首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When nitrogen fixing cell cultures of Synechococcus RF-1 were subjected to an alternating lightdark regime (12 h:12 h), a cyclic decrease in the photosynthetic oxygen evolution potential was observed during the dark periods. This rhythm of net photosynthesis rate was maintained for at least two days after transition to continuous light. The decrease in net photosynthesis was accompanied by a stimulation of dark respiration. However, the magnitude of oxygen uptake was considerably smaller than the observed decrease in oxygen evolution. The photosynthetic activity of cells taken from the dark period was characterized by (i) a significantly lower quantum yield and (ii) a strong reduction in the light-saturated rate of photosynthesis. Growing the cultures on nitrate or under continuous light completely suppressed this rhythm. Protein synthesis was not necessary for the recovery of the light-saturated rate of photosynthesis during the light period. The cellular content of chlorophyll a and of phycobiliproteins did not vary between light and dark period, indicating that quantitative changes in the composition of the photosynthetic apparatus are not the basis for the observed oscillations. Regulatory modifications of the photosynthetic efficiency are proposed as an adaptation mechanism to adjust the intracellular oxygen concentration to the needs for nitrogenase activity.Abbreviation Chl chlorophyll  相似文献   

2.
The variation in Skeletonema cells grown at 3 klux continuous illumination and 20°C is reported. Four different types of lamps gave no difference in the photosynthetic characteristics. The average diameter of the cells decreased from 8–3.5 μ during their six months vegetative period. The ratio between the pigment content in the largest and the smallest cells was about 2:1. A good correlation between cell volume and chlorophyll a content was found for this species. The content of chlorophyll c generally varied between 4 and 17 per cent of the chlorophyll a content. — A distinct correlation between the chlorophyll a content and the rate of photosynthesis per unit of cells at low light intensity was found. The rate of photosynthesis, in mg C per mg chlorophyll a and hour at 1 klux, varied between 0.40 and 0.70 for all 60 experiments with an average value of 0.56. The corresponding value for cells deficient in phosophorus was 0.19 and for cells deficient in nitrogen 0.09. — The material also showed a good correlation between the rate of photosynthesis per cell at 1 klux and the light-saturated rate of photosynthesis. Ik varied between 7 and 13 klux.  相似文献   

3.
Synchronous cell division in cultures of Chlorella vulgaris Beijerinck was induced by intermittent illumination: 9 hours light, 6 hours darkness. The rate of photosynthetic O2 evolution per cell increases 4-fold in a one-step manner at the beginning of the light period, to the same extent as the increase in cell number. Over the division cycle, the following accumulation times during the light period were found: chlorophyll a, between 2 and 8 hours, chlorophyll b, between 5 and 8 hours, reaction centers of photosystems I and II, between 2 and 6 hours; and cytochrome f, between 2.5 and 5 hours. Cytochrome f accumulation is closely followed by an increase in amplitude of the rapid phase in light-induced absorption increase at 520 nanometers and in intensity of the delayed light emission. Enhancement of the delayed fluorescence yield per flash under continuous illumination (caused by the establishment of the pH difference across the thylakoid membrane) is maximal by the first hour of the light period.  相似文献   

4.
Glycerol induced a limitation on photosynthetic carbon assimilation by phosphate when supplied to leaves of barley (Hordeum vulgare L.) and spinach (Spinacia oleracea L.). This limitation by phosphate was evidenced by (i) reversibility of the inhibition of photosynthesis by glycerol by feeding orthophosphate (ii) a decrease in light-saturated rates of photosynthesis and saturation at a lower irradiance, (iii) the promotion of oscillations in photosynthetic CO2 assimilation and in chlorophyll fluorescence, (iv) decreases in the pools of hexose monophosphates and triose phosphates and increases in the ratio of glycerate-3-phosphate to triose phosphate, (v) decreased photochemical quenching of chlorophyll fluorescence, and increased non-photochemical quenching, specifically of the component which relaxed rapidly, indicating that thylakoid energisation had increased. In barley there was a massive accumulation of glycerol-3-phosphate and an increase in the period of the oscillations, but in spinach the accumulation of glycerol-3-phosphate was comparatively slight. The mechanism(s) by which glycerol feeding affects photosynthetic carbon assimilation are discussed in the light of these results.Abbreviations Chl chlorophyll - C i intercellular concentration of CO2 - P phosphate - PGA glycerate-3-phosphate - Pi orthophosphate - triose-P sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate  相似文献   

