首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Physical characterization of lumazine proteins from Photobacterium   总被引:1,自引:0,他引:1  
D J O'Kane  J Lee 《Biochemistry》1985,24(6):1484-1488
The physicochemical properties of Photobacterium lumazine proteins have been investigated. The molecular weights obtained by several physical techniques are in good agreement, and the averages are 2% and 8% higher than the minimum molecular weights from amino acid and ligand content. The average molecular weights, sedimentation coefficients, and molecular radii are respectively the following: Photobacterium leiognathi lumazine protein, 21 200 +/- 300, 2.18 S, and 22.9 A; Photobacterium phosphoreum lumazine protein, 21 300 +/- 500, 2.16 S, and 23.0 A. The hydrations of the lumazine proteins, estimated in several ways, indicate less hydration for P. leiognathi than for P. phosphoreum. The frictional ratios corrected for hydration give axial ratios less than 1.3 for both lumazine proteins. These values agree with those obtained by a combination of rotational and translational frictional parameters and elimination of the common hydrated volume terms. There is insufficient area on the exterior surface to accommodate hydration when the lumzine proteins are considered as smooth-surfaced ellipsoids. The required surface area can be accommodated however by surface roughness with a minimum of 30% internal water.  相似文献   

2.
D J O'Kane  V A Karle  J Lee 《Biochemistry》1985,24(6):1461-1467
Bright strains of the marine bioluminescent bacterium Photobacterium leiognathi produce a "lumazine protein" in amounts comparable to that previously found in Photobacterium phosphoreum. New protocols are developed for the purification to homogeneity of the proteins from both species in yields up to 60%. In dimmer strains the amounts of lumazine protein in extracts are less, and also there is an accompanying shift of the bioluminescence spectral maximum to longer wavelength, 492 nm. Both types of lumazine proteins have identical fluorescence spectra, with maxima at 475 nm, so it is suggested that, whereas lumazine protein is the major emitter in bright strains, there is a second emitter also present with a fluorescence maximum at longer wavelength. The two species of lumazine protein have the same 276 nm/visible absorbance ratio, 2.2, but differ in visible maxima: P. phosphoreum, 417 nm; P. leiognathi, 420 nm. For the latter the bound lumazine has epsilon 420 = 10 100 M-1 cm-1, practically the same as in free solution. The two lumazine proteins also differ quantitatively in their effect on the in vitro bioluminescence reaction, i.e., at blue shifting the bioluminescence spectrum or altering the kinetics. The P. phosphoreum lumazine protein is more effective with its homologous luciferase or with P. leiognathi luciferase than is the lumazine protein from P. leiognathi. These differences may have an electrostatic origin.  相似文献   

