首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solubilization of Kainic Acid Binding Sites from Rat Brain   总被引:7,自引:5,他引:2  
Kainic acid binding sites were solubilized from rat brain using a combination of Triton X-100 and digitonin. The highest percentage of solubilized binding sites (45%) was obtained by treating brain membranes with 1% Triton-X-100 and 0.2% digitonin in 0.5 M potassium phosphate containing 20% glycerol. The solubilized binding sites were stable and amenable to analysis by gel filtration and lectin affinity chromatography. Computer assisted analyses demonstrated that the solubilized sites displayed high- and low-affinity binding constants similar to the membrane-bound sites. Competition experiments further supported the pharmacological similarities of the solubilized and membrane-bound sites. Gel filtration chromatography of the solubilized binding site indicated that the detergent-bound complex had a Stokes radius of 82.7 A. The [3H]kainic acid binding site appears to be glycosylated based on its capability to bind to lectins. The lectin, wheatgerm agglutinin, proved to be a potentially useful tool for characterization because the solubilized binding sites were bound and eluted in relatively high yield.  相似文献   

2.
The binding of [3H]kainate to goldfish brain membrane fragments was investigated. Scatchard analysis revealed a single class of binding sites in Tris-HCl buffer with a Kd of 352 nM and a Bmax of 3.1 pmol/mg wet weight. In Ringer's saline, [3H]kainate bound with a Bmax of 1.8 pmol/mg wet weight and a Kd of 214 nM. Binding in Ringer's saline, but not Tris-HCl buffer, displayed positive cooperativity with a Hill coefficient of 1.15. The [3H]kainate binding sites were solubilized in Ringer's saline using the nonionic detergent n-octyl-beta-D-glucopyranoside. Approximately 30-50% of the total number of membrane-bound binding sites were recovered on solubilization. The Kd of [3H]kainate for solubilized binding sites was approximately 200 nM. The rank order of potency for glutamatergic ligands at inhibiting [3H]kainate binding was identical and the competitive ligands had similar Ki values in both membranes and solubilized extracts. In membrane preparations, [3H]kainate displayed a two component off-rate with koff values of 0.97 min-1 and 0.07 min-1; in solubilized extracts, however, only a single off-rate (koff = 0.52 min-1) was observed. The hydrodynamic properties of n-octyl-beta-D-glucopyranoside solubilized [3H]kainate binding sites was investigated by sucrose density centrifugation. A single well defined peak was detected which yielded a sedimentation coefficient of 8.3 S. The results presented in this report suggest that goldfish brain may provide an ideal system in which to study kainate receptor biochemistry.  相似文献   

3.
Solubilization of rat brain alpha 1-adrenoceptors was performed by treatment with 6 mM CHAPS (3-[(3-cholamidopropyl)dimethylammonio] - 1 - propanesulfonate). The alpha 1-adrenoceptor antagonist [3H]prazosin was shown to bind reversibly and specifically to the soluble extract obtained after centrifugation at 150,000 X g for 1 h. Separation of the soluble [3H]prazosin-bound complexes was performed by the polyethylene glycol precipitation technique followed by filtration. A Scatchard plot of the concentration-dependent binding curve showed only one class of binding sites, with a high affinity for [3H]prazosin. Affinity of the solubilized receptors for the ligand increased as the CHAPS concentration in the assay medium decreased; the number of binding sites remained unchanged (approximately equal to 70 fmol/mg protein). This corresponds to a 30% recovery of original membrane sites. The solubilized receptors presented the same characteristics of specificity and stereospecificity as membrane alpha 1-adrenoceptors. Moreover, 150 mM NaCl was found to modulate the affinity of epinephrine for the [3H]prazosin-bound soluble complex, as previously described for membrane preparations. Thus, CHAPS appears to be a suitable detergent for solubilizing rat brain alpha 1-adrenoceptors and preserving their functional activities.  相似文献   

4.
Active opioid receptors were solubilized from frog (Rana esculenta) brain membrane fractions by the use of 1% digitonin. It was found by kinetic as well as by equilibrium measurements that both the membrane and the solubilized fractions contain two binding sites. For the membrane preparations, KD values were 0.9 and 3.6 nM, and Bmax values were 293 and 734 fmol/mg protein. For the solubilized preparations, KD values were 0.4 and 2.6 nM, an Bmax values were 35 and 266 fmol/mg protein. The stereospecificity of the binding did not change during solubilization. Both the membrane-bound and the solubilized receptors showed weak binding of enkephalin and mu-specific drugs, suggesting that they are predominantly of the kappa-type. The membrane-bound and the soluble receptors showed the same distribution of subtypes, i.e., 70% kappa, 13% mu, and 17% delta for the membrane-bound and 71% kappa, 17% mu, and 12% delta for the soluble receptors.  相似文献   

