首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Maximum cellulase production was sought by comparing the activities of the cellulases produced by differentTrichoderma reesei strains andAspergillus niger. Trichoderma reesei Rut-C30 showed higher cellulase activity than otherTrichoderma reesei strains andAspergillus niger that was isolated from soil. By optimizing the cultivation condition during shake flask culture, higher cellulase production could be achieved. The FP (filter paper) activity of 3.7 U/ml and CMCase (Carboxymethylcellulase) activity of 60 U/ml were obtained from shake flask culture. When it was grown in 2.5L fermentor, where pH and DO levels are controlled, the Enzyme activities were 133.35 U/ml (CMCase) and 11.67 U./ml (FP), respectively. Ammonium sulfate precipitation method was used to recover enzymes from fermentation broth. The dried cellulase powder showed 3074.9 U/g of CMCase activity and 166.7 U/g of FP activity with 83.5% CMCase recovery.  相似文献   

2.
The contribution of three exoglucanases from a commercial Trichoderma viride cellulase to transcellobiosylation, and the tolerance of these enzymes to acetonitrile co-solvent were studied. The enzymatic reactions were performed with p-nitrophenyl-β-d-cellobioside as the starting substrate. Among these enzymes, the least anionic exoglucanase (Exo I) showed the highest transcellobiosylation activity and acetonitrile tolerance. Exo I retained considerable activity even in 30% MeCN/water and produced p-nitrophenyl-β-d-cellotetraoside at about 1.5% conversion from the initial substrate in 30% MeCN/water. The residual activity of Exo I after incubation in MeCN/water mixture was almost identical to that of the crude cellulase and a considerable amount of the transcellobiosylation properties of the crude cellulase seemed to be attributable to this Exo I component.  相似文献   

3.
Sugar cane bagasse was subjected to a mixed culture, solid substrate fermentation with Trichoderma reesei QM9414 and Aspergillus terreus SUK-1 to produce cellulase and reducing sugars. The highest cellulase activity and reducing sugar amount were obtained in mixed culture. The percentage of substrate degradation achieved employing mixed culture was 26% compared to 50% using separate cultures of the two molds. This suggests that the synergism of enzymes in mixed culture solid substrate fermentation have lower synergism than in pure culture.  相似文献   

4.

Background  

Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be potential cellulase producers. In this study, we aimed to reveal the advantages and disadvantages of the cellulase enzymes derived from these fungi.  相似文献   

5.
The effects of ethanol and Trichoderma reesei cellulase on the saccharification and fermentation processes as well as the tolerance of the cellulase complex for ethanol have been investigated. The studies were conducted with respect to their usefulness in the process of simulataneous saccharification and fermentation of cellulose to ethanol. The following results were obtained. (1) Fermentative activity of Kluyveromyces fragilis yeasts was gradually depressed with increasing intial ethanol concentrations and temperature of fermentation between 35–46°C. (2) Crude cellulase preparation introduced to the culture broth to a final enzyme activity of 0.5 to 2.0 FPU/ml had not distinct effect on the biomass production, ethanol yield, and glucose uptake by yeasts in 48 h fermentation at 43°C. On the other hand, only a negligible decrease in the cellulase complex activity was observed during fermentation process. (3) Saccharification of wheat straw was inhibited by at least 1% w/v ethanol. (4) The enzymes of the cellulase system showed a high stability to exposure to ethanol for 48 h at 43°C.  相似文献   

6.
Protoplasts from Trichoderma reesei were immobilized in alginate and induced to produce cellulase (endoglucanase and β-glucosidase) enzymes. The specific activities of the synthesized enzymes were higher in immobilized protoplasts than in both free and immobilized mycelia. Immobilized protoplasts show an enhanced rate of exocellular β-glucosidase production compared to intact mycelia due to the lack of cell wall. The ratio of the exocellular/intracellular β-glucosidase was 5.9 for immobilized protoplasts and 0.32 for free mycelia.  相似文献   