3.
J Lee  D J O'Kane  A J Visser 《Biochemistry》1985,24(6):1476-1483
The spectral properties are compared for two 6,7-dimethyl-8-ribityllumazine proteins from marine bioluminescent bacteria, one from a psychrophile, Photobacterium phosphoreum, and the other from a thermophile, Photobacterium leiognathi. The visible spectral properties, which are the ones by which the protein performs its biological function of bioluminescence emission, are almost the same for the two proteins: at 2 degrees C and 50 mM Pi, pH 7, fluorescence quantum yield phi F = 0.59 and 0.54, respectively; fluorescence lifetime tau = 14.4 and 14.8 ns, respectively; fluorescence maxima, both 475 nm; absorption maximum, 417 and 420 nm, respectively; circular dichroism minima at around 420 nm, both -41 X 10(3) deg cm2 dmol-1. The ligand binding sites therefore must provide very similar environments, and arguments are presented that the bound ligand is relatively exposed to solvent. The dissociation equilibrium was studied by steady-state fluorescence polarization. The thermophilic protein binds the ligand with Kd (20 degrees C) = 0.016 microM, 10 times more tightly than the other protein [Kd (20 degrees C) = 0.16 microM]. The origin of the binding difference probably resides in differences in secondary structure. The tryptophan fluorescence spectra of the two proteins are different, but more significant is an observation of the decay of the tryptophan emission anisotropy. For the psychrophilic lumazine protein this anisotropy decays to zero in 1 ns, implying that its single tryptophan residue lies in a very "floppy" region of the protein. For the other protein, the anisotropy exhibits both a fast component and a slow one corresponding to rotation of the protein as a whole.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
J Lee  Y Y Wang  B G Gibson 《Biochemistry》1991,30(28):6825-6835
Fluorescence dynamics measurements have been made on the bioluminescence reaction intermediates using Photobacterium leiognathi, Vibrio fischeri, and Vibrio harveyi luciferases, both alone and in mixtures with Photobacterium phosphoreum lumazine protein. Each luciferase produces a "fluorescent transient" intermediate on reaction with the bioluminescence substrates, FMNH2, tetradecanal, and O2, and all have a fluorescence quantum yield about 0.3, with a predominant lifetime around 10 ns. The P. leiognathi luciferase fluorescent transient has a rotational correlation time of 79 ns at 2 degrees C, as expected for the rotational diffusion of a 77-kDa macromolecule. In the presence of lumazine protein however a faster correlation time of about 3 ns predominates. This rapid channel of anisotropy loss is attributed to energy transfer from the flavin intermediate bound on the luciferase to the lumazine ligand, reflects the presence of protein-protein complexation, and is greatest in the case of P. leiognathi, but not at all for V. fischeri. This fact is consistent with the strong influence of lumazine protein on the bioluminescence reaction of P. leiognathi, and not at all with V. fischeri. The rate of energy transfer is of order 10(9) s-1, much greater than the 10(8) s-1 fluorescence rate of the donor. Thus the bioluminescence excitation of lumazine protein could occur by a similar photophysical mechanism of interprotein energy transfer from a chemically excited fluorescent transient donor to the lumazine acceptor.  相似文献   

5.
The equilibrium association of lumazine protein from Photobacterium phosphoreum with luciferases from either P. phosphoreum or an aldehyde-requiring dark mutant of Vibrio harveyi is measured from changes of the rotational correlation time which is derived from the decay of the lumazine ligand's fluorescence anisotropy. The rotational correlation time of lumazine protein is 23 ns (2 degrees C, 0.25 M Pi) and is increased on addition of luciferase due to the formation of a higher molecular weight complex. The V. harveyi luciferase exhibits full competence for the association and a 1:1 stoichiometry with a Kd in the range 40-90 microM. At lower ionic strength (0.05 M Pi), the Kd increases but is reduced again by the addition of dodecanol or dimyristoyllecithin. In contrast, tetradecanal, a substrate for the bioluminescence reaction, exerts no influence on the association. The equilibration rate is found to be too slow and for both luciferases the Kd values are too high for the interaction of the native proteins to account quantitatively for the spectral shifting of the bioluminescence by lumazine protein.  相似文献   

6.
Time-resolved fluorescence on lumazine protein from Photobacterium phosphoreum was performed with synchrotron radiation as a source of continuously tunable excitation. The experiments yielded structural and dynamic details from which two aspects became apparent. From fluorescence anisotropy decay monitoring of lumazine fluorescence with different excitation wavelengths, the average correlation times were shown to change, which must indicate the presence of anisotropic motion of the protein. A similar study with 7-oxolumazine as the fluorescent ligand led to comparable results. The other remarkable observation dealt with the buildup of acceptor fluorescence, also observed with 7-oxolumazine although much less pronounced, which is caused by the finite energy transfer process between the single donor tryptophan and the energy accepting lumazine derivatives. Global analytical approaches in data analysis were used to yield realistic correlation times and reciprocal transfer rate constants. It was found that the tryptophan residue has a large motional freedom as also reported previously for this protein and for the related protein from P. leiognathi (Lee et al. 1985; Kulinski et al. 1987). The average distance between the tryptophan residue and the ligand donor-acceptor couple has been determined to be 2.7 nm for the same donor and two different acceptors.  相似文献   

