首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
Type 2 diabetes is the most prevalent and serious metabolic disease affecting people all over the world. Pancreatic beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Normal beta-cells can compensate for insulin resistance by increasing insulin secretion and/or beta-cell mass, but insufficient compensation leads to the onset of glucose intolerance. Once hyperglycemia becomes apparent, beta-cell function gradually deteriorates and insulin resistance aggravates. Under diabetic conditions, oxidative stress and endoplasmic reticulum stress are induced in various tissues, leading to activation of the c-Jun N-terminal kinase pathway. The activation of c-Jun N-terminal kinase suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of c-Jun N-terminal kinase in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the c-Jun N-terminal kinase pathway plays a central role in pathogenesis of type 2 diabetes and could be a potential target for diabetes therapy.  相似文献   

3.
Type 2 diabetes is the most prevalent and serious metabolic disease affecting people all over the world. Pancreatic beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Normal beta-cells can compensate for insulin resistance by increasing insulin secretion and/or beta-cell mass, but insufficient compensation leads to the onset of glucose intolerance. Once hyperglycemia becomes apparent, beta-cell function gradually deteriorates and insulin resistance aggravates. Under diabetic conditions, oxidative stress and endoplasmic reticulum stress are induced in various tissues, leading to activation of the c-Jun N-terminal kinase pathway. The activation of c-Jun N-terminal kinase suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of c-Jun N-terminal kinase in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the c-Jun N-terminal kinase pathway plays a central role in pathogenesis of type 2 diabetes and could be a potential target for diabetes therapy.  相似文献   

4.
Type 1 diabetes results from the selective destruction of insulin-producing pancreatic beta-cells during islet inflammation, which involves inflammatory cytokines and free radicals. However, mechanisms for protecting beta-cells from destruction have not been clarified. In this study, we define the role of SOCS3 on beta-cell destruction using beta-cell-specific SOCS3-conditional knockout (cKO) mice. The beta-cell-specific SOCS3-deficient mice were resistant to the development of diabetes caused by streptozotocin (STZ), a genotoxic methylating agent, which has been used to trigger beta-cell destruction. The islets from cKO mice demonstrated hyperactivation of STAT3 and higher induction of Bcl-xL than did islets from WT mice, and SOCS3-deficient beta-cells were more resistant to apoptosis induced by STZ in vitro than were WT beta-cells. These results suggest that enhanced STAT3 signaling protects beta-cells from destruction induced by a genotoxic stress and that STAT3/SOCS3 can be a potential therapeutic target for the treatment of type 1 diabetes.  相似文献   

5.
6.
Diabetes is caused by impaired insulin secretion in pancreatic beta-cells and peripheral insulin resistance. Overload of pancreatic beta-cells leads to beta-cell exhaustion and finally to the development of diabetes. Reduced beta-cell mass is evident in type 2 diabetes, and apoptosis is implicated in this process. One characteristic feature of beta-cells is highly developed endoplasmic reticulum (ER) due to a heavy engagement in insulin secretion. The ER serves several important functions, including post-translational modification, folding, and assembly of newly synthesized secretory proteins, and its proper function is essential to cell survival. Various conditions can interfere with ER function and these conditions are called ER stress. Recently, we found that nitric oxide (NO)-induced apoptosis in beta-cells is mediated by the ER-stress pathway. NO causes ER stress and leads to apoptosis through induction of ER stress-associated apoptosis factor CHOP. The Akita mouse with a missense mutation (Cys96Tyr) in the insulin 2 gene has hyperglycemia and a reduced beta-cell mass. This mutation disrupts a disulfide bond between A and B chains of insulin and may induce its conformational change. In the development of diabetes in Akita mice, mRNAs for an ER chaperone Bip and CHOP were induced in the pancreas. Overexpression of the mutant insulin in mouse MIN6 beta-cells induced CHOP expression and led to apoptosis. Targeted disruption of the CHOP gene did not delay the onset of diabetes in the homozygous Akita mice, but it protected islet cells from apoptosis and delayed the onset of diabetes in the heterozygous Akita mice. We conclude that ER overload in beta-cells causes ER stress and leads to apoptosis via CHOP induction. These results highlight the importance of chronic ER stress in beta-cell apoptosis in type 2 diabetes, and suggest a new target to the management of the disease.  相似文献   

