首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The biotic resistance hypothesis predicts that more diverse communities should have greater resistance to invasions than species-poor communities. However for facultative and obligate epiphytic invaders a high native species richness, abundance and community complexity might provide more resources for the invader to thrive to. We conducted surveys across space and time to test for the influence of native algal species abundance and richness on the abundance of the invasive facultative epiphytic filamentous alga Lophocladia lallemandii in a Mediterranean Cystoseira balearica seaweed forest. By removing different functional groups of algae, we also tested whether these relationships were dependent on the complexity and abundance of the native algal community. When invasion was first detected, Lophocladia abundance was positively related to species richness, but the correlation became negative after two years of invasion. Similarly, a negative relationship was also observed across sites. The removal experiment revealed that more complex native communities were more heavily invaded, where also a positive relationship was found between native algal richness and Lophocladia, independently of the native algal abundance. Our observational and experimental data show that, at early stages of invasion, species-rich seaweed forests are not more resistant to invasion than species-poor communities. Higher richness of native algal species may increase resource availability (i.e. substrate) for invader establishment, thus facilitating invasion. After the initial invasion stage, native species richness decreases with time since invasion, suggesting negative impacts of invasive species on native biodiversity.  相似文献   

2.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

3.
Interactions among the unattached red alga Gracilaria gracilis, the dominant species of an algal community, and associated algal species Chaetomorpha linum, Enteromorpha prolifera f. prolifera, and Polysiphonia sp. were studied during and after an algal bloom. It was shown that during their bloom the associated algae Enteromorpha and Polysiphonia sp. significantly decreased the photosynthetic rate of G. gracilis but did not affect its growth rate. It is suggested that the inhibition of Gracilaria gracilis photosynthesis is connected to the impact of extracellular metabolites excreted by Chaetomorpha linum, Enteromorpha prolifera f. prolifera, and Polysiphonia sp. In laboratory experiments, the photosynthetic rate of the associated species was enhanced in the presence of Gracilaria. However, no significant alterations were observed in the content of chlorophyll a, growth, and the dark respiration rates of associated algae when they were kept together with Gracilaria. It was suggested that allelopathic interactions observed among algal species during the formation of the monospecific Gracilaria community, as well as during algal blooms, are not determinative.  相似文献   

4.
Forests understories in Europe are known to generally resist invasion, though some alien plants do invade woodland communities. Here we focused on the impact of the widespread invasive annual Impatiens glandulifera, common along watercourses, but recently spreading in forests up to timberline. We investigated its impact on plant–soil feedback and ecosystem functioning. We recorded >40 variables focusing on: soil characteristics, including micro- and macro-nutrients; characteristics of litter layer and enzyme activity in litter; and richness and species composition of the forest understory. Three treatments were followed for 3 years: plots invaded by I. glandulifera; adjacent invader removal plots within the invaded area; and spatially separated uninvaded plots outside the invaded area. The effect of year-to-year variation was generally greater than that of the treatments, especially in soil and litter characteristics. Copper and boron were higher in invaded than invader removal and uninvaded plots, though in quantities that are unlikely to harm other plants. We found no effect of I. glandulifera on litter characteristics or enzyme activity. Despite almost 80% cover of I. glandulifera, we did not detect any difference in species richness and total vegetation cover between invaded and uninvaded plots. The floristic composition differed among the uninvaded, invader removal and invaded plots across 3 years. Our results indicate that the effect of I. glandulifera on the forest community studied was minor, and largely resulted from its increased shading to other plant species. In conclusion, we show how misleading the evaluation of impacts can be if based on a single season.  相似文献   

