首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study is to investigate the capability of an apoA-I mimetic with multiple amphipathic helices to form HDL-like particles in vitro and in vivo. To generate multivalent helices and to track the peptide mimetic, we have constructed a peptibody by fusing two tandem repeats of 4F peptide to the C terminus of a murine IgG Fc fragment. The resultant peptidbody, mFc-2X4F, dose-dependently promoted cholesterol efflux in vitro, and the efflux potency was superior to monomeric 4F peptide. Like apoA-I, mFc-2X4F stabilized ABCA1 in J774A.1 and THP1 cells. The peptibody formed larger HDL particles when incubated with cultured cells compared with those by apoA-I. Interestingly, when administered to mice, mFc-2X4F increased both pre-β and α-1 HDL subfractions. The lipid-bound mFc-2X4F was mostly in the α-1 migrating subfraction. Most importantly, mFc-2X4F and apoA-I were found to coexist in the same HDL particles formed in vivo. These data suggest that the apoA-I mimetic peptibody is capable of mimicking apoA-I to generate HDL particles. The peptibody and apoA-I may work cooperatively to generate larger HDL particles in vivo, either at the cholesterol efflux stage and/or via fusion of HDL particles that were generated by the peptibody and apoA-I individually.  相似文献   

2.
Modifying apolipoprotein (apo) A-I mimetic peptides to include a proline-punctuated α-helical repeat increases their anti-inflammatory properties as well as allows better mimicry of full-length apoA-I function. This study compares the following mimetics, either acetylated or biotinylated (b): 4F (18mer) and 4F-proline-4F (37mer, Pro). b4F interacts with both mouse HDL (moHDL) and LDL in vitro. b4F in vivo plasma clearance kinetics are not affected by mouse HDL level. Administration of biotinylated peptides to mice demonstrates that b4F does not associate with lipoproteins smaller than LDL in vivo, though it does associate with fractions containing free hemoglobin (Hb). In contrast, bPro specifically interacts with HDL. b4F and bPro show opposite binding responses to HDL by surface plasmon resonance. Administration of acetylated Pro to apoE−/− mice significantly decreases plasma serum amyloid A levels, while acetylated 4F does not have this ability. In contrast to previous reports that inferred that 4F associates with HDL in vivo, we systematically examined this potential interaction and demonstrated that b4F does not interact with HDL in vivo but rather elutes with Hb-containing plasma fractions. bPro, however, specifically binds to moHDL in vivo. In addition, the number of amphipathic α-helices and their linker influences the anti-inflammatory effects of apoA-I mimetic peptides in vivo.  相似文献   

3.
PURPOSE OF REVIEW: Recent publications related to the potential use of apolipoprotein (apo)A-I and apoA-I mimetic peptides in the treatment of atherosclerosis are reviewed. RECENT FINDINGS: A preliminary report indicating that infusion of apoA-IMilano into humans once weekly for 5 weeks caused a significant decrease in coronary artery atheroma volume has sparked great interest in the potential therapeutic use of apoA-I. Recent studies have revealed that HDL quality (e.g. HDL apolipoprotein and lipid content, including oxidized lipids, particle size and electrophoretic mobility, associated enzymatic activities, inflammatory/anti-inflammatory properties, and ability to promote cholesterol efflux) may be more important than HDL-cholesterol levels. Therefore, when developing new strategies to raise HDL-cholesterol concentrations by interfering with HDL metabolism, one must consider the quality of the resulting HDL. In animal models, raising HDL-cholesterol levels by administering oral phospholipids improved both the quantity and quality of HDL and was associated with lesion regression. An apoA-I mimetic peptide, namely 4F synthesized from D-amino acids (D-4F), administered orally to mice did not raise HDL-cholesterol concentrations but promoted the formation of pre-beta HDL containing increased paraoxonase activity, resulting in significant improvements in HDL's anti-inflammatory properties and ability to promote cholesterol efflux from macrophages in vitro. Oral D-4F also promoted reverse cholesterol efflux from macrophages in vivo. SUMMARY: The quality of HDL may be more important than HDL-cholesterol levels. ApoA-I and apoA-I mimetic peptides appear to have significant therapeutic potential in atherosclerosis.  相似文献   