7.
Type 1 diabetes (T1D) is the result of selective destruction of the insulin-producing beta-cells in the pancreatic islets of Langerhans. T1D is due to a complex interplay between the beta-cell, the immune system, and the environment in genetically susceptible individuals. The initiating mechanism(s) behind the development of T1D are largely unknown, and no genes or proteins are specific for most T1D cases. Different pro-apoptotic cytokines, IL-1 beta in particular, are present in the islets during beta-cell destruction and are able to modulate beta-cell function and induce beta-cell death. In beta-cells exposed to IL-1 beta, a race between destructive and protective events are initiated and in susceptible individuals the deleterious events prevail. Proteins are involved in most cellular processes, and it is thus expected that their cumulative expression profile reflects the specific activity of cells. Proteomics may be useful in describing the protein expression profile and thus the diabetic phenotype. Relatively few studies using proteomics technologies to investigate the T1D pathogenesis have been published to date despite the defined target organ, the beta-cell. Proteomics has been applied in studies of differentiating beta-cells, cytokine exposed islets, dietary manipulated islets, and in transplanted islets. Although that the studies have revealed a complex and detailed picture of the protein expression profiles many functional implications remain to be answered. In conclusion, a rather detailed picture of protein expression in beta-cell lines, islets, and transplanted islets both in vitro and in vivo have been described. The data indicate that the beta-cell is an active participant in its own destruction during diabetes development. No single protein alone seems to be responsible for the development of diabetes. Rather the cumulative pattern of changes seems to be what favors a transition from dynamic stability in the unperturbed beta-cell to dynamic instability and eventually to beta-cell destruction.  相似文献   

8.
Mitochondrial dysfunction due to oxidative stress and concomitant impaired beta-cell function may play a key role in type 2 diabetes. Preventing and/or ameliorating oxidative mitochondrial dysfunction with mitochondria-specific nutrients may have preventive or therapeutic potential. In the present study, the oxidative mechanism of mitochondrial dysfunction in pancreatic beta-cells exposed to sublethal levels of oleic acid (OA) and the protective effects of mitochondrial nutrients [R-alpha-lipoic acid (LA) and acetyl-L-carnitine (ALC)] were investigated. Chronic exposure (72 h) of insulinoma MIN6 cells to OA (0.2-0.8 mM) increased intracellular oxidant formation, decreased mitochondrial membrane potential (MMP), enhanced uncoupling protein-2 (UCP-2) mRNA and protein expression, and consequently, decreased glucose-induced ATP production and suppressed glucose-stimulated insulin secretion. Pretreatment with LA and/or ALC reduced oxidant formation, increased MMP, regulated UCP-2 mRNA and protein expression, increased glucose-induced ATP production, and restored glucose-stimulated insulin secretion. The key findings on ATP production and insulin secretion were verified with isolated rat islets. These results suggest that mitochondrial dysfunction is involved in OA-induced pancreatic beta-cell dysfunction and that pretreatment with mitochondrial protective nutrients could be an effective strategy to prevent beta-cell dysfunction.  相似文献   

9.
脂肪细胞对胰岛β细胞功能的内分泌调节作用   总被引:2,自引:0,他引:2  
Zhao YF  Chen C 《生理学报》2007,59(3):247-252
脂肪因子包括脂肪细胞分泌的多种活性因子,它们通过内分泌方式调节胰岛β细胞的胰岛素分泌、基因表达以及细胞凋亡等多方面的功能。本文提出脂肪因子影响胰岛β细胞功能主要通过三条相互联系的途径而实现。第一是调节β细胞内葡萄糖和脂肪的代谢;第二是影响β细胞离子通道的活性;第三是改变β细胞本身的胰岛素敏感性。脂肪细胞的内分泌功能是一个动态过程,在不同的代谢状态下,各脂肪因子的分泌发生不同变化。从正常代谢状态发展到肥胖以及2型糖尿病的过程中,脂肪因子参与了胰岛β细胞功能障碍的发生与发展。  相似文献   

10.