5.
The formation of chlorophyll, cytochrome f, P-700, ribulose bisphosphate carboxylase as well as photosynthesis and Hill reaction activities were tested during the light-dependent greening process of the Chlorella fusca mutant G 10. Neither chlorophyll nor protochlorophyllide was detected in the darkgrown cells. When transferred to light the mutant cells developed chlorophyll and established its photosynthetic capacity after a short lag phase. In the in vivo absorption spectra a spectral shift of the red absorption peak position from 674 to 680 nm was indicated during the first 3 h of greening. Cytochrome f was already present in the dark-grown cells, but during the greening phase a threefold increase in the cytochrome f content could be seen. At the early stages of greening a characteristic primary oscillation in the content of cytochrome f was observed. P-700 was lacking in the dark and during the first 30 min of illumination. From the first to the second h of light a forced synthesis of P-700 took place and the time-course curve for the ratios of P-700/chlorophyll rose to a sharp maximum. The synthesis of P-700 started together with photosystem I activity and showed similar kinetics. We found the simultaneous appearance of photosystem II, photosystem I, and photosynthetic activities 30 min after the beginning of the illumination. Based on chlorophyll content they attained maximum activity after 2 h of light, but at this time photosystem I capacity proved to be remarkably higher than photosynthetic and photosystem II activities. Highest carboxylase activity existed in darkgrown cells. During the greening process the activity of the enzyme decreased continuously. After 2 h of illumination chlorophyll synthesis partially served to increase the size of the photosynthetic unit, which consequently led to a decrease in the light energy needed to saturate photosynthesis and also to a decrease of photosynthetic rate based on chlorophyll content.Abbreviations Chl chlorophyll - Cyt f cytochrome f - DPIP 2,6-dichlorophenolindophenol - EDTA ethylenediaminetetraacetic acid - GSH glutathione - LH light-harvesting - PS photosystem - RuBP ribulose bisphosphate  相似文献   

6.
An axenic clonal culture of Chattonella antiqua (Hada) Ono was grown on a 12: 12 h LD cycle in a laboratory culture tank containing 1 m3 of f/2 medium. Diel changes in mean cell volume, cellular carbon (carbon content per cell), C/N ratio, cellular Chl a, Chl a/c ratio and carotenoid composition were observed. Mean cell volume and cellular C, N and pigments increased during the light period as a result of photosynthesis and decreased with increase of cell concentration by phased cell division during the dark period. These changes indicated that carbon assimilation and pigment synthesis occurred together during the light period. However, the patterns of increase were not the same since different diel patterns were also found in the ratios of C/N and chl a/c. Photosynthetic pigments were analyzed by reversed-phase high-performance liquid chromatography with ion-pairing solution. This analysis showed that the dominant carotenoids in C. antiqua were fucoxanthin, violaxanthin and β-carotene. Diel patterns of Chls a and c were similar to that of fucoxanthin but different from those of violaxanthin and β-carotene. The cellular contents of Chl a, fucoxanthin and carbon increased in a parallel manner during the light period. On the other hand, the increase of violaxanthin was restricted to only a few hours at the beginning of the light period during cell division cycles.  相似文献   