4.
Reverse cholesterol transport promoted by HDL-apoA-I is an important mechanism of protection against atherosclerosis. We have previously identified apoA-I mimetic peptides by synthesizing analogs of the 22 amino acid apoA-I consensus sequence (apoA-I(cons)) containing non-natural aliphatic amino acids. Here we examined the effect of different aliphatic non-natural amino acids on the structure-activity relationship (SAR) of apoA-I mimetic peptides. These novel apoA-I mimetics, with long hydrocarbon chain (C(5-8)) amino acids incorporated in the amphipathic α helix of the apoA-I(cons), have the following properties: (i) they stimulate in vitro cholesterol efflux from macrophages via ABCA1; (ii) they associate with HDL and cause formation of pre-β HDL particles when incubated with human and mouse plasma; (iii) they associate with HDL and induce pre-β HDL formation in vivo, with a corresponding increase in ABCA1-dependent cholesterol efflux capacity ex vivo; (iv) at high dose they associate with VLDL and induce hypertriglyceridemia in mice. These results suggest our peptide design confers activities that are potentially anti-atherogenic. However a dosing regimen which maximizes their therapeutic properties while minimizing adverse effects needs to be established.  相似文献   

5.
Apolipoprotein A-I (apoA-I) mimetic peptides have been pursued as new therapeutic agents for the treatment of atherosclerosis, yet their precise mechanism responsible for atheroprotection remains unclear. Like apoA-I itself, most of these peptides are capable of stimulating cholesterol efflux from macrophages or foam cells, and some of them stimulate lecithin cholesterol acyltransferase (LCAT) activity in the reverse cholesterol transport (RCT) pathway. However, the ability of mimetic peptides to deliver cholesterol into hepatocytes (off-loading), the last step of the RCT pathway, has not been demonstrated. In this study, we compared a mimetic peptide D-4F to purified apoA-I, to address the role that mimetics play during the off-loading process. Both D-4F and apoA-I formed spherical nano-particles when reconstituted with cholesteryl ester and phospholipids. Compared to apoA-I, D-4F particles were 20 times more efficient in off-loading cholesterol to HepG2 hepatocytes with an apparent Kt (transport) of 0.74 μg/mL. Furthermore, D-4F also facilitated cholesteryl ester offloading from HDL particles into HepG2 cells when it was pre-incubated with these HDL particles. Using an inducible HEK293 cell line, we demonstrated that these nano-particles were able to be taken up through SR-BI, a HDL selective receptor. Cholesterol uptake by HepG2 cells was completely blocked by a neutralizing monoclonal antibody against SR-BI, demonstrating that D-4F particles, similar to HDL, specifically off-loaded cholesterol through SR-BI. Overall our data provides evidence that D-4F is capable of mimicking apoA-I to form HDL-like particles, and off-loads cholesterol for catabolism and excretion, thus completing RCT.  相似文献   