7.
The combined effect of pH and temperature on carboxymethyl cellulase from two intergeneric fusants (M 14 and M 62) of Trichoderma reesei QM 9414/Saccharomyces cerevisiae NCIM 3288 was studied using response surface methodology. A central composite design for two variables was employed for the optimization studies. This study was compared with similar studies carried out with Trichoderma reesei QM 9414. The optimal pH and temperature for the enzymes derived from these organisms were: for the fusant M 14—pH 5.7 and 41.7°C, for the fusant M 62—pH 5.3 and 43°C, and for Trichoderma reesei QM 9414—pH 4.31 and 38.3°C. Received 5 May 1997/ Accepted in revised form 17 July 1998  相似文献   

8.
Over 100 strains of wood-rotting fungi were compared for their ability to degrade wood blocks. Some of these strains were then assayed for extracellular cellulase [1,4-(1,3;1,4)-β- -glucan 4-glucanohydrolase, EC 3.2.1.4] activity using a variety of different solid media containing carboxymethyl cellulose or acid swollen cellulose. The diameter of clearing on these plates gave an approximate indication of the order of cellulase activities obtained from culture filtrates of these strains. Trichoderma strains grown on Vogels medium gave the highest cellulase yields. The cellulase enzyme production of T. reesei C30 and QM9414 was compared with that of eight other Trichoderma strains. Trichoderma strain E58 had comparable endoglucanase and filter paper activities with the mutant strains while the β- -glucosidase [β- -glucoside glucohydrolase, EC 3.2.1.21] activity was approximately six to nine times greater.  相似文献   

9.
Liu HQ  Feng Y  Zhao DQ  Jiang JX 《Biodegradation》2012,23(3):465-472
Four fungal strains—Trichoderma viride, Aspergillus niger, Trichoderma koningii, and Trichoderma reesei—were selected for cellulase production using furfural residues and microcrystalline cellulose (MCC) as the substrates. The filter paper activity (FPA) of the supernatant from each fungus was measured, and the performance of the enzymes from different fungal strains was compared. Moreover, the individual activities of the three components of the cellulase system, i.e., β-glucosidase, endoglucanase, and exoglucanase were evaluated. T. koningii showed the highest activity (27.81 FPU/ml) on furfural residues, while T. viride showed an activity of 21.61 FPU/ml on MCC. The FPA of the crude enzyme supernatant from T. koningii was 30% higher on furfural residues than on MCC. T. koningii and T. viride exhibited high stability and productivity and were chosen for cellulases production. The crystallinity index (CrI) of the furfural residues varied after digested by the fungi. The results indicated differences in the functioning of the cellulase system from each fungus. In the case of T. koningii, T. reesei and T. viride, furfural residues supported a better environment for cellulase production than MCC. Moreover, the CrI of the furfural residues decreased, indicating that this material was largely digested by the fungi. Thus, our results suggest that it may be possible to use the cellulases produced from these fungi for the simultaneous saccharification and fermentation of lignocellulosic materials in ethanol production.  相似文献   

10.
Lentinula edodes (Berk.) Pegler was cultivated in sterilized or pasteurized wheat straw both with and without inoculation with Trichoderma sp. Enhancements of -mannosidase and laccase activities and lowering of Mn-dependent peroxidase activity were observed seven days after inoculation in substrates inoculated with Trichoderma sp. These enzymes were not produced by Trichoderma sp. Most of the polysaccharidase activities were higher in substrates with Trichoderma sp. than in absence of Trichoderma sp. The area of the substrate contaminated with T. harzianum significantly correlated with cellulase, laccase and Mn-dependent peroxidase activities measured in the substrate. The increase of cellulase activity was due to enzymes produced by Trichoderma sp. and the decrease of Mn-dependent peroxidase activity was due to diminished growth of L. edodes. The stimulation of laccase activity was linked with the formation of brown lines (oxidation of polyphenols) at the contact between the mycelia of the two antagonists.  相似文献   

11.
Various used paper materials have been exposed to the action of cellulases from Penicillium funiculosum, Trichoderma reesei, Trichoderma viride and Aspergillus niger. A 2 h incubation period showed cellulase from T. viride the most active except for office paper that was maximally degraded by A. niger cellulase. Cellulase mixtures increased saccharification while sequential treatment with cellulases from T. reesei and P. funiculosum increased biodegradation at values between 15% and 190%. The maximum increase of saccharification (190%) was obtained when T. reesei cellulase initiated the sequential treatment of newspaper relative to the sole action of P. funiculosum cellulase on this non-pretreated and pretreated material.  相似文献   