7.
A Persistent Daily Rhythm in Photosynthesis   总被引:9,自引:1,他引:8       下载免费PDF全文
The luminescent marine dinoflagellate, Gonyaulax polyedra, exhibits a diurnal rhythm in the rate of photosynthesis and photosynthetic capacity measured by incorporation of C14O2, at different times of day. With cultures grown on alternating light and dark periods of 12 hours each, the maximum rate is at the 8th hour of the light period. Cultures transferred from day-night conditions to continuous dim light continue to show the rhythm of photosynthetic capacity (activity measured in bright light) but not of photosynthesis (activity measured in existing dim light). Cultures transferred to continuous bright light, however, do not show any rhythm. Several other properties of the photosynthetic rhythm are similar to those of previously reported rhythms of luminescence and cell division. This similarity suggests that a single mechanism regulates the various rhythms.  相似文献   

8.
Summary Cells of Ditylum brightwellii, a large marine centric diatom, were partially synchronized by employing an appropriate light-dark cycle. At 20°C this consisted of 8 hrs of illumination at an intensity of 0.05 cal/cm2 min. A single 2.8 l culture was studied over a 20 day period by diluting the culture daily to a standard cell concentration. The sequence of events in cell development was as follows: daughter cells were formed late in the light period, in the dark they elongated and the numerous chromatophores began dividing. A minimum cell buoyancy was observed in the dark concurrent with cell elongation. Increase in cell phosphorus took place in the dark period. The photosynthetic rate of cells removed during the dark period decreased to a minimum. In the following light period photosynthetic rate increased to a maximum, photosynthetic pigments, cell carbon, nitrogen, and carbohydrate increased and cell division again took place. Cell silica content increased concomitant with cell division. Details of cell morphology during cell division, based upon light microscopy, are reported.Contribution of the Scripps Institution of Oceanography.  相似文献   

9.
Several experiments were conducted to understand better the physiological mechanisms underlying growth inhibition of the dinoflagellate Gonyaulax polyedra Stein due to small-scale turbulence shear. To measure photosynthetic 14C uptake, a “phytoplankton wheel” device for rotating cultures in closed bottles was used. Turbulence was quantified biologically in the bottles by comparing growth inhibition with that in cultures with constant shear between a fixed cylinder and an outer concentric rotating cylinder (a stable Couette flow). At saturating irradiances, particulate photosynthesis (Psat) or photosynthesis per unit chlorophyll (PBsat) were not inhibited completely at the highest turbulence level (26.6 rad.s?1), and photosynthesis was less sensitive than growth. Photosynthesis per cell (PCsat) was increased by turbulence. In three experiments on the effects of turbulence on photosynthesis versus irradiance curves, the slope of the curve, α, for particulate photosynthesis at limiting irradiances did not change. Photosynthesis per unit chlorophyll per unit irradiance (αB) decreased at high (but not intermediate) turbulence levels. Photosynthesis per cell per unit irradiance, αC, increased with turbulence, suggesting an increase in photosynthetic efficiency in turbulent cultures. In two of the three experiments, respiration rates increased with turbulence, and in one experiment excretion of photosynthetically fixed 14C was not affected by motion. Ratios of accessory pigments to chlorophyll a did not change with turbulence, but pigments per cell and per dry weight increased with turbulence. These findings suggest little or no disruption of the photosynthetic apparatus. When turbulence was applied for 1 week, β-carotene increased while peridinin and diadinoxanthin decreased, suggesting inhibition of synthesis of these latter pigments by prolonged turbulence. Since cell numbers did not increase or decreased during turbulent 72–h incubations, cell division was inhibited and also the cells were very much enlarged. Increases in αC per cell suggest that, in the sea, photo synthetic metabolism can persist efficiently without cell division during turbulent episodes. After turbulence ceases or reaches low levels again, cells can then divide and blooms may form. Thus, blooms can come or go fairly rapidly in the ocean depending on the degree of wave- and wind-induced turbulence.  相似文献   