6.
High density lipoprotein (HDL)-associated paraoxonase-1 (PON1) anti-atherogenic properties in macrophages, i.e. inhibition of cell-mediated oxidation of low density lipoprotein (LDL) and stimulation of cholesterol efflux, were studied using recombinant variants of PON1 and apoA-I expressed in Escherichia coli and reconstituted HDL (rHDL) particles composed of phosphatidylcholine/free cholesterol (PC/FC) and apoA-I. PON1 lactonase activity is stimulated by apoA-I by approximately 7-fold relative to PC/FC particles. Wild-type (WT) PON1 bound to rHDL inhibited macrophage-mediated LDL oxidation and stimulated cholesterol efflux from the cells to 2.3- and 3.2-fold greater extents, respectively, compared with WT PON1 bound to PC/FC particles without apoA-I. We also tested PON1 catalytic histidine dyad mutants (H115Q and H134Q) that are properly folded and that bind HDL in a similar mode compared with WT PON1, but that exhibit almost no lactonase activity. These could not inhibit macrophage-mediated LDL oxidation or stimulate rHDL-mediated cholesterol efflux from the cells. Furthermore, whereas HDL-bound WT PON1 induced the formation of lysophosphatidylcholine (LPC) in macrophages, the His dyad mutants did not, suggesting that the above anti-atherogenic properties of HDL-associated PON1 involve LPC release. Indeed, enrichment of macrophages with increasing concentrations of LPC resulted in inhibition of the cells' capability to oxidize LDL and in stimulation of HDL-mediated cholesterol efflux from the macrophages in an LPC dose-dependent manner. Thus, we provide the first direct indication that the anti-atherogenic properties of PON1 are related to its lipolactonase activity and propose a model in which PON1 acts as a lipolactonase to break down oxidized lipids and to generate LPC.  相似文献   

7.
Reduced levels of HDL cholesterol (HDL-C) are a strong independent predictor of coronary artery disease (CAD) risk. The major anti-atherogenic function of HDL is to mediate reverse cholesterol transport. This response is highly dependent on apoA-I and apoE, protein components of HDL. Randomized clinical trials have assessed effects of several classes of drugs on plasma cholesterol levels in CAD patients. Agents including cholestyramine, fibrates, niacin, and statins significantly lower LDL cholesterol (LDL-C) and induce modest increases in HDL-C, but tolerance issues and undesirable side effects are common. Additionally, residual risk may be present in patients with persistently low HDL-C and other complications despite a reduction in LDL-C. These observations have fueled interest in the development of new pharmacotherapies that positively impact circulating lipoproteins. The goal of this review is to discuss the therapeutic potential of synthetic apolipoprotein mimetic peptides. These include apoA-I mimetic peptides that have undergone initial clinical assessment. We also discuss newer apoE mimetics that mediate the clearance of atherogenic lipids from the circulation and possess anti-inflammatory properties. One of these (AEM-28) has recently been given orphan drug status and is undergoing clinical trials.  相似文献   

8.
Acrolein is a highly reactive alpha,beta-unsaturated aldehyde, but the factors that control its reactions with nucleophilic groups on proteins remain poorly understood. Lipid peroxidation and threonine oxidation by myeloperoxidase are potential sources of acrolein during inflammation. Because both pathways are implicated in atherogenesis and high density lipoprotein (HDL) is anti-atherogenic, we investigated the possibility that acrolein might target the major protein of HDL, apolipoprotein A-I (apoA-I), for modification. Tandem mass spectrometric analysis demonstrated that lysine 226, located near the center of helix 10 in apoA-I, was the major site modified by acrolein. Importantly, this region plays a critical role in the cellular interactions and ability of apoA-I to transport lipid. Indeed, we found that conversion of Lys-226 to N(epsilon)-(3-methylpyridinium)lysine by acrolein associated quantitatively with decreased cholesterol efflux from cells via the ATP-binding cassette transporter A1 pathway. In the crystal structure of truncated apoA-I, Glu-234 lies adjacent to Lys-226, suggesting that negatively charged residues might direct the modification of specific lysine residues in proteins. Finally, immunohistochemical studies with a monoclonal antibody revealed co-localization of apoA-I with acrolein adducts in human atherosclerotic lesions. Our observations suggest that acrolein might interfere with normal reverse cholesterol transport by HDL by modifying specific sites in apoA-I. Thus, acrolein might contribute to atherogenesis by impairing cholesterol removal from the artery wall.  相似文献   