5.
Invasive plants can influence ecosystem processes such as greenhouse gas (GHG) emissions from wetland systems directly through plant-mediated transfer of GHGs to the atmosphere or through indirect modification of the environment. However, patterns of plant invasion often co-vary with other environmental gradients, so attributing ecosystem effects to invasion can be difficult in observational studies. Here, we assessed the impact of Phragmites australis invasion into native shortgrass communities on methane (CH4) emissions by conducting field measurements of CH4 emissions along transects of invasion by Phragmites in two neighboring brackish marsh sites and compared these findings to those from a field-based mesocosm experiment. We found remarkable differences in CH4 emissions and the influence of Phragmites on CH4 emissions between the two neighboring marsh sites. While Phragmites consistently increased CH4 emissions dramatically by 10.4 ± 3.7 µmol m?2 min?1 (mean ± SE) in our high-porewater CH4 site, increases in CH4 emissions were much smaller (1.4 ± 0.5 µmol m?2 min?1) and rarely significant in our low-porewater CH4 site. While CH4 emissions in Phragmites-invaded zones of both marsh sites increased significantly, the presence of Phragmites did not alter emissions in a complementary mesocosm experiment. Seasonality and changes in temperature and light availability caused contrasting responses of CH4 emissions from Phragmites- versus native zones. Our data suggest that Phragmites-mediated CH4 emissions are particularly profound in soils with innately high rates of CH4 production. We demonstrate that the effects of invasive species on ecosystem processes such as GHG emissions may be predictable qualitatively but highly variable quantitatively. Therefore, generalizations cannot be made with respect to invader-ecosystem processes, as interactions between the invader and local abiotic conditions that vary both spatially and temporally on the order of meters and hours, respectively, can have a stronger impact on GHG emissions than the invader itself.  相似文献   

6.
Phosphorus is a vital nutrient for cyanobacterial growth. Aside from dissolved inorganic phosphorus, dissolved organic phosphorus (DOP) is used by cyanobacterial species via the activity of alkaline phosphatase (APase), which likely plays an important role in acquiring phosphorus for algal growth in the same manner as it does in other bacteria. In this work, APase genes phoA, phoD, and phoX were found distributed in the cyanobacterial strains included in the algal genome collection of the NCBI database. PhoX has a wider distribution than the classical phoA and phoD. Furthermore, multiple types of APase genes were simultaneously identified in a single strain or genome. Anabaena flos-aquae FACHB-245 was selected as a typical strain to study the performance of cyanobacteria growing on DOP. In algal growth involving AMP or lecithin, APase regulates the release of phosphorus from DOP as confirmed by the relative quantification of phoD and phoX expression levels. Our results confirmed that the distribution of APase is prevalent in cyanobacteria and thus provides a new insight into the potential role of cyanobacterial APase on phosphorus acquisition in natural environment.  相似文献   

7.
The relationship between diversity and invasibility might be confounded by extrinsic environmental factors and the evolutionary structure of the resident community. To examine the role of extrinsic environmental factors, species and phylogenetic diversity in regulating community susceptibility to invasion, we established 109 plots either with or without Ageratum conyzoides L. in Liandu, China. We identified all the species in our samples, weighed the aboveground biomass of each species, and measured environmental variables. For all species recorded in our survey, we constructed a community phylogeny using PhytoPhylo mega-phylogeny as a backbone. We selected the best-fit environment model based on the minimum corrected Akaike information criteria score to examine the effect of extrinsic environmental variables on the relative abundance of A. conyzoides. Relationship between biodiversity and invasion of A. conyzoides was examined by a multiple regression, in which extrinsic ecological factors and biodiversity were combined to predict the relative abundance of A. conyzoides. To reduce the number of extrinsic variables, the first six components produced by a principal component analysis of environmental variables were used as predictive variables in the multiple regression. The best-fit environment model indicated that the relative abundance of A. conyzoides was higher in summer and in communities with lower total organic matter and higher total nitrogen in the soil. The multiple regression indicated that only the positive relationship between the Shannon–Wiener diversity of exotics and the relative abundance of A. conyzoides was significant. This result challenges the importance of diversity–resistance to plant invasion. Generalist facilitation might exist between A. conyzoides and other exotic species, although mechanisms for such facilitation are unclear. Overall, our finding suggests the extrinsic factors covarying with diversity are more important than diversity itself in regulating community susceptibility to invasion.  相似文献   