10.
11.
Diel changes in mean cell volume, cellular carbon (carbon content per cell), cellular Chl a, C/N ratio, Chl a/carbon ratio and pigment composition were determined for an axenic clonal culture of Pyramimonas parkeae Norris et Pearson through three 12:12 h LD cycles in a laboratory culture tank of 1 m3. Mean cell volume and cellular C, N and most pigments increased during the light period as a result of photosynthesis and decreased with an increase in cell density by phased cell division during the dark period. Chi a and Chi b increased in a parallel manner during the light period. Increases in the diel synthesis pattern of carotenoids varied. Violaxanthin and lutein content increased for a few hours at the beginning of the light period and preceeded that of neoxanthin. The diel synthesis pattern of neoxanthin was similar to that of Chi a. Increases of loroxanthin and its ester form were slower than that of Chi a at the beginning of the light period. A net increase of α-carotene was observed during the dark period. Mass spectroscopy of carotenoid structure showed a new xanthophyll, loroxanthin dodecenoate, in this species.  相似文献   

12.
Oxygen evolution and chlorophyll fluorescence were measured in cold-hardened and unhardened leaves of barley ( Hordeum vulgare L. cv. Asa) during the induction period of photosynthesis. The lag phase of light-saturated photosynthesis was increased and steady-state rates of photosynthesis were higher in cold-hardened than in unhardened barley leaves. Fluorescence was quenched more rapidly during the first minutes of induction in hardened than unhardened leaves, largely because of greater energy-dependent quenching (qE). Also, slow fluorescence transients through the M peak were delayed and less pronounced in cold-hardened than in unhardened leaves. Based upon the combined fluorescence and oxygen evolution data it was concluded that cold-hardening delayed light activation of the energy consuming carbon reduction cycle, thereby delaying the use of ATP and NADPH formed in the light reaction. Measurements of oxygen evolution and fluorescence kinetics during photosynthetic induction under oxygenic and anoxygenic conditions suggest that oxygen photoreduction is important for additional ATP generation during both the onset of photosynthetic carbon assimilation and during steady-state photosynthesis.  相似文献   

13.
Iron starvation induced marked increases in flavodoxin abundance and decreases in light-saturated and light-limited photosynthesis rates in the diatom Chaetoceros muelleri. Consistent with the substitution of flavodoxin for ferredoxin as an early response to iron starvation, increases of flavodoxin abundance were observed before declines of cell division rate or chl a specific photosynthesis rates. Changes in the abundance of flavodoxin after the addition of iron to iron-starved cells indicated that flavodoxin was not actively degraded under iron-replete conditions. Greater declines in light-saturated oxygen evolution rates than dark oxygen consumption rates indicated that the mitochondrial electron transfer chain was not affected as greatly by iron starvation as the photosynthetic electron transfer chain. The carbon:nitrogen ratio was unaffected by iron starvation, suggesting that photosynthetic electron transfer was a primary target of iron starvation and that reductions in nitrate assimilation were due to energy limitation (the C:N ratio would be expected to rise under nitrogen-limited but energy-replete conditions). Parallel changes were observed in the maximum light-saturated photosynthesis rate and the light-limited initial slope of the photosynthesis-light curve during iron starvation and recovery. The lowest photosynthesis rates were observed in iron-starved cells and the highest values in iron-replete cells. The light saturation parameter, Ik, was not affected by iron starvation, nor was the chl-to-C ratio markedly reduced. These observations were consistent with iron starvation having a similar or greater effect on photochemical charge separation in PSII than on downstream electron transfer steps. Declines of the ratio of variable to maximum fluorescence in iron-starved cells were consistent with PSII being a primary target of iron starvation. The functional cross-section of PSII was affected only marginally (<20%) by iron starvation, with the largest values observed in iron-starved cells. The rate constant for electron transfer calculated from fast repetition rate fluorescence was found to covary with the light-saturated photosynthesis rate; it was lowest in the most severely starved cells.  相似文献   