9.
ATP binding cassette transporter G1 (ABCG1) mediates the cholesterol transport from cells to high-density lipoprotein (HDL), but the role of apolipoprotein A-I (apoA-I), the main protein constituent of HDL, in this process is not clear. To address this, we measured cholesterol efflux from HEK293 cells or J774 mouse macrophages overexpressing ABCG1 using as acceptors reconstituted HDL (rHDL) containing wild-type or various mutant apoA-I forms. It was found that ABCG1-mediated cholesterol efflux was severely reduced (by 89%) when using rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)]. ABCG1-mediated cholesterol efflux was not affected or moderately decreased by rHDL containing amino-terminal deletion mutants and several mid-region deletion or point apoA-I mutants, and was restored to 69–99% of control by double deletion mutants apoA-I[Δ(1–41)Δ(185–243)] and apoA-I[Δ(1–59)Δ(185–243)]. These findings suggest that the central helices alone of apoA-I associated to rHDL can promote ABCG1-mediated cholesterol efflux. Further analysis showed that rHDL containing the carboxyl-terminal deletion mutant apoA-I[Δ(185–243)] only slightly reduced (by 22%) the ABCG1-mediated efflux of 7-ketocholesterol, indicating that depending on the sterol type, structural changes in rHDL-associated apoA-I affect differently the ABCG1-mediated efflux of cholesterol and 7-ketocholesterol. Overall, our findings demonstrate that rHDL-associated apoA-I structural changes affect the capacity of rHDL to accept cellular cholesterol by an ABCG1-mediated process. The structure-function relationship seen here between rHDL-associated apoA-I mutants and ABCG1-mediated cholesterol efflux closely resembles that seen before in lipid-free apoA-I mutants and ABCA1-dependent cholesterol efflux, suggesting that both processes depend on the same structural determinants of apoA-I.  相似文献   

10.
Modulation of the reverse cholesterol transport (RCT) pathway may provide a therapeutic target for the prevention and treatment of atherosclerotic cardiovascular disease (CVD). In the present study, we evaluated a novel 26-amino acid apolipoprotein mimetic peptide (ATI-5261) designed from the carboxyl terminal of apoE, in its ability to mimic apoA-I functionality in RCT in vitro. Our data shows that nascent HDL-like (nHDL) particles generated by incubating cells over-expressing ABCA1 with ATI-5261 increase the rate of specific ABCA1 dependent lipid efflux, with high affinity interactions with ABCA1. We also show that these nHDL particles interact with membrane micro-domains in a manner similar to nHDL apoA-I. These nHDL particles then interact with the ABCG1 transporter and are remodeled by plasma HDL-modulating enzymes. Finally, we show that these mature HDL-like particles are taken up by SR-BI for cholesterol delivery to liver cells. This ATI-5621-mediated process mimics apoA-I and may provide a means to prevent cholesterol accumulation in the artery wall. In this study, we propose an integrative physiology approach of HDL biogenesis with the synthetic peptide ATI-5261. These experiments provide new insights for potential therapeutic use of apolipoprotein mimetic peptides.  相似文献   

11.
ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.  相似文献   

12.
Synthetic peptides were used in this study to identify a structural element of apolipoprotein (apo) A-I that stimulates cellular cholesterol efflux and stabilizes the ATP binding cassette transporter A1 (ABCA1). Peptides (22-mers) based on helices 1 (amino acids 44-65) and 10 (amino acids 220-241) of apoA-I had high lipid binding affinity but failed to mediate ABCA1-dependent cholesterol efflux, and they lacked the ability to stabilize ABCA1. The addition of helix 9 (amino acids 209-219) to either helix 1 (creates a 1/9 chimera) or 10 (9/10 peptide) endowed cholesterol efflux capability and ABCA1 stabilization activity similar to full-length apoA-I. Adding helix 9 to helix 1 or 10 had only a small effect on lipid binding affinity compared with the 22-mer peptides, indicating that helix length and/or determinants on the polar surface of the amphipathic alpha-helices is important for cholesterol efflux. Cholesterol efflux was specific for the structure created by the 1/9 and 9/10 helical combinations, as 33-mers composed of helices 1 and 3 (1/3), 2/9, and 4/9 failed to mediate cholesterol efflux in an ABCA1-dependent manner. Transposing helices 9 and 10 (10/9 peptide) did not change the class Y structure, hydrophobicity, or amphiphilicity of the helical combination, but the topography of negatively charged amino acids on the polar surface was altered, and the 10/9 peptide neither mediated ABCA1-dependent cholesterol efflux nor stabilized ABCA1 protein. These results suggest that a specific structural element possessing a linear array of acidic residues spanning two apoA-I amphipathic alpha-helices is required to mediate cholesterol efflux and stabilize ABCA1.  相似文献   