5.
Neurokinin-1 (NK-1)/substance P (SP) receptors were solubilized using 10 mM 3-[( cholamidopropyl)-dimethylammonio]-1- propanesulfate from porcine striatal membranes (solubilization yield, 80%). In solubilized preparations, [3H]SP apparently bound to a single class of high-affinity sites (KD = 0.82 +/- 0.13 nM) as in membrane homogenates. The ligand selectivity pattern observed in both membrane and solubilized receptor preparations indicated that [Sar9,Met(O2)11]SP = SP much greater than senktide = [Nle10]neurokinin A. This suggests the selective labeling of the NK-1 receptor class in both assays. Solubilized receptors were retained on agarose-coupled lectins that bind N-acetylglucosamine-galactose and beta-galactose (Ricinus communis I and Ricinus communis II), mannose (concanavalin A and lentil), and N-acetylglucosamine (wheat germ agglutinin) but not on lectins binding fucose (Lotus A) and N-acetylgalactosamine (Doli-chos biflorus A). Thus, it appears that porcine brain NK-1/SP receptors are enriched with various carbohydrate moieties, beta-galactose and N-acetylglucosamine-galactose residues being especially abundant. This situation is rather different from that in various other members of the rhodopsin seven-transmembrane receptor superfamily.  相似文献   

6.
Solubilization of the Picrotoxinin Binding Receptor from Mammalian Brain   总被引:3,自引:2,他引:1  
Abstract: The binding sites for α-dihydropicrotoxinin (DHP), which is a ligand for the picrotoxin-sensitive component at the benzodiazepine-γ-aminobutyric acid-receptor-ionophore complex, has been solubilized from rat brain, using 1% Lubrol. A new assay, which involves precipitation of the [3H]DHP-soluble protein complex by γ-globulin and polyethylene glycol (PEG), followed by centrifugation, is described. The solubilized material bound DHP to two sites with apparent affinities of 0.038 and 1.85 μM. The binding of DHP to the solubilized receptors was inhibited by convulsant and depressant drugs with potencies similar to those required for membrane receptors. The ability of barbiturates to inhibit DHP binding to both solubilized and membrane receptors strongly suggests that barbiturates may interact with the picrotoxin binding component. These data suggest that ligand recognition properties of the picrotoxinin binding are not altered by solubilization. The binding was abolished by urea and partially destroyed by heating the soluble extract at 65°C for 30 min. This new method of measuring the binding of ligands to the solubilized receptors by PEG centrifugation might be used successfully in other solubilization studies.  相似文献   

7.
alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) is a selective ligand for an excitatory amino acid receptor subtype in mammalian brain. We have solubilized an AMPA binding protein from bovine brain membranes with 1% Triton X-100 in 0.5 M phosphate buffer and 20% glycerol at 37 degrees C and purified the stable binding sites using a series of chromatographic steps. Scatchard analysis of the purified preparation showed a curvilinear plot with dissociation constants of 10.6 and 323 nM and Bmax values of 670 and 1,073 pmol/mg of protein for the high- and low-affinity sites, respectively. Inhibition constants for several excitatory amino acid analogues were similar to those obtained for other membrane and solubilized preparations. Gel filtration of the soluble AMPA binding protein showed a single peak of [3H]AMPA binding activity at Mr approximately 500,000. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified AMPA binding protein showed a single major band at Mr = 110,000. Previously, we have shown that a monoclonal antibody (KAR-B1) against a frog brain kainate binding protein selectively recognizes an unknown protein in mammalian brain migrating at Mr approximately 100,000. We now show that this antibody recognizes the major component of the purified AMPA binding protein, supporting a structural similarity between the frog brain kainate binding protein and the mammalian AMPA binding protein.  相似文献   