14.
The characteristics of photosynthetic gas exchange, chlorophyll a fluorescence, and xanthophyll cycle pigments during flag leaf senescence of field-grown wheat plants were investigated. With senescence progressing, the light-saturated net CO2 assimilation rate expressed either on a basis of leaf area or chlorophyll decreased significantly. The apparent quantum yield of net photosynthesis decreased when expressed on a leaf area basis but increased when expressed on a chlorophyll basis. The maximal efficiency of PSII photochemistry decreased very little while actual PSII efficiency, photochemical quenching, and the efficiency of excitation capture by open PSII centers decreased considerably. At the same time, non-photochemical quenching increased significantly. A substantial decrease in the contents of violaxanthin and zeaxanthin, but a slight decrease in the content of antheraxanthin were observed. However, the de-epoxidation status of the xanthophyll cycle was positively correlated with progressive senescence. This increase was due mainly to a smaller decrease in zeaxanthin than in violaxanthin. Our results suggest that PSII apparatus remained functional, but a down-regulation of PSII occurred under the steady state of photosynthesis in senescent flag leaves. Such a down-regulation was associated with the closure of PSII centers and an enhanced xanthophyll cycle-related thermal dissipation in the PSII antennae.  相似文献   

15.
The effects of chilling on the photosynthesis of a chilling-resistant species, pea (Pisum sativum L. cv Alaska) and a chilling-sensitive species, cucumber (Cucumis sativus L. cv Ashley) were compared in order to determine the differences in the photosynthetic chilling sensitivity of these two species. For these experiments, plants were chilled (5°C) for different lengths of time in the dark or light. Following a 1 hour recovery period at 25°C, photosynthetic activity was measured by gas exchange (CO2 uptake and H2O release), quantum yield, and induced chlorophyll fluorescence. The results show that pea photosynthesis was largely unaffected by two consecutive nights of chilling in the dark, or by chilling during a complete light and dark cycle (15 hours/9 hours). Cucumber gas exchange was reduced by one night of chilling, but its quantum yield and variable fluorescence were unaffected by dark chilling. However, chilling cucumber in the light led to reduced CO2 fixation, increased internal leaf CO2 concentration, decreased quantum yield, and loss of variable fluorescence. These results indicate that chilling temperatures in conjunction with light damaged the light reactions of photosynthesis, while chilling in the dark did not.  相似文献   

16.
Max M. Tilzer 《Hydrobiologia》1989,173(2):135-140
An array of factors simultaneously controls phytoplankton photosynthesis and hence the primary production process. Because their relative importance shifts both with depth and with season, the significance of individual factors cannot be resolved by in situ incubations, even if all relevant environmental and biotic variables are measured.Here a procedure is described by which in addition to in situ measurements, photosynthesis is simultaneously assessed in identical subsamples under constant temperature (10 °C) and light (0.66 mol m–2 h–1 PAR conditions, in vitro). By calculating photosynthesis per unit of chlorophyll, effects of shifting biomass on photosynthesis can be eliminated but seasonal variations of light-saturated photosynthesis generated by temperature, and vertical changes of light-requirements (e.g. by light-shade adaptation) remain obscure. Quotients of in situ photosynthetic rates divided by in vitro rates allow the quantification of light-mediated changes. Provided that photosynthesis measured in vitro is light-saturated, quotients in situ: in vitro rates should never exceed unity. They are a measure for the degree of light-limitation. In vitro rates normalized to chlorophyll give information on temporal changes caused by variations in photosynthetic capacity. In Lake Constance, mean cell size appears to control light-saturated assimilation numbers.  相似文献   