8.
Australian species of the genus Acacia are amongst the most invasive trees. As nitrogen fixers, they are able to invade oligotrophic ecosystems and alter ecosystem functioning to their benefit. We aimed to answer three questions: How does early Acacia invasion influence nitrogen and light in a sandy savanna? How does early Acacia invasion impact biodiversity? Does early invasion alter ecosystem functioning towards the dominance of Acacia? We analyzed (using generalized linear mixed models and richness estimators) paired plots focused on plants of Acacia mangium (Fabaceae) and plants of Marcetia taxifolia (Melastomataceae) by taking hemispherical photos and sampling plants, leaves and soil for measurements of light, richness, leaf nitrogen, leaf δ15N, soil nitrogen and soil coarse sand. The results suggest that early Acacia invasion alters the control of soil and of leaf nitrogen and increases shading, enabling a much wider range of light variation. The δ15N results suggest that the nitrogen taken up by Acacia is transferred to neighboring plants and influences the light environment, suggesting facilitation. The enrichment of plant species observed during early Acacia invasion is consistent with the wider range of light variation, but the forecasted leaf nitrogen conditions during the established phase of Acacia invasion might cause loss of light-demanding species because of increased shading. If early Acacia invasion turns into an established phase with highly increased shading, Acacia seedlings might be favored and ecosystem functioning might change towards its dominance.  相似文献   

9.
In the present study, a microcosm test was used to explore the effects of the zoobenthos on macrophyte allelopathy. Four representative zoobenthos showed low algal inhibition ranging within 0.05–0.16 in separate co-culture. When zoobenthos and tested microalgae were mixed completely, the inhibition rate was enhanced by 0.68. The inhibition potential followed the order: Corbicula fluminea > Palaemonetes sinensis > Chironomus plumosus > Limnodrilus hoffmeisteri. Furthermore, the benthic fauna significantly enhanced algal inhibition of the emergent plant Typha angustifolia and the submerged plant Potamogeton crispus by 0.43 and 0.32, respectively. Meanwhile, there was a significant difference in algal inhibition between five growth phases of macrophytes combined with zoobenthos community. In addition, a significant positive relationship occurred between the algal inhibition of allelopathic macrophytes and the mean individual biomass of the zoobenthos. Through the determination of physiological and biochemical traits of macrophytes, it was concluded that the zoobenthos would be a significant disturbance factor and induce strong stress-resistance response in macrophytes. Subsequently, the specific response will facilitate the algal inhibition of allelopathic macrophytes. Therefore, to keep a reasonable biodiversity will fully display strong function of the aquatic ecosystem and efficiently control harmful algal bloom.  相似文献   

10.
Pinus contorta, one of the most invasive tree species in the world, has been proposed as a model species for improving our understanding of invasion ecology. In this study, we assessed the impact of P. contorta invasions on the species richness, diversity and species traits of a resident treeless steppe community. In a Pinus contorta invasion gradient (Patagonia, Chile), we surveyed vegetation from high canopy closure pine invasion to treeless steppe, and computed species richness, diversity and Sørensen similarity indexes. For all species, we determined functional trait values from the literature, data bases, and personal observations. Species richness and diversity were related to canopy cover (a proxy for invasion intensity) using generalized linear mixed-effects models. Changes in species traits due to canopy cover were analyzed using RLQ ordination analysis and the fourth-corner analysis. We found that Pinus contorta canopy cover significantly reduced the number of native species by 70 %, implying a strong effect on species exclusion. A few native species, however, prevail in the novel conditions (e.g. Baccharis magellanica, Acaena integerrima). Species traits changed significantly with increasing pine canopy cover, where P. contorta promoted the existence of traits related to shade-tolerance and conservative reproductive strategies. We conclude that the negative impacts of Pinus contorta into the treeless steppe, including a reduction in the number of species and the shifting to traits adapted to tolerate shade and associated with conservative reproductive strategies, can have severe implications for the conservation of biodiversity and ecosystem functioning where it invades.  相似文献   