8.
Binding of 2-[125I]iodomelatonin to 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS)-solubilized sites from chick forebrain was rapid. reversible, saturable, of high affinity, and of pharmacological selectivity. Scatchard analyses showed that 2-[125I]iodomelatonin binds to a single site with equilibrium dissociation constant (KD) values of 328 +/- 22 (n = 4) and 302 +/- 26 pM (n = 3) and a maximal number of binding sites (Bmax) of 36.2 +/- 2.0 and 49.5 +/- 6.6 fmol/mg of protein in solubilized and membrane fractions, respectively. The KD values obtained from the ratio of kinetic constants (k2/k1) in solubilized and membrane preparations were 228 and 216 pM, respectively. Inhibition studies indicated the following order of pharmacological affinities for both membrane and solubilized sites: 2-iodomelatonin greater than melatonin greater than 6-chloromelatonin much greater than prazosin greater than N-acetylserotonin much greater than serotonin greater than metergoline greater than ketanserin greater than propranolol greater than phentolamine greater than cyproheptadine. Guanyl nucleotides inhibited binding of 2-[125I]iodomelatonin to solubilized and membrane fractions, by converting binding sites from a high-affinity to a low-affinity state. These findings show that solubilized binding sites for melatonin exhibit the specific binding and pharmacological characteristics present in membrane-bound sites. Moreover, the retention of sensitivity to guanine nucleotides in fractions solubilized with CHAPS suggests that this solubilization procedure is suitable for further studies aimed at the isolation, purification, and molecular characterization of active melatonin binding sites.  相似文献   

9.
Calcium antagonist binding sites were solubilized from rat brain membranes using the detergent 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulfonate (CHAPS). CHAPS-solubilized [3H]nitrendipine binding sites are saturable over a range of 0.05-4 nM and Scatchard analysis reveals a single, high-affinity (KD = 0.49 +/- 0.10 nM), low-capacity (Bmax = 56 +/- 4 fmol/mg of protein) binding site. Reversible ligand competition experiments using solubilized binding sites demonstrated appropriate pharmacologic specificity, with dihydropyridines (nifedipine = nitrendipine greater than Bay K 8644) completely displacing binding, verapamil partially displacing binding, and diltiazem enhancing binding, as previously described in membrane preparations. Lyophilized Crotalus atrox venom was purified by ion exchange chromatography followed by gel filtration to a single peptide band on sodium dodecyl sulfatepolyacrylamide gel electrophoresis. This fraction of molecular weight 60,000 competitively inhibits [3H]nitrendipine binding to both membrane and soluble preparations with an IC50 of 5 micrograms/ml. This polypeptide should serve as a useful ligand for future efforts in purifying the dihydropyridine calcium channel binding site in brain.  相似文献   

10.
Endogenous Modulator of Benzodiazepine Binding in Rat Cortex   总被引:2,自引:2,他引:0  
Benzodiazepine binding sites, solubilized with 1% digitonin, were used to study specific [3H]flunitrazepam ([3H]FNP) binding. Specific binding increased nonlinearly with increasing amounts of digitonin extract in the assay. Specific binding was increased, and the relationship to amount of extract became linear, in the presence of 2% polyethylene glycol 6000 (PEG). Heat treatment destroyed binding activity of the extract, but not ability to inhibit [3H]FNP binding. Kinetic analysis showed inhibition to be noncompetitive. The inhibitory activity was sensitive to trypsin. Extracts of repeatedly frozen, thawed, and washed membrane preparations still possessed inhibitory activity. It is suggested that digitonin solubilizes a membrane protein that inhibits benzodiazepine binding. PEG apparently removes this substance from the binding sites.  相似文献   

11.
Rat brain angiotensin II (Ang II) receptors were solubilized with a yield of 30-40% using the synthetic detergent 3[(3-cholamidopropyl)dimethylammonio)]-1-propanesulfonate. Kinetic analysis employing the high-affinity antagonist 125I-Sar1,Ile8-Ang II indicated that the solubilized receptors exhibited the same properties as receptors present within intact brain membranes. Furthermore, there was a positive correlation (r = 0.99) between the respective pIC50 values of a series of agonist and antagonists competing for 125I-Sar1,Ile8-Ang II labeled binding sites in either solubilized or intact membranes. Moreover, covalent labeling of 125I-Ang II to solubilized receptors with the homo-bifunctional cross-linker disuccinimidyl suberate, followed by gel filtration, revealed one major and one minor binding peak with apparent molecular weights of 64,000 and 115,000, respectively. Two binding proteins of comparable molecular weights (i.e., 112,000 and 60,000) were also identified by covalent cross-linking of 125I-Ang II to solubilized brain membranes followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. In contrast, only the smaller molecular mass binding protein was observed when solubilized membranes were labeled with the antagonist 125I-Sar1,Ile8-Ang II prior to gel filtration, and chromatofocusing of antagonist labeled sites revealed only one peak with an isoelectric point of 6.2. The successful solubilization of these binding sites should facilitate continued investigation of Ang II receptors in the brain.  相似文献   