7.
6,7-Dimethyllumazine derivatives, substituted at the 8-position with aldityls or monohydroxyalkyl groups, have been examined for their binding ability to lumazine apo-protein from two strains of Photobacterium phosphoreum using fluorescence dynamics techniques. On the protein the lumazine has a nearly monoexponential decay of fluorescence with lifetime 13.8 ns (20 degrees C). In free solution the lifetime is 9.6 ns. The concentration of free and bound lumazine in an equilibrium mixture can be recovered readily by analysis of the fluorescence decay. Only the aldityl derivatives D-xylityl and 3'-deoxy-D-ribityl, having stereoconfigurations at the 2' and 4' positions identical to the natural ligand, 8-(1'-D-ribityl), show comparable dissociation constants (0.3 microM, 20 degrees C, pH 7.0). D-Erythrityl and L-arabityl have dissociation constants of 1-2 microM. All other ligands show no interaction at all or have dissociation constants in the range 6-80 microM, which can still be determined semi-quantitatively using the fluorescence decay technique. In the case of these very weakly bound ligands, unambiguous detection of bound ligand can be shown by a long correlation time (23 ns, 2 degrees C) for the fluorescence anisotropy decay. Examination of the bound D-xylityl compound's fluorescence anisotropy decay at high time resolution (< 100 ps) shows rigid association, i.e. no mobility independent of the macromolecule. All bound ligands appear to be similarly positioned in the binding site. The influence of the stereoconfiguration at the 8-position found for lumazine protein parallels that previously observed for the enzyme riboflavin synthase, where the lumazines are substrates or inhibitors. This is consistent with the finding of significant sequence similarity between these proteins. The binding rigidity may have implications for the mechanism of the enzyme.  相似文献   

8.
The experimental and analytical protocols required for obtaining rotational correlation times of biological macromolecules from fluorescence anisotropy decay measurements are described. As an example, the lumazine protein from Photobacterium leiognathi was used. This stable protein (Mr 21 200) contains the noncovalently bound, natural fluorescent marker 6,7-dimethyl-8-ribityllumazine, which has in the bound state a long fluorescence lifetime (tau = 14 ns). Shortening of the fluorescence lifetime to 2.6 ns at room temperature was achieved by addition of the collisional fluorescence quencher potassium iodide. The shortening of tau had virtually no effect on the rotational correlation time of the lumazine protein (phi = 9.4 ns, 19 degrees C). The ability to measure biexponential anisotropy decay was tested by the addition of Photobacterium luciferase (Mr 80 000), which forms an equilibrium complex with lumazine protein. Under the experimental conditions used (2 degrees C) the biexponential anisotropy decay can best be described with correlation times of 20 and 60 ns, representing the uncomplexed and luciferase-associated lumazine proteins, respectively. The unbound 6,7-dimethyl-8-ribityllumazine itself (tau = 9 ns) was used as a model compound for determining correlation times in the picosecond time range. In the latter case rigorous deconvolution from the excitation profile was required to recover the correlation time, which was shorter (100-200 ps) than the measured laser excitation pulse width (500 ps).  相似文献   