Background

Type 2 diabetes is characterized by pancreatic beta-cell dysfunction and is associated with low-grade inflammation. Recent observations suggest that apoptosis signal-regulating kinase 1 (ASK1) is involved in beta-cell death in response to different stressors. In this study, we tested whether ASK1 deficiency protects beta-cells from glucolipotoxic conditions and cytokines treatment or from glucose homeostasis alteration induced by endotoxemia.

Methodology/Principal Findings

Insulin secretion was neither affected upon shRNA-mediated downregulation of ASK1 in MIN6 cells nor in islets from ASK1-deficient mice. ASK1 silencing in MIN6 cells and deletion in islets did not prevent the deleterious effect of glucolipotoxic conditions or cytokines on insulin secretion. However, it protected MIN6 cells from death induced by ER stress or palmitate and islets from short term caspase activation in response to cytokines. Moreover, endotoxemia induced by LPS infusion increased insulin secretion during hyperglycemic clamps but the response was similar in wild-type and ASK1-deficient mice. Finally, insulin sensitivity in the presence of LPS was not affected by ASK1-deficiency.

Conclusions/Significance

Our study demonstrates that ASK1 is not involved in beta-cell function and dysfunction but controls stress-induced beta-cell death.  相似文献   

11.
Type 2 diabetes is increasingly viewed as a disease of insulin deficiency due not only to intrinsic pancreatic beta-cell dysfunction but also to reduction of beta-cell mass. It is likely that, in diabetes-prone subjects, the regulated beta-cell turnover that adapts cell mass to body's insulin requirements is impaired, presumably on a genetic basis. We still have a limited knowledge of how and when this derangement occurs and what might be the most effective therapeutic strategy to preserve beta-cell mass. The animal models of type 2 diabetes with reduced beta-cell mass described in this review can be extremely helpful (a) to have insight into the mechanisms underlying the defective growth or accelerated loss of beta-cells leading to the beta-cell mass reduction; (b) to investigate in prospective studies the mechanisms of compensatory adaptation and subsequent failure of a reduced beta-cell mass. Furthermore, these models are of invaluable importance to test the effectiveness of potential therapeutic agents that either stimulate beta-cell growth or inhibit beta-cell death.  相似文献   

12.
Mouse models of insulin resistance   总被引:1,自引:0,他引:1  
The hallmarks of type 2 diabetes are impaired insulin action in peripheral tissues and decreased pancreatic beta-cell function. Classically, the two defects have been viewed as separate entities, with insulin resistance arising primarily from impaired insulin-dependent glucose uptake in skeletal muscle, and beta-cell dysfunction arising from impaired coupling of glucose sensing to insulin secretion. Targeted mutagenesis and transgenesis involving components of the insulin action pathway have changed our understanding of these phenomena. It appears that the role of insulin signaling in the pathogenesis of type 2 diabetes has been overestimated in classic insulin target tissues, such as skeletal muscle, whereas it has been overlooked in liver, pancreatic beta-cells, and brain, which had been thought not to be primary insulin targets. We review recent progress and try to reconcile areas of apparent controversy surrounding insulin signaling in skeletal muscle and pancreatic beta-cells.  相似文献   