12.
Serotonin1 (5-hydroxytryptamine1, 5-HT1) binding sites have been solubilized from bovine brain cortex using a mixture of 0.1% Nonidet P-40 and 0.3% digitonin in a low-salt buffer containing 0.1% ascorbic acid. The affinity of [3H]5-HT for the soluble cortical binding sites (2.1 nM) is identical to its affinity at membrane-bound binding sites (2.1 nM). [3H]8-Hydroxy-2-(di-n-propylamino)tetralin ([3H]DPAT), a selective 5-HT1a radioligand, also binds to soluble cortical binding sites with high affinity (1.8 nM) comparable with its affinity in the crude membranes (1.7 nM). A significant correlation exists in the rank order potency of serotonergic agents for [3H]5-HT binding and for [3H]DPAT binding to crude and soluble membranes. The density of [3H]DPAT binding sites relative to the [3H]5-HT sites in the solubilized cortical membranes (35%) corresponds well with the proportion of 5-HT1a sites in the crude membranes determined by spiperone displacement (33%), suggesting that both the 5-HT1a and 5-HT1b binding sites have been cosolubilized. [3H]5-HT binding in the soluble preparations was inhibited by GTP, suggesting that a receptor complex may have been solubilized. [3H]Spiperone-specific binding was not detectable in this preparation, suggesting that 5-HT2 sites were not cosolubilized.  相似文献   

13.
The binding of (-)-[3H]nicotine to membrane fragments and a detergent solubilized fraction of goldfish brain was characterized. (-)-[3H]nicotine binding was not displaced by alpha-bungarotoxin, but was displaced by (-)nicotine and carbamoylcholine with Ki of approximately 8.6 and 86 nM, respectively. Preincubation of solubilized membrane extract with alpha-bungarotoxin-coupled Sepharose resulted in the loss of approximately 50% of the (-)-[3H]nicotine binding protein from the eluent and an increase in (-)-[3H]nicotine binding to the gel compared to control, non-alpha-bungarotoxin Sepharose. 125I-alpha-bungarotoxin binding protein in the eluent from the same preincubation experiments was totally removed. In addition, incubation of the solubilized tissue extracts with alpha-bungarotoxin-coupled Sepharose resulted in an increase in the affinity for (-)-[3H]nicotine in the eluent (mean KD = 3.1) compared to control solubilized tissue extracts (KD = 6.4 nM). Specific (-)-[3H]nicotine binding sites could be eluted from the alpha-bungarotoxin-coupled Sepharose with carbamoylcholine and D-tubocurarine. Similar to previously reported 125I-alpha-bungarotoxin binding data, eye removal resulted in an approximately 40% decrease in (-)-[3H]nicotine binding in the contralateral tectum compared to that in the ipsilateral tectum. These data indicate that at least two distinct subtypes of (-)nicotine binding sites may be present in goldfish brain, one which binds alpha-bungarotoxin and (-)nicotine and another which binds only (-)nicotine.  相似文献   

14.
The high-affinity binding site for [3H] diazepam has been solubilized from rat brain using 0.5% Lubrol-PX. Using a polyethylene glycol (PEG)-γ-globulin assay, it has been possible to demonstrate solubilization of about 60% of the binding sites in a single step. The solubilized binding site possesses a KD of 11 nM for [3H] diazepam compared to approximately 4 nM for the membrane-bound form, and binding is to a single class of sites. The order of potency of benzodiazepines is identical for the solubilized receptor and the membrane-bound form. Binding of [3H] diazepam is temperature dependent and higher at 4° than 37°C. Both urea and guanidine-HC1 were capable of totally inhibiting binding, and this inhibition was partly reversible; neither sulfhydryl groups nor carbohydrate moieties seem to be important for binding. γ-Aminobutyric acid which enhanced [3H] diazepam binding to membrane fractions was without effect on the solubilized binding site.  相似文献   

15.
The muscarinic acetylcholine receptor was solubilized from rat brain cortex by zwitterionic detergent 3-[(3-chloramidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). About 15% of the binding activity was solubilized and 40% of the activity was destroyed by the detergent. Binding of the muscarinic antagonist [3H]-N-methyl-4-piperidyl benzilate (4NMPB) was saturable. Scatchard analysis revealed a single population of binding sites with KD value of 0.7 nM and a Bmax value of 340 fmoles/mg protein. The homogenate and the CHAPS treated pellet and soluble receptors showed similar affinity for the agonists oxotremorine and carbamylcholine and for the antagonists QNB and atropine. The dissociation of 4NMPB from the soluble receptors appears slightly slower than from the membrane bound receptors.  相似文献   