9.
Spectroscopic techniques have been applied to investigate the conformation, local structure, and dynamic properties of the apoprotein of the lumazine protein from Photobacterium leiognathi and the holoprotein reconstituted with either the natural ligand 6,7-dimethyl-8-ribityllumazine or the closely related analogues riboflavin and 6-methyl-7-oxo-8-ribityllumazine (7-oxolumazine). The analogues are bound similarly to the natural prosthetic group. They exhibit similar shifts on binding in their absorption and fluorescence spectra, single-exponential fluorescence decays, and no independent motion from the protein as evident from a long-lived anisotropy decay (single-exponential phi = 10 ns, 20 degrees C) and high initial anisotropy. Steady-state anisotropy measurements result in similar KD's (40 nM, 20 degrees C, 50 mM inorganic phosphate) for all ligands. Circular dichroism in the far-UV region (190-250 nm) indicates no change in secondary structure on binding to the apoprotein. In the spectral region of 250-310 nm relatively large changes occur, indicating changes in the environment of the tyrosine and tryptophan residues. The single tryptophan residue shows a three-exponential decay of its fluorescence in both the apoprotein and the holoprotein. Radiationless energy transfer also occurs from the tryptophan to the bound ligand, especially evident with 7-oxolumazine. We have designed a new method for evaluation of the rate constant of energy transfer by measuring the (picosecond) rise time of the acceptor fluorescence. The anisotropy decay of the tryptophan residue shows two correlation times, a short one (phi approximately equal to 0.4 ns) representing rapid but restriced oscillation of this residue and a longer one (phi 2 = 5-7 ns, 20 degrees C) representing the motion of a larger segment of the protein.  相似文献   

10.
The interaction between the prosthetic group 6,7-dimethyl-8-(1'-D-ribityl)lumazine and the lumazine apoproteins from two marine bioluminescent bacteria, one from a relatively thermophilic species, Photobacterium leiognathi, and the other from a psychrophilic species, Photobacterium phosphoreum, was studied by 13C and 15N NMR using various selectively enriched derivatives. It is shown that the electron distribution in the protein-bound 6,7-dimethyl-8-ribityllumazine differs from that of free 6,7-dimethyl-8-ribityllumazine in buffer. The 13C and 15N chemical shifts indicate that the protein-bound 6,7-dimethyl-8-ribityllumazine is embedded in a polar environment and that the ring system is strongly polarized. It is concluded that the two carbonyl groups play an important role in the polarization of the molecule. The N(3)-H group is not accessible to bulk solvent. The N(8) atom is sp2 hybridized and has delta+ character. Nuclear Overhauser effect studies indicate that the 6,7-dimethyl-8-ribityllumazine ring is rigidly bound with no internal mobility. The NMR results indicate that the interaction between the ring system and the two apoproteins is almost the same.  相似文献   

11.
J Lee  D J O'Kane  B G Gibson 《Biochemistry》1989,28(10):4263-4271
The mechanism of the shifting of the bioluminescence spectrum from the reaction of bacterial luciferase by lumazine protein is investigated by methods of fluorescence dynamics. A metastable intermediate is produced on reaction of Vibrio harveyi luciferase with FMNH2 and O2. It has an absorption maximum at 374 nm and a rotational correlation time (phi) derived from the decay of its fluorescence (maximum 500 nm) anisotropy of 90 ns (2 degrees C). Lumazine protein from Photobacterium phosphoreum has an absorption maximum at 417 nm and a fluorescence maximum at 475 nm. Lumazine protein forms a protein-protein complex with luciferase, and the complex has a phi of approximately 100 ns. A mixture of lumazine protein and the intermediate would be expected to have an average correlation time (phi av) around 100 ns, but instead, the result is anomalous. The phi av is much lower and is also wavelength dependent. For excitation at 375 nm, which is mainly absorbed in the flavin chromophore of the intermediate, phi av = 25 ns, but at 415 nm, mainly absorbed by the lumazine derivative ligand of lumazine protein, phi av approximately 50 ns. It is proposed that protein-protein complexation occurs between lumazine protein and the luciferase intermediate and that in this complex energy transfer from the flavin to the lumazine is the predominant channel of anisotropy loss. A distance of 20 A between the donor and acceptor is calculated. In the bioluminescence reaction of intermediate with tetradecanal, a fluorescent transient species is produced which is the bioluminescence emitter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
13.
Ag-NPA-1 (AgFABP), a 15 kDa lipid binding protein (LBP) from Ascaridia galli, is a member of the nematode polyprotein allergen/antigen (NPA) family. Spectroscopic analysis shows that Ag-NPA-1 is a highly ordered, alpha-helical protein and that ligand binding slightly increases the ordered secondary structure content. The conserved, single Trp residue (Trp17) and three Tyr residues determine the fluorescence properties of Ag-NPA-1. Analysis of the efficiency of the energy transfer between these chromophores shows a high degree of Tyr-Trp dipole-dipole coupling. Binding of fatty acids and retinol was accompanied by enhancement of the Trp emission, which allowed calculation of the affinity constants of the binary complexes. The distance between the single Trp of Ag-NPA-1 and the fluorescent fatty acid analogue 11-[(5-dimethylaminonaphthalene-1- sulfonyl)amino]undecanoic acid (DAUDA) from the protein binding site is 1.41 nm as estimated by fluorescence resonance energy transfer. A chemical modification of the Cys residues of Ag-NPA-1 (Cys66 and Cys122) with the thiol reactive probes 5-({[(2-iodoacetyl)amino]ethyl}amino) naphthalene-1-sulfonic acid (IAEDANS) and N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD), followed by MALDI-TOF analysis showed that only Cys66 was labeled. The observed similar affinities for fatty acids of the modified and native Ag-NPA-1 suggest that Cys66 is not a part of the protein binding pocket but is located close to it. Ag-NPA-1 is one of the most abundant proteins in A. galli and it is distributed extracellularly mainly as shown by immunohistology and immunogold electron microscopy. This suggests that Ag-NPA-1 plays an important role in the transport of fatty acids and retinoids.  相似文献   