13.
Type 1 diabetes is characterized by the selective destruction of pancreatic beta-cells caused by an autoimmune attack. Type 2 diabetes is a more complex pathology which, in addition to beta-cell loss caused by apoptotic programs, includes beta-cell dedifferentiation and peripheric insulin resistance. beta-Cells are responsible for insulin production, storage and secretion in accordance to the demanding concentrations of glucose and fatty acids. The absence of insulin results in death and therefore diabetic patients require daily injections of the hormone for survival. However, they cannot avoid the appearance of secondary complications affecting the peripheral nerves as well as the eyes, kidneys and cardiovascular system. These afflictions are caused by the fact that external insulin injection does not mimic the tight control that pancreatic-derived insulin secretion exerts on the body's glycemia. Restoration of damaged beta-cells by transplantation from exogenous sources or by endocrine pancreas regeneration would be ideal therapeutic options. In this context, stem cells of both embryonic and adult origin (including beta-cell/islet progenitors) offer some interesting alternatives, taking into account the recent data indicating that these cells could be the building blocks from which insulin secreting cells could be generated in vitro under appropriate culture conditions. Although in many cases insulin-producing cells derived from stem cells have been shown to reverse experimentally induced diabetes in animal models, several concerns need to be solved before finding a definite medical application. These refer mainly to the obtainment of a cell population as similar as possible to pancreatic beta-cells, and to the problems related with the immune compatibility and tumor formation. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells, and the main problems that hamper the clinical applications of this technology.  相似文献   

14.
15.
Type 2 diabetes is characterized by both peripheral insulin resistance and reduced insulin secretion by beta-cells. The reasons for beta-cell dysfunction in this disease are incompletely understood but may include the accumulation of toxic lipids within this cell type. We examined the role of Abca1, a cellular cholesterol transporter, in cholesterol homeostasis and insulin secretion in beta-cells. Mice with specific inactivation of Abca1 in beta-cells had markedly impaired glucose tolerance and defective insulin secretion but normal insulin sensitivity. Islets isolated from these mice showed altered cholesterol homeostasis and impaired insulin secretion in vitro. We found that rosiglitazone, an activator of the peroxisome proliferator-activated receptor-gamma, which upregulates Abca1 in beta-cells, requires beta-cell Abca1 for its beneficial effects on glucose tolerance. These experiments establish a new role for Abca1 in beta-cell cholesterol homeostasis and insulin secretion, and suggest that cholesterol accumulation may contribute to beta-cell dysfunction in type 2 diabetes.  相似文献   

16.
Kim MJ  Kim HK 《Life sciences》2006,79(24):2288-2292
Oxidative stress is produced under diabetic conditions and is likely involved in progression of pancreatic beta-cell dysfunction found in diabetes. Both an increase in reactive oxygen free radical species (ROS) and a decrease in the antioxidant defense mechanism lead to the increase in oxidative stress in diabetes. Electrolyzed reduced water (ERW) with ROS scavenging ability may have a potential effect on diabetic animals, a model for high oxidative stress. Therefore, the present study examined the possible anti-diabetic effect of ERW in two different diabetic animal models. The genetically diabetic mouse strain C57BL/6J-db/db (db/db) and streptozotocin (STZ)-induced diabetic mouse were used as insulin deficient type 1 and insulin resistant type 2 animal model, respectively. ERW, provided as a drinking water, significantly reduced the blood glucose concentration and improved glucose tolerance in both animal models. However, ERW fail to affect blood insulin levels in STZ-diabetic mice whereas blood insulin level was markedly increased in genetically diabetic db/db mice. This improved blood glucose control could result from enhanced insulin sensitivity, as well as increased insulin release. The present data suggest that ERW may function as an orally effective anti-diabetic agent and merit further studies on its precise mechanism.  相似文献   