16.
In addition to the known binding of norharman (NH) to monoamine oxidase (MAO) and benzodiazepine (BZ) binding sites (at M concentrations), a distinct class of high-affinity NH binding sites was discovered in rat brain (1,2). Investigations of several organs of the rat led to the discovery of high affinity binding sites in the liver, which successfully could be solubilized from P2 membrane homogenate (0.25% w/v Triton X-100). Scatchard analysis revealed an apparent KD value of 26±8 nM and a maximum number of binding sites of 11±3 pmol/mg protein (n=14). Association kinetics showed that equilibrium was nearly reached after two hours. Dissociaton was totally complete only after more than 16 hours. The MAO-inhibitors examined did not influence the binding characteristics. No displacement of specific binding could be found by haloperidol.  相似文献   

17.
The muscarinic acetylcholine receptor (mAcChR) has been prepared from pig atrial membranes by new large scale procedures which result in 30-40 fold enrichment of the receptor in the membrane-bound state and a further three fold enrichment during solubilization. The membrane-bound receptor was prepared by differential and sucrose density gradient centrifugation in 25 mM imidazole, 1 mM EDTA, pH 7.4. A double extraction procedure using a mixed digitonin/cholate detergent was used to solubilize the receptor at a 60-70% yield. The membrane and solubilized preparations had specific activities of 3.5-5 and 8-12 pmol [3H]L-quinuclidinyl benzilate (QNB) binding sites per mg of protein, respectively. The presence of imidazole, which behaved as a weak muscarinic ligand, stabilized the receptor during solubilization and storage. Both the membrane-bound and detergent-solubilized mAcChR bound antagonists at a single class of sites and agonists at two subclasses of QNB sites. The proportion of high affinity agonist sites in the solubilized receptor was about 1/3 that in the membrane receptor. [3H]Propylbenzilylcholine mustard covalently labeled a single prominent atropine-sensitive component with an apparent molecular weight of 70-74,000 on SDS-polyacrylamide gels for both the membrane and solubilized receptor.  相似文献   

18.
We describe the solubilization of S-adenosyl-L-homocysteine binding sites from rat brain membranes; Triton X100 could solubilize near 50% of the sites. The solubilized extract exhibited the same pH dependence as the membrane extract and had the same dissociation constant and the same sensibility to S-adenosyl-L-methionine and adenosine. The solubilized extract exhibited a methylase activity which accepted phosphatidylethanolamine as substrate.  相似文献   

19.
C A Nelson  K B Seamon 《Life sciences》1988,42(14):1375-1383
The binding of [3H]forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating [3H]forskolin bound to protein from free [3H]forskolin by rapid filtration. The Kd for [3H]forskolin binding to solubilized proteins was 14 nM which was similar to that for [3H]forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for [3H]forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. [3H]forskolin bound to proteins solubilized from membranes with a Bmax of 38 fmol/mg protein which increased to 94 fmol/mg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on [3H]forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmol/mg/min which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmol/mg/min which was not stimulated by GppNHp or forskolin. Thus, the number of high affinity binding sites for [3H]forskolin in solubilized preparations correlated with the activation of adenylate cyclase by GppNHp via the guanine nucleotide binding protein (GS).  相似文献   

20.
alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) binding sites were solubilized from rat brain membranes using 1% Triton X-100 in 0.5 M potassium phosphate buffer containing 20% glycerol. The solubilized binding sites were stable, permitting biochemical and pharmacological characterization as well as partial purification. Pharmacological and binding analyses indicated that the solubilized binding sites were similar to the membrane-bound sites. Both the solubilized and the membrane-bound preparations contained high- and low-affinity AMPA binding sites in the presence of potassium thiocyanate. A similar rank order for inhibition of [3H]AMPA binding by several excitatory amino acid analogs was obtained for the soluble and membrane-bound preparations. [3H]AMPA binding to both soluble and membrane-bound preparations was increased in the presence of potassium thiocyanate. The solubilized AMPA binding sites migrated as a single peak with gel filtration chromatography, with an Mr of 425,000. Beginning with the solubilized preparation, AMPA binding sites were purified 54-fold with ion-exchange chromatography and gel filtration. The characterization and purification of these soluble binding sites is potentially useful for the molecular characterization of this putative excitatory amino acid receptor subtype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号