11.
Following successful establishment in Australia and North America, the South African dung beetle (DB) Digitonthophagus gazella was introduced in Brazil in 1990. We investigated the impact of the exotic species on the native community of 42 native DB species using a unique weekly data set spanning 26 years, including 4 years of pre-invasion data. The invasion of D. gazella was very rapid with abundances increasing by 4 orders of magnitude during the first few years following establishment. We show that the DB diversity shrank to sixty percent of the pre-invasion level. Results from multivariate analyses identified three distinct periods of changes in composition and abundance: before the invasion (BI); after invasion I (AI-I); and AI-II each one characterized by a particular dynamic of the native species. The impacts on the native species differed according to their nesting behavior. Species with the same behavior as D. gazella (tunneler) became less abundant and five species went locally extinct. Dweller species, in contrast, became more abundant. Although the analysis of all species combined showed an increase in abundance and a less oscillatory dynamic in AI-II compared to BI, this was the case only for the dweller species, as the tunnelers showed a tendency to continued decrease throughout the 26-year study. Our results show that a new community was originated as a consequence of the invasion, in which dweller species, particularly Labarrus pseudolividus, are the dominant species and all the tunnelers, including D. gazella, are decreasing in abundance.  相似文献   

12.
The invasion of wetlands by Phragmites australis is a conservation concern across North America. We used the invasion of Chesapeake Bay wetlands by P. australis as a model system to examine the effects of regional and local stressors on plant invasions. We summarized digital maps of the distributions of P. australis and of potential stressors (especially human land use and shoreline armoring) at two spatial scales: for 72 subestuaries of the bay and their local watersheds and for thousands of 500 m shoreline segments. We developed statistical models that use the stressor variables to predict P. australis prevalence (% of shoreline occupied) in subestuaries and its presence or absence in 500 m segments of shoreline. The prevalence of agriculture was the strongest and most consistent predictor of P. australis presence and abundance in Chesapeake Bay, because P. australis can exploit the resulting elevated nutrient levels to enhance its establishment, growth, and seed production. Phragmites australis was also positively associated with riprapped shoreline, probably because it creates disturbances that provide colonization opportunities. The P. australis invasion was less severe in areas with greater forested land cover and natural shorelines. Surprisingly, invasion was low in highly developed watersheds and highest along shorelines with intermediate levels of residential land use, possibly indicating that highly disturbed systems are uninhabitable even to invasive species. Management strategies that reduce nutrient pollution, preserve natural shorelines, and limit nearshore disturbance of soils and vegetation may enhance the resilience of shorelines to invasion.  相似文献   

13.
An increasing number of studies report impacts from invasive species on community metrics or ecosystem functions. We draw attention to an issue arising whenever impact is measured on a community where the invader is an integrated part: should or shouldn’t the attributes of the invader itself be included in the data-analysis? We identify many examples from the published literature showing inconsistency in whether or not data for the invader is included or excluded, and discuss potential implications for ecological interpretations. We also provide a case study to show that the invasive seaweed Undaria pinnatifida can be interpreted to have strong or no impact on seaweed communities, depending on its inclusion or exclusion in the data analysis. We conclude that it is critical for studies to (1) clearly state in the methods section, if the invaders are included or excluded from the data-analysis, (2) acknowledge potential differences in outcomes when comparing results based on different methods, and (3) analyze, if possible, impacts both with and without the invader. Finally, we note that this ‘inclusion versus exclusion’ conundrum is not only relevant to invasion biology, but to any field where the test-object of interest can be an integrated part of the response, such as when impact of seaweed blooms are analysed on community productivity or community effects are quantified over time from ecological pulse-perturbation experiments.  相似文献   