12.
A laboratory scale study to evaluate the potentiality of filamentous fungi for the production of cellulolytic enzymes using palm oil mill effluent (POME) as a basal medium was initiated. A total of 25 filamentous fungi in which 16 filamentous fungi were isolated and purified from oil palm industrial residues and 9 strains from laboratory stock were screened using POME with 1% total suspended solids. Trichoderma reesei RUT C-30 was identified as a potential strain for cellulolytic enzyme production as compared to other genera of Aspergillus, Penicillum, Rhizopus, Phanerochaete, Trichoderma and basidiomycete groups. The results showed that T. reesei RUT C-30 gave the highest filter paper cellulase and carboxy methyl cellulase activity of 0.917 and 2.51 U/ml respectively at day 5 of fermentation. Other parameters such as growth formation, pH, filterability and total biosolids were observed to evaluate the bioconversion process.  相似文献   

13.
Two types of cellulase (Robillarda sp. Y-20 and Trichoderma reesei) were immobilized on Aminosilica-1 by physical adsorption. Enzymes were quickly immobilized and stable on the support. Specific activities of two types of immobilized cellulase were 0.24 U/mg support with Robillarda cellulase and 0.15 U/mg support with the Trichoderma one as CMCase. The pH-activity curves of both cellulase shifted slightly to lower pH on immobilization. Both immobilized cellulases showed essentially the same pH stabilities as their free forms. However, the immobilized enzymes were less stable than the free forms at temperatures higher than 50°C.  相似文献   

14.
The extracellular enzymes of seven fungal strains isolated from koala faeces have been comprehensively characterised for the first time, revealing potential for biotechnological applications. The fungal isolates were grown in a hydrolase-inducing liquid medium and the supernatants were analysed using enzyme assays and zymogram gels. Temperature and pH profiles were established for xylanase (EC 3.2.1.8 endo-1,4-β-xylanase), mannanase (EC 3.2.1.78 mannan endo-1,4-β-mannosidase), endoglucanase (EC 3.2.1.4 cellulase), β-glucosidase (EC 3.2.1.21 β-glucosidase), amylase (EC 3.2.1.1 α-amylase), lipase (EC 3.1.1.3 triacylglycerol lipase) and protease (EC 3.4 peptidase) activities. Comparisons were made to the high-secreting hypercellulolytic mutant strain Trichoderma reesei RUT-C30 and the wild-type T. reesei QM6a. The isolates from koala faeces Gelasinospora cratophora A10 and Trichoderma atroviride A2 were good secretors of total protein and heat-tolerant enzymes. Doratomyces stemonitis C8 secreted hemicellulase(s), endoglucanase(s) and β-glucosidase(s) with neutral to alkaline pH optimums. A cold-tolerant lipase was secreted by Mariannaea camptospora A11. The characteristics displayed by the enzymes are highly sought after for industrial processes such as the manufacture of paper, detergents and food products. Furthermore, the enzymes were produced at good starting levels that could be increased further by strain improvement programs.  相似文献   

15.
The cellulase production by Trichoderma viride, cultivated on different substrates, namely steam-pretreated Lespedeza, filter paper, microcrystalline cellulose (MCC) or carboxymethyl cellulose (CMC), was studied. Different cellulase systems were secreted when cultivated on different substrates. The cellulolytic enzyme from steam-pretreated Lespedeza medium performed the highest filter paper activity, exoglucanase and endoglucanase activities, while the highest β-glucosidase activity was obtained from the enzyme produced on filter paper medium. The hydrolytic potential of the enzymes produced from different media was evaluated on steam-pretreated Lespedeza. The cellulase from steam-pretreated Lespedeza was found to have the most efficient hydrolysis capability to this specific substrate. The molecular weights of the cellulases produced on steam-pretreated Lespedeza, filter paper and MCC media were 33, 37 and 40 kDa, respectively, and the cellulase from CMC medium had molecular weights of 20 and 43 kDa. The degree of polymerization, crystallinity index and micro structure scanned by the scanning electron microscopy of degraded steam-pretreated Lespedeza residues were also studied.  相似文献   