13.
ABCA1 mediates the transport of cellular cholesterol and phospholipids to HDL apolipoproteins. Apolipoprotein A-I (apoA-I) interactions with ABCA1-expressing cells elicit several responses, including removing cellular lipids, stabilizing ABCA1 protein, and activating Janus kinase 2 (JAK2). Here, we used synthetic apolipoprotein-mimetic peptides to characterize the relationship between these responses. Peptides containing one amphipathic helix of L- or D-amino acids (2F, D-2F, or 4F) and a peptide containing two helices (37pA) all promoted ABCA1-dependent cholesterol efflux, competed for apoA-I binding to ABCA1-expressing cells, blocked covalent cross-linking of apoA-I to ABCA1, and inhibited ABCA1 degradation. 37pA was cross-linked to ABCA1, confirming the direct binding of amphipathic helices to ABCA1. 2F, 4F, 37pA, and D-37pA all stimulated JAK2 autophosphorylation. Inhibition of JAK2 greatly reduced peptide-mediated cholesterol efflux, peptide binding to ABCA1-expressing cells, and peptide cross-linking to ABCA1, indicating that these processes require an active JAK2. In contrast, apoA-I and peptides stabilized ABCA1 protein even in the absence of an active JAK2, implying that this process is independent of JAK2 and lipid efflux-promoting binding of amphipathic helices to ABCA1. These findings show that amphipathic helices coordinate the activity of ABCA1 by several distinct mechanisms that are likely to involve different cell surface binding sites.  相似文献   

14.
Apolipoprotein A-I (apoA-I) mimetic peptides are considered a promising novel therapeutic approach to prevent and/or treat atherosclerosis. An apoA-I mimetic peptide ELK-2A2K2E was designed with a reductionist approach and has shown exceptional activity in supporting cholesterol efflux but modest anti-inflammatory and anti-oxidant properties in vitro. In this study we compared these in vitro properties with the capacity of this peptide to modify rates of reverse cholesterol transport and development of atherosclerosis in mouse models. The peptide enhanced the rate of reverse cholesterol transport in C57BL/6 mice and reduced atherosclerosis in Apoe−/− mice receiving a high fat diet. The peptide modestly reduced the size of the plaques in aortic arch, but was highly active in reducing vascular inflammation and oxidation. Administration of the peptide to Apoe−/− mice on a high fat diet reduced the levels of total, high density lipoprotein and non-high density lipoprotein cholesterol and triglycerides. It increased the proportion of smaller HDL particles in plasma at the expense of larger HDL particles, and increased the capacity of the plasma to support cholesterol efflux. Thus, ELK-2A2K2E peptide reduced atherosclerosis in Apoe−/− mice, however, the functional activity profile after chronic in vivo administration was different from that found in acute in vitro studies.  相似文献   

15.
Endocytosis of LDL and modified LDL represents regulated and unregulated cholesterol delivery to macrophages. To elucidate the mechanisms of cellular cholesterol transport and egress under both conditions, various primary macrophages were labeled and loaded with cholesterol or cholesteryl ester from LDL or acetylated low density lipoprotein (AcLDL), and the cellular cholesterol traffic pathways were examined. Confocal microscopy using fluorescently labeled 3,3'-dioctyldecyloxacarbocyanine perchlorate-labeled LDL and 1,1'-dioctyldecyl-3,3,3',3'-tetramethylindodicarbocyanine perchlorate-labeled AcLDL demonstrated their discrete traffic pathways and accumulation in distinct endosomes. ABCA1-mediated cholesterol efflux to apolipoprotein A-I (apoA-I) was much greater for AcLDL-loaded macrophages compared with LDL. Treatment with the liver X receptor ligand 22-OH increased efflux to apoA-I in AcLDL-loaded but not LDL-loaded cells. In contrast, at a level equivalent to AcLDL, LDL-derived cholesterol was preferentially effluxed to HDL, in keeping with increased ABCG1. In vivo studies of reverse cholesterol transport (RCT) from cholesterol-labeled macrophages injected intraperitoneally demonstrated that LDL-derived cholesterol was more efficiently transported to the liver and secreted into bile than AcLDL-derived cholesterol. This indicates a greater efficiency of HDL than lipid-poor apoA-I in interstitial fluid in controlling in vivo RCT. These assays, taken together, emphasize the importance of mediators of diffusional cholesterol efflux in RCT.  相似文献   