14.
Latitudinal gradients in ecosystem patterns arise from complex interactions between biotic and abiotic forces operating at a range of spatial and temporal scales. Widespread invasive species, particularly invasive ecosystem engineers with large effects on their environment, may alter these gradients. We sampled 3–5 stands of the invasive common reed, Phragmites australis, in eight coastal wetlands ranging from Massachusetts (42°N) to South Carolina (32°N) to document geographic variation in P. australis primary production, associated plant and animal species diversity, and sediment carbon storage and to examine how local-, regional-, and large-scale environmental factors contribute to these patterns. Latitude best explained variation in P. australis density, but contrary to expectations, density increased with increasing latitude across our sites. Latitude also predicted macroinvertebrate species richness, which increased with latitude in a manner similar to P. australis density. In addition to latitude, P. australis leaf carbon:nitrogen ratios, distance to the open coast, and sediment oxygen levels were most important for explaining variation in P. australis production, as well as community (plant or animal species richness) and ecosystem (carbon storage) variables. The percent of developed land was positively associated with P. australis density, yet this variable had relatively low predictive power in our study. Our study provides an important biogeographic perspective for documenting and understanding variation in invasive P. australis that is fundamental both for managing the invasion and for understanding latitudinal gradients in ecosystem structure and function.  相似文献   

15.
Methane production by methanogens in wetland is recognized as a significant contributor to global warming. Spartina alterniflora (S. alterniflora), which is an invasion plant in China’s wetland, was reported to have enormous effects on methane production. But studies on shifts in the methanogen community in response to S. alterniflora invasion at temporal and spatial scales in the initial invasion years are rare. Sediments derived from the invasive species S. alterniflora and the native species Phragmites australis (P. australis) in pairwise sites and an invasion chronosequence patch (4 years) were analyzed to investigate the abundance and community structure of methanogens using quantitative real-time PCR (qPCR) and Denaturing gradient gel electrophoresis (DGGE) cloning of the methyl-coenzyme M reductase A (mcrA) gene. For the pairwise sites, the abundance of methanogens in S. alterniflora soils was lower than that of P. australis soils. For the chronosequence patch, the abundance and diversity of methanogens was highest in the soil subjected to two years invasion, in which we detected some rare groups including Methanocellales and Methanococcales. These results indicated a priming effect at the initial invasion stages of S. alterniflora for microorganisms in the soil, which was also supported by the diverse root exudates. The shifts of methanogen communities after S. alterniflora invasion were due to changes in pH, salinity and sulfate. The results indicate that root exudates from S. alterniflora have a priming effect on methanogens in the initial years after invasion, and the predominate methylotrophic groups (Methanosarcinales) may adapt to the availability of diverse substrates and reflects the potential for high methane production after invasion by S. alterniflora.  相似文献   

16.
The intentionally introduced Pontogammarus robustoides is the most successful amphipod invader of Lithuanian inland waters and has become established in large lakes. Its impact on littoral invertebrate communities was studied by comparing similar habitats across lakes that harbour or are devoid of the invader. In habitats where P. robustoides is well established and numerous, it significantly reduces species richness and community diversity. Moderate pontogammarid density in habitats that can sustain the native gammarid Gammarus lacustris, however, revealed no negative impact on diversity metrics. Among the lakes studied, the benthic biomass did not differ in invaded and uninvaded habitats. The biomass of indigenous invertebrates (excluding chironomids, which exhibited high lake-specific biomass variation) was lower in the places with well-established P. robustoides. A detrimental impact was observed upon the native isopod Asellus aquaticus and a negative correlation with most of the higher taxa of native invertebrates. In the invaded lake habitats that favour P. robustoides, a change in community structure and a decrease in diversity up to twofold or more are to be expected.  相似文献   

17.
Invasive plant species can substantially alter the soil fertility of the ecosystems they invade, and in doing so have the potential to reduce the suitability of the soil for native species. Even after removal of the invader these alterations can inhibit the reestablishment of native species. We evaluated the impact of invasion by the leguminous shrub Ulex europaeus on soil properties on Mauna Kea, HI. We also investigated the effect of efforts to remove U. europaeus and restore native ecosystems in the study area; where the efforts included bulldozing the U. europaeus and planting introduced Cryptomeria japonica to compete with regenerating U. europaeus. Mauna Kea supports a strong rainfall gradient and substantial associated variation in soil properties. We use statistical models to extract the effect of invasion and restoration from the influence of rainfall. We found U. europaeus decreases soil pH, calcium content, base saturation, and labile phosphorus. Restoration efforts over an 11-year period restored the soil’s calcium and phosphorus content to levels comparable to those found in uninvaded soils on Mauna Kea, demonstrating that the effects of U. europaeus on soils are reversible.  相似文献   