16.
Summary Twenty-six yeast strains, representative of different yeast genera, were tested for their sensitivity to crude extracellular cellulolytic enzyme complexes obtained from the fungusTrichoderma reesei QM 9414 and its mutants M 6 and MHC 22 (Microcrystalline cellulose was the sole carbon source.) Practically all the yeast strains tested were found to be sensitive, exhibiting signs of cellwall weakening and lysis during prolonged incubation with the emzymes fromTrichoderma. Under growth conditions, the effect of cellulolytic enzymes on yeast cells and their growth rates was much less pronounced. However, at increased cellulase concentrations (5 mg/ml) in the growth medium, lysis of stationary phase yeast cells was observed.  相似文献   

17.
The possible role of hydrogen peroxide in brown-rot decay was investigated by studying the effects of pretreatment of spruce wood and microcrystalline Avicel cellulose with H2O2 and Fe2+ (Fenton's reagent) on the subsequent enzymatic hydrolysis of the substrates. A crude endoglucanase preparation from the brown-rot fungus Poria placenta, a purified endoglucanase from Trichoderma reesei and a commercial Trichoderma cellulase were used as enzymes. Avicel cellulose and spruce dust were depolymerized in the H2O2/Fe2+ treatment. Mainly hemicelluloses were lost in the treatment of spruce dust. The effect of the pretreatment on subsequent enzymatic hydrolysis was found to depend on the nature of the substrate and the enzyme preparation used. Pretreatment with H2O2/Fe2+ clearly increased the amount of enzymatic hydrolysis of spruce dust with both the endoglucanases and the commercial cellulase. In all cases the amount of hydrolysis was increased about threefold. The hydrolysis of Avicel with the endoglucanases was also enhanced, whereas the hydrolysis with the commercial cellulase was decreased. Received: 23 December 1996 / Received revision: 17 April 1997 / Accepted: 19 April 1997  相似文献   

18.
Cotton fabrics were treated with three different Trichoderma reesei cellulase preparations (total crude – TC, endoglucanase enriched – EG-rich, cellobiohydrolase enriched – CBH-rich) using mechanical agitation to produce cotton powder. Desorption of cellulase enzymes from the cotton powder was then performed by washing with buffer. After 3 washings most of the protein was desorbed from the cotton powder and the amount of sugars released in the latter washings was negligible. TC and CBH-rich preparations produced a finer cellulose powder than EGs. The desorption process caused a decrease in degree of polymerisation (DP) specially for the cotton treated with EGs and a marked increase in polydispersity (P d) for all preparations.  相似文献   

19.
The filamentous fungus Trichoderma reesei is a potent cellulase producer and the best-studied cellulolytic fungus. A lot of investigations not only on glycoside hydrolases produced by T. reesei, but also on the machinery controlling gene expression of these enzyme have made this fungus a model organism for cellulolytic fungi. We have investigated the T. reesei strain including mutants developed in Japan in detail to understand the molecular mechanisms that control the cellulase gene expression, the biochemical and morphological aspects that could favor this phenotype, and have attempted to generate novel strains that may be appropriate for industrial use. Subsequently, we developed recombinant strains by combination of these insights and the heterologous-efficient saccharifing enzymes. Resulting enzyme preparations were highly effective for saccharification of various biomass. In this review, we present some of the salient findings from the recent biochemical, morphological, and molecular analyses of this remarkable cellulase hyper-producing fungus.  相似文献   

20.
A wild strain of Bacillus pumilus was investigated for cellulase production, and putative mutants of this strain were screened for catabolite repression insensitivity after chemical mutagenesis using ethyl methanesulphonate (EMS) as a mutagenic agent. Out of four classes of mutants studied and classified according to their cellulase induction rate and level of cellulase production in the presence of high concentrations of glucose (2.6%[w/v]), classes III and IV exhibited cellulase production up to 6.2 mg cellulase and 11.4 mg cellulase per gram of dry cell mass respectively. These mutants were referred to as catabolite repression-insensitive when compared to the wild strain which exhibited a total repression of cellulase synthesis under the same conditions. How EMS triggered the catabolite repression insensitivity in these mutants was not established. However this mutation brought out new strains of cellulase hyperproducers (mutants 6 and 11) in the presence of glucose when compared to other cellulase producers such as Aspergillus terreus, A. nidulans and Trichoderma reesei, which exhibited catabolite repression of cellulase synthesis. These mutants were selected as the most promising candidates for cellulase synthesis even at high glucose concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号