17.
Type 2 diabetes mellitus manifests itself in individuals who lose the ability to produce sufficient amounts of insulin to maintain normoglycaemia in the face of insulin resistance. The ability to secrete adequate amounts of insulin depends on beta-cell function and mass. Chronic hyperglycaemia is detrimental to pancreatic beta-cells, causing impaired insulin secretion and playing an essential role in the regulation of beta-cell turnover. This paper will address the effect of chronically elevated glucose levels on beta-cell turnover and function. In previous studies we have shown that elevated glucose concentrations induce apoptosis in human beta-cells due to an interaction between constitutively expressed Fas ligand and upregulated Fas. Human beta-cells produce interleukin (IL)-1beta in response to high glucose concentrations, independently of an immune-mediated process. This was antagonized by the IL-1 receptor antagonist (IL-1Ra), a naturally occurring anti-inflammatory cytokine also found in the beta-cell. Therefore the balance of IL-1beta and IL-1Ra may play a crucial role in the pathogenesis of diabetes. Inhibition of glucotoxicity represents a promising therapeutic stratagem in diabetes therapy to preserve functional beta-cell mass.  相似文献   

18.
Increasing evidence suggests that stress signaling pathways emanating from the endoplasmic reticulum (ER) are important to the pathogenesis of both type 1 and type 2 diabetes. Recent observations indicate that ER stress signaling participates in maintaining the ER homeostasis of pancreatic beta-cells. Either a high level of ER stress or defective ER stress signaling in beta-cells may cause an imbalance in ER homeostasis and lead to beta-cell apoptosis and autoimmune response. In addition, it has been suggested that ER stress attributes to insulin resistance in patients with type 2 diabetes. It is necessary to study the relationship between ER stress and diabetes in order to develop new therapeutic approaches to diabetes based on drugs that block the ER stress-mediated cell-death pathway and insulin resistance.  相似文献   

19.
Gliclazide protects pancreatic beta-cells from damage by hydrogen peroxide   总被引:11,自引:0,他引:11  
Oxidative stress is induced under diabetic conditions and possibly causes various forms of tissue damage in patients with diabetes. Recently, it has become aware that susceptibility of pancreatic beta-cells to oxidative stress contributes to the progressive deterioration of beta-cell function in type 2 diabetes. A hypoglycemic sulfonylurea, gliclazide, is known to be a general free radical scavenger and its beneficial effects on diabetic complications have been documented. In the present study, we investigated whether gliclazide could protect pancreatic beta-cells from oxidative damage. One hundred and fifty microM hydrogen peroxide reduced viability of mouse MIN6 beta-cells to 29.3%. Addition of 2 microM gliclazide protected MIN6 cells from the cell death induced by H(2)O(2) to 55.9%. Glibenclamide, another widely used sulfonylurea, had no significant effects even at 10 microM. Nuclear chromatin staining analysis revealed that the preserved viability by gliclazide was due to inhibition of apoptosis. Hydrogen peroxide-induced expression of an anti-oxidative gene heme oxygenase-1 and stress genes A20 and p21(CIP1/WAF1), whose induction was suppressed by gliclazide. These results suggest that gliclazide reduces oxidative stress of beta-cells by H(2)O(2) probably due to its radical scavenging activity. Gliclazide may be effective in preventing beta-cells from the toxic action of reactive oxygen species in diabetes.  相似文献   

20.
The homeostatic control of beta-cell mass in normal and pathological conditions is based on the balance of proliferation, differentiation, and death of the insulin-secreting cells. A considerable body of evidence, accumulated during the last decade, has emphasized the significance of the disregulation of the mechanisms regulating the apoptosis of beta-cells in the sequence of events that lead to the development of diabetes. The identification of agents capable of interfering with this process needs to be based on a better understanding of the beta-cell specific pathways that are activated during apoptosis. The aim of this article is fivefold: (1) a review of the evidence for beta-cell apoptosis in Type I diabetes, Type II diabetes, and islet transplantation, (2) to review the common stimuli and their mechanisms in pancreatic beta-cell apoptosis, (3) to review the role of caspases and their activation pathway in beta-cell apoptosis, (4) to review the caspase cascade and morphological cellular changes in apoptotic beta-cells, and (5) to highlight the putative strategies for preventing pancreatic beta-cells from apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号