18.
A pervasive problem in invasion ecology is the limited recovery of native communities following removal of invaders. Little evidence exists on the causes of variation in post-invasion recovery. In a 4-year experiment using 65 sets of matched plots, we imposed an invader removal treatment (with control) on heterogeneous grassland plots invaded or uninvaded by an aggressive recent arrival, Aegilops triuncialis (barb goatgrass). We tested the validity of plot matching using transplants and soil analyses. We analyzed the community-level correlates of invader impacts, removal treatment side effects, and community recovery, each defined in two ways: by compositional similarity to uninvaded plots, and by relative native species richness. Recovery of native species richness in invaded and treated plots was high (approaching 100 %) although recovery of composition was not high (median 71 % Bray–Curtis dissimilarity to uninvaded untreated plots). We measured resilience as the residuals of community recovery in models that controlled for invader impacts and removal treatment side effects. Compositional resilience was highest where the uninvaded communities had the least cover by other invaders in the same functional group as the focal invader. Richness resilience was highest where the uninvaded communities had the lowest native species richness. Our study suggests that the recovery of native species per se may be a more relevant goal than the recovery of the exact pre-invasion species composition of particular sites, particularly in cases where pre-invasion species composition included exotic species other than the focal invader.  相似文献   

19.
Invasive alien plant species such as Chromolaena odorata have negative impacts on biodiversity, ecosystem services and human well-being. Ecological impacts of this shrub are relatively well understood, but its impacts on local livelihoods and perceptions are poorly documented. We mapped C. odorata distribution in eastern Africa (Ethiopia, Kenya, Rwanda, Tanzania and Uganda) and compared perceptions and quantified the impacts of this species across Tanzanian villages with varying degrees of invasion density. Data were collected through 240 household questionnaires. Results indicate that C. odorata is a relatively new invader that already has severe negative impacts and is threatening livelihoods and the environment. Impacts include reductions in native biodiversity and the amount of available forage for livestock, reduced crop and water yields, and impaired mobility. Continued spread will cause additional negative impacts on poor rural communities. Implementation of a biological control programme targeting C. odorata is needed as a cost effective management approach along with other control and restoration measures.  相似文献   

20.
Invasive plants affect soil food webs through various resource inputs including shoot litter, root litter and living root input. The net impact of invasive plants on soil biota has been recognized; however, the relative contributions of different resource input pathways have not been quantified. Through a 2 × 2 × 2 factorial field experiment, a pair of invasive and native plant species (Spartina alterniflora vs. Phragmites australis) was compared to determine the relative impacts of their living roots or shoots and root litter on soil microbial and nematode communities. Living root identity affected bacteria-to-fungi PLFA ratios, abundance of total nematodes, plant-feeding nematodes and omnivorous nematodes. Specifically, the plant-feeding nematodes were 627% less abundant when living roots of invasive S. alterniflora were present than those of native P. australis. Likewise, shoot and root biomass (within soil at 0–10 cm depth) of S. alterniflora was, respectively, 300 and 100% greater than those of P. australis. These findings support the enemy release hypothesis of plant invasion. Root litter identity affected other components of soil microbiota (that is, bacterial-feeding nematodes), which were 34% more abundant in the presence of root litter of P. australis than S. alterniflora. Overall, more variation associated with nematode community structure and function was explained by differences in living roots than root or shoot litter for this pair of plant species sharing a common habitat but contrasting invasion degrees. We conclude that belowground resource input is an important mechanism used by invasive plants to affect ecosystem structure and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号