16.
Recently, attention has been focused on pharmacological treatments that increase HDL cholesterol to prevent coronary artery disease. Despite three decades of extensive research of human apolipoprotein A-I (apoA-I), the major protein component of HDL, the molecular basis for its antiatherogenic and anti-inflammatory functions remain elusive. Another protein component of HDL, apoA-II, has structural features similar to those of apoA-I but does not possess atheroprotective properties. To understand the molecular basis for the effectiveness of apoA-I, we used model synthetic peptides. We designed analogs of the class A amphipathic helical motif in apoA-I that is responsible for solubilizing phospholipids. None of these analogs has sequence homology to apoA-I, but all are similar in their lipid-associating structural motifs. Although all of these peptide analogs interact with phospholipids to form peptide:lipid complexes, the biological properties of these analogs are different. Physical-chemical and NMR studies of these peptides have enabled the delineation of structural requirements for atheroprotective and anti-inflammatory properties in these peptides. It has been shown that peptides that interact strongly with lipid acyl chains do not have antiatherogenic and anti-inflammatory properties. In contrast, peptides that associate close to the lipid head group (and hence do not interact strongly with the lipid acyl chain) are antiatherogenic and anti-inflammatory. Understanding the structure and function of apoA-I and HDL through studies of the amphipathic helix motif may lead to peptide-based therapies for inhibiting atherosclerosis and other related inflammatory lipid disorders.  相似文献   

17.
Myeloperoxidase (MPO)-derived hypochlorous acid induces changes in HDL function via redox modifications at the level of apolipoprotein A-I (apoA-I). As 4F and apoA-I share structural and functional properties, we tested the hypothesis that 4F acts as a reactive substrate for hypochlorous acid (HOCl). 4F reduced the HOCl-mediated oxidation of the fluorescent substrate APF in a concentration-dependent manner (ED(50) ~ 56 ± 3 μM). This reaction induced changes in the physical properties of 4F. Addition of HOCl to 4F at molar ratios ranging from 1:1 to 3:1 reduced 4F band intensity on SDS-PAGE gels and was accompanied by the formation of a higher molecular weight species. Chromatographic studies showed a reduction in 4F peak area with increasing HOCl and the formation of new products. Mass spectral analyses of collected fractions revealed oxidation of the sole tryptophan (Trp) residue in 4F. 4F was equally susceptible to oxidation in the lipid-free and lipid-bound states. To determine whether Trp oxidation influenced its apoA-I mimetic properties, we monitored effects of HOCl on 4F-mediated lipid binding and ABCA1-dependent cholesterol efflux. Neither property was altered by HOCl. These results suggest that 4F serves as a reactive substrate for HOCl, an antioxidant response that does not influence the lipid binding and cholesterol effluxing capacities of the peptide.  相似文献   