14.
Four genes immediately downstream of luxG in the Photobacterium phosphoreum lux operon (ribEBHA) have been sequenced and shown to be involved in riboflavin synthesis. Sequence analyses and complementation of Escherichia coli riboflavin auxotrophs showed that the gene products of ribB and ribA are 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthetase and GTP cyclohydrolase II, respectively. By expression of P. phosphoreum ribE in E. coli using the bacteriophage T7 promoter-RNA polymerase system, ribE was shown to code for riboflavin synthetase, which catalyzes the conversion of lumazine to riboflavin. Increased thermal stability of RibE on expression with RibH indicated that ribH coded for lumazine synthetase. The organization of the rib genes in P. phosphoreum is quite distinct, with ribB and ribA being linked but separated by ribH, whereas in E. coli, they are unlinked and in Bacillus subtilis, RibB and RibA functions are coded by a single gene.  相似文献   

15.
Structure and properties of luciferase from Photobacterium phosphoreum   总被引:1,自引:0,他引:1  
The nucleotide sequences of the luxA and luxB genes coding for the alpha and beta subunits, respectively, of luciferase from Photobacterium phosphoreum have been determined. The predicted amino acid sequences of the alpha and beta subunits were shown to be significantly different from other bacterial luciferases with 62 to 88% identity with the alpha subunits and 47 to 71% identity with the beta subunits of other species. Expression of the different luciferases appear to correlate with the number of modulator codons. Kinetic properties of P. phosphoreum luciferase were shown to reflect the bacterium's natural cold temperature habitat.  相似文献   

16.
Lumazine protein is believed to serve as an optical transponder in bioluminescence emission by certain marine bacteria. Sequence arguments suggest that the protein comprises two similarly folded riboflavin synthase-type domains, but earlier work also suggested that only one domain binds 6,7-dimethyl-8-ribityllumazine (DMRL). We show that the replacement of serine-48 or threonine-50 in the N-terminal domain of lumazine protein of Photobacterium leiognathi modulates the absorbance and fluorescence properties of bound DMRL or riboflavin. Moreover, the replacement of these amino acids is accompanied by reduced ligand affinity. Replacement of serine-48 by tryptophan shifts the (13)C NMR signal of the 6-methyl group in bound DMRL upfield by 2.9 ppm as compared to the wild-type protein complex. Replacement of threonine-50 causes a downfield shift of approximately 20 ppm for the (15)N NMR signal of N-5, as well as an upfield shift of 3 ppm for the (13)C NMR signal of C-7 in bound DMRL, respectively. The replacement of the topologically equivalent serine-144 and proline-146 in the C-terminal domain had no significant impact on optical properties, chemical shifts and apparent binding constants of bound DMRL. These data show that the N-terminal domain is the unique site for ligand binding in lumazine protein.  相似文献   

