisense plants, the methionine level increased up to 47-fold compared to wild-type plants. To study further the effect of threonine on CGS expression level, wild-type plants were irrigated with threonine and control plants were irrigated with methionine or water. While threonine increased the expression level of CGS but reduced that of TS, methionine reduced the expression level of CGS but increased that of TS. This data demonstrate that both methionine and threonine affect the two enzymes at the branching point, thus controlling not only their own level, but also the level of each other. This mechanism probably aids in keeping the levels of these two essential amino acids sufficiently high to support plant growth.  相似文献   

15.
A survey of the Arabidopsis thaliana databases revealed that single C2H2 zinc finger protein genes comprise a large gene family (approximately 30 genes). No known phenotype has been associated with any of these genes except SUPERMAN. One of these genes, designated AtZFP10 (A. thaliana single zinc finger protein), was isolated by RT-PCR in the present study. The AtZFP10 gene was expressed at low levels in the flowers, axillary meristems and siliques, and at very low levels in the stems in Arabidopsis. Overexpression of the AtZFP10 gene driven by a constitutive promoter resulted in abnormal Arabidopsis plants and only one plant was recovered. Tobacco plants overexpressing the AtZFP10 gene displayed dwarfing, abnormal leaf phenotypes and early flowering that correlated with the level of expression of the AtZFP10 gene. No differences were observed in cell size between the AtZFP10 transgenic plants and the wild-type plants. Application of exogenous GA3 did not restore the wild-type phenotype, but it did reduce the dwarfing phenotype. Deletion of the leucine-rich region at the carboxyl terminus of the AtZFP10 gene resulted in transgenic plants that were not phenotypically different from wild-type plants suggesting a role for the leucine-rich region as essential for normal function.  相似文献   

16.
The smaller isoform of the enzyme glutamic acid decarboxylase (GAD65) is a major islet autoantigen in autoimmune type 1 diabetes mellitus (T1DM). Transgenic plants expressing human GAD65 (hGAD65) are a potential means of direct oral administration of the islet autoantigen in order to induce tolerance and prevent clinical onset of disease. We have previously reported the successful generation of transgenic tobacco and carrot that express immunoreactive, full-length hGAD65. In the present study, we tested the hypothesis that the expression levels of recombinant hGAD65 in transgenic plants can be increased by targeting the enzyme to the plant cell cytosol and by mediating expression through the potato virus X (PVX) vector. By substituting the NH2-terminal region of hGAD65 with a homologous region of rat GAD67, a chimeric GAD671-87/GAD6588-585 molecule was expressed in transgenic tobacco plants. Immunolocalization analysis showed that immunoreactive GAD67/65 was found in the plant cell cytosol. By using a radio-immuno assay with human serum from a GAD65 autoantibody-positive T1DM patient, the highest expression level of the recombinant GAD67/65 protein was estimated to be 0.19% of the total soluble protein, compared to only 0.04% of wild-type hGAD65. Transient expression of wild-type, full-length hGAD65 in N. benthamiana mediated by PVX infection was associated with expression levels of immunoreactive protein as high as 2.2% of total soluble protein. This substantial improvement of the expression of hGAD65 in plants paves the way for immunoprevention studies of oral administration of GAD65-containing transgenic plant material in animal models of spontaneous autoimmune diabetes.  相似文献   

17.
Zhu X  Galili G 《The Plant cell》2003,15(4):845-853
To elucidate the relative significance of Lys synthesis and catabolism in determining Lys level in plant seeds, we expressed a bacterial feedback-insensitive dihydrodipicolinate synthase (DHPS) in a seed-specific manner in wild-type Arabidopsis as well as in an Arabidopsis knockout mutant in the Lys catabolism pathway. Transgenic plants expressing the bacterial DHPS, or the knockout mutant, contained approximately 12-fold or approximately 5-fold higher levels, respectively, of seed free Lys than wild-type plants. However, the combination of these two traits caused a synergistic approximately 80-fold increase in seed free Lys level. The dramatic increase in free Lys in the knockout mutant expressing the bacterial DHPS was associated with a significant reduction in the levels of Glu and Asp but also with an unexpected increase in the levels of Gln and Asn. This finding suggested a special regulatory interaction between Lys metabolism and amide amino acid metabolism in seeds. Notably, the level of free Met, which competes with Lys for Asp and Glu as precursors, was increased unexpectedly by up to approximately 38-fold in the various transgenic and knockout plants. Together, our results show that Lys catabolism plays a major regulatory role in Lys accumulation in Arabidopsis seeds and reveal novel regulatory networks of seed amino acid metabolism.  相似文献   

18.
Peptidyl Met residues are readily oxidized by reactive oxygen species to form Met sulfoxide. The enzyme peptide Met sulfoxide reductase (PMSR) catalyzes the reduction of Met sulfoxides back to Met. In doing so, PMSR is proposed to act as a last-chance antioxidant, repairing proteins damaged from oxidative stress. To assess the role of this enzyme in plants, we generated multiple transgenic lines with altered expression levels of the plastid form of PMSR (PMSR4). In transgenic plants, PMSR4 expression ranged from 95% to 40% (antisense) and more than 600% (overexpressing lines) of wild-type plants. Under optimal growing conditions, there is no effect of the transgene on the phenotype of the plants. When exposed to different oxidative stress conditions-methyl viologen, ozone, and high light-differences were observed in the rate of photosynthesis, the maximum quantum yield (Fv/Fm ratio), and the Met sulfoxide content of the isolated chloroplast. Plants that overexpressed PMSR4 were more resistant to oxidative damage localized in the chloroplast, and plants that underexpressed PMSR4 were more susceptible. The Met sulfoxide levels in proteins of the soluble fraction of chloroplasts were increased by methyl viologen and ozone, but not by high-light treatment. Under stress conditions, the overexpression of PMSR4 lowered the sulfoxide content and underexpression resulted in an overall increase in content.  相似文献   

19.
20.
To assess biological roles of the retinoblastoma protein (RB), four independent transgenic mouse lines expressing human RB with different deletions in the N-terminal region (RBdeltaN) were generated and compared with mice expressing identically regulated, full-length RB. Expression of both RB and RBdeltaN caused developmental growth retardation, but the wild-type protein was more potent. In contrast to wild-type RB, the RBdeltaN proteins were unable to rescue Rb-/- mice completely from embryonic lethality. Embryos survived until gestational day 18.5 but displayed defects in the terminal differentiation of erythrocytes, neurons, and skeletal muscle. In Rb+/- mice, expression of the RBdeltaN transgenes failed to prevent pituitary melanotroph tumors but delayed tumor formation or progression. These results strongly suggest that N-terminal regions are crucial for embryonic and postnatal development, tumor suppression, and the functional integrity of the entire RB protein. Furthermore, these transgenic mice provide models that may begin to explain human families with low-penetrance retinoblastoma and mutations in N-terminal regions of RB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号