18.
The ATP-binding cassette transporters ABCA1 and ABCG1 as well as scavenger receptor BI (SR-BI) mediate the efflux of lipids from macrophages to apolipoprotein A-I (apoA-I) and high density lipoproteins (HDL). We used RNA interference in RAW264.7 macrophages to study the interactions of ABCA1, ABCG1, and SR-BI with lipid-free apoA-I, native and reconstituted HDL with apoA-I:phosphatidylcholine ratios of either 1:40 (rHDL(1:40)) or 1:100 (rHDL(1:100)). Knock-down of ABCA1 inhibits the cellular binding at 4 degrees C of lipid-free apoA-I but not of HDL whereas suppression of ABCG1 or SR-BI reduces the binding of HDL but not lipid-free apoA-I. The degree of lipidation influences the interactions of rHDL with ABCG1 and SR-BI. Knock-down of ABCG1 inhibits more effectively the binding and cholesterol efflux capacities of lipid-poorer rHDL(1:40) whereas knock-down of SR-BI has a more profound effect on the binding and cholesterol efflux capacities of lipid-richer rHDL(1:100). Moreover, knock-down of ABCG1 but not SR-BI interferes with the association of lipid-free apoA-I during prolonged incubation at 37 degrees C. Finally, knock-down of ABCG1 inhibits the binding of initially lipid-free apoA-I which has been preconditioned by cells with high ABCA1 activity. The gained ability of initially lipid-free apoA-I to interact with ABCG1 is accompanied by its shift from electrophoretic pre-beta- to alpha-mobility. Taken together, these data suggest that the interaction of lipid-free apoA-I with ABCA1 generates a particle that immediately interacts with ABCG1 but not with SR-BI. Furthermore, the degree of lipidation influences the interaction of HDL with ABCG1 or SR-BI.  相似文献   

19.
Apolipoprotein mimetic peptides are short amphipathic peptides that efflux cholesterol from cells by the ABCA1 transporter and are being investigated as therapeutic agents for cardiovascular disease. We examined the role of helix stabilization of these peptides in cholesterol efflux. A 23-amino acid long peptide (Ac-VLEDSFKVSFLSALEEYTKKLNTQ-NH2) based on the last helix of apoA-I (A10) was synthesized, as well as two variants, S1A10 and S2A10, in which the third and fourth and third and fifth turn of each peptide, respectively, were covalently joined by hydrocarbon staples. By CD spectroscopy, the stapled variants at 24 °C were more helical in aqueous buffer than A10 (A10 17%, S1A10 62%, S2A10 97%). S1A10 and S2A10 unlike A10 were resistant to proteolysis by pepsin and chymotrypsin. S1A10 and S2A10 showed more than a 10-fold increase in cholesterol efflux by the ABCA1 transporter compared to A10. In summary, hydrocarbon stapling of amphipathic peptides increases their helicity, makes them resistant to proteolysis and enhances their ability to promote cholesterol efflux by the ABCA1 transporter, indicating that this peptide modification may be useful in the development of apolipoprotein mimetic peptides.  相似文献   

20.
To study the mechanisms of hepatic HDL formation, we investigated the roles of ABCA1, ABCG1, and SR-BI in nascent HDL formation in primary hepatocytes isolated from mice deficient in ABCA1, ABCG1, or SR-BI and from wild-type (WT) mice. Under basal conditions, in WT hepatocytes, cholesterol efflux to exogenous apoA-I was accompanied by conversion of apoA-I to HDL-sized particles. LXR activation by T0901317 markedly enhanced the formation of larger HDL-sized particles as well as cellular cholesterol efflux to apoA-I. Glyburide treatment completely abolished the formation of 7.4 nm diameter and greater particles but led to the formation of novel 7.2 nm-sized particles. However, cells lacking ABCA1 failed to form such particles. ABCG1-deficient cells showed similar capacity to efflux cholesterol to apoA-I and to form nascent HDL particles compared with WT cells. Cholesterol efflux to apoA-I and nascent HDL formation were slightly but significantly enhanced in SR-BI-deficient cells compared with WT cells under basal but not LXR activated conditions. As in WT but not in ABCA1-deficient hepatocytes, 7.2 nm-sized particles generated by glyburide treatment were also detected in ABCG1-deficient and SR-BI-deficient hepatocytes. Our data indicate that hepatic nascent HDL formation is highly dependent on ABCA1 but not on ABCG1 or SR-BI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号