17.
The intensely fluorescent lumazine protein is believed to be involved in the bioluminescence of certain marine bacteria. The sequence of the catalytically inactive protein resembles that of the enzyme riboflavin synthase. Its non-covalently bound fluorophore, 6,7-dimethyl-8-ribityllumazine, is the substrate of this enzyme and also the committed precursor of vitamin B2. An extensive crystallization screen was performed using numerous single-site mutants of the lumazine protein from Photobacterium leiognathi in complex with its fluorophore and with riboflavin, respectively. Only the L49N mutant in complex with riboflavin yielded suitable crystals, allowing X-ray structure determination to a resolution of 2.5 Å. The monomeric protein folds into two closely similar domains that are structurally related by pseudo-C2 symmetry, whereby the entire domain topology resembles that of riboflavin synthase. Riboflavin is bound to a shallow cavity in the N-terminal domain of lumazine protein, whereas the C-terminal domain lacks a ligand.  相似文献   

18.
Nucleotide sequence of the Photobacterium leiognathi DNA containing genes of alpha and beta subunits of luciferase has been determined. We also deduced amino acid sequence and molecular mass of luciferase and localized luciferase genes in the sequenced DNA fragment.  相似文献   

19.
20.
The complete amino acid sequence of iron-superoxide dismutase from Photobacterium leiognathi was determined. The sequence was deduced following characterization of the peptides obtained from tryptic, chymotryptic, and Staphylococcus aureus V-8 protease digests of the apoprotein. The amino acid sequence listed below is made up of 193 residues. It is the first complete sequence to be determined for an iron-superoxide dismutase. The iron-superoxide dismutase shows the same order of homology with the manganese-superoxide dismutases as these enzymes show among themselves. No homology was observed with the copper/zinc-containing class of superoxide dismutases. Ala-Phe-Glu-Leu-Pro-Ala-Leu-Pro-Phe-Ala-Met-Asn-Ala-Leu-Glu-Pro-His-Ile- Ser-Gln-Glu-Thr-Leu-Glu-Tyr-His-Tyr-Gly-Lys-His-His-Asn-Thr-Tyr-Val-Val- Lys-Leu-Asn-Gly-Leu-Val-Glu-Gly-Thr-Glu-Leu-Ala-Glu-Lys-Ser-Leu-Glu-Glu- Ile-Ile-Lys-Thr-Ser-Thr-Gly-Gly-Val-Phe-Asn-Asn-Ala-Ala-Gln-Val-Trp-Asn- His-Thr-Phe-Tyr-Trp-Asn-Cys-Leu-Ala-Pro-Asn-Ala-Gly-Gly-Glu-Pro-Thr-Gly- Glu-Val-Ala-Ala-Ala-Ile-Glu-Lys-Ala-Phe-Gly-Ser-Phe-Ala-Glu-Phe-Lys-Ala- Lys-Phe-Thr-Asp-Ser-Ala-Ile-Asn-Asn-Phe-Gly-Ser-Ser-Trp-Thr-Trp-Leu-Val- Lys-Asn-Ala-Asn-Gly-Ser-Leu-Ala-Ile-Val-Asn-Thr-Ser-Asn-Ala-Gly-Cys-Pro- Ile-Thr-Glu-Glu-Gly-Val-Thr-Pro-Leu-Leu-Thr-Val-Asp-Leu-Trp-Glu-His-Ala- Tyr-Tyr-Ile-Asp-Tyr-Arg-Asn-Leu-Arg-Pro-Ser-Tyr-Met-Asp-Gly-Phe-Trp-Ala- Leu-Val-Asn-Trp-Asp-Phe-Val-Ser-Lys-Asn-Leu-Ala-Ala.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号