17.
The photosynthetic oxygen evolution as well as the chlorophyll and carotenoid patterns were studied during the light phase (14 h) of the Scenedesmus armatus cell cycle. The alga was synchronised by the light/dark regime (14/10 h). In this publication, the term “cell cycle” refers to this period of light only. The oxygen evolution measured by a Clark-type electrode and expressed per cell, gradually increased from the beginning of the cell cycle, reaching its maximum at 12 h and then slowly declined towards the end of the cell cycle. This pattern reflects the final reproductive events of the cell cycle consisting of the third mitotic division, chloroplast and protoplast fission, followed by the formation of the autospores. When the same amount of oxygen was expressed per chlorophyll a content, we observed a rapid increase just after the onset of light, which reached a maximum at the third hour, after which, this slowly declined until the end of the cell cycle. A similar pattern for the relative quantum yield of oxygen evolution was obtained when a photobaric component of a photoacoustic signal was analysed by the photoacoustic spectroscopy method. The most abundant carotenoid was lutein. Much smaller amounts of α-carotene, β-carotene, loroxanthin, violoxanthin and neoxanthin were noted; traces of zeaxanthin and antheraxanthin were also identified. The photosynthetic efficiency and the ratio of lutein/α-carotene followed the same patterns during the cell cycle and similar relationships were also observed in the ratio changes of violoxanthin/β-carotene and violoxanthin/neoxanthin. The most photosynthetic-efficient cells contained the highest level of lutein, and had a much lower violoxanthin content. The content of neoxanthin and β-carotene found was lower, with both pigments still being present in similar amounts. These results suggest that the molecular organisation of LHC IIb mainly determined the photosynthetic efficiency of algae during its light-induced cell cycle.  相似文献   

18.
Summary The protein synthesis inhibitors chloramphenicol and terramycin, and light of low intensity were used to retard the rate of chlorophyll formation in illuminated dark grown pea leaves. In the control leaves the onset of photosynthesis, as measured by carbon dioxide exchange of the whole leaves, and reduction of ferricyanide and metmyoglobin and photo-oxidation of ascorbate in isolated chloroplasts, was observed after 2–4 hours illumination. The photosynthetic activity of the treated leaves did not commence until 10–12 hours illumination had elapsed. In both the control and treated leaves the onset of photosynthesis occurred when the total chlorophyll content was 0.04 mg/g fresh weight. The precise point of photosynthetic inception was apparently more related to the attainment of a specific total chlorophyl content than to the ratio of chlorophyll a to chlorophyll b. A marked increase in the evolution of carbon dioxide in the light was observed in the treated leaves during the first 10 hours of greening. This observation could not be ascribed to photorespiration since the leaves did not possess an active photosystem. It is suggested that the enhanced respiration may have been due to the light-induced activation of synthetic pathways responsible for the formation of chloroplast constituents.The following abbreviations are used CMU 3(3-chlorophenyl)-1, 1-dimethylurea - DCIP dichlorophenol indophenol - PMS phenazine methosulphate - TRIS 2-amino-2-hydroxymethyl propane-1, 3-diol This work was supported by a Science Research Council studentship granted to R. J. Dowdell and submitted for the degree of Ph. D. of Bath University of Technology.  相似文献   

19.
The response of N (nitrate) starved cells of the diatom Phaeodactylum tricornutum and the coccolithophore Emiliania huxleyi to a pulse of new N were measured to investigate rapid cellular and photosynthetic recovery kinetics. The changes of multiple parameters were followed over 24 h. In P. tricornutum, the recovery of Fv/Fm (the maximum quantum yield of PS II) and σPSII (the functional absorption cross‐section for PSII) started within the first hour, much earlier than other parameters. Cellular pigments did not recover during the 24 h but the chlorophyll (chl) a/carotenoid ratios increased to levels measured in the controls. Cell division was independent of the recovery of chl a. In E. huxleyi, the recovery of Fv/Fm and σPSII started after an hour, synchronous with the increase in cellular organic N and chl a with pigments fully recovered within 14 h. P. tricornutum prioritized the recovery of its photosynthetic functions and cell divisions while E. huxleyi did not follow this pattern. We hypothesize that the different recovery strategies between the two species allow P. tricornutum to be more competitive when N pulses are introduced into N‐limited water while E. huxleyi is adapted to N scarce waters where such pulses are infrequent. These findings are consistent with successional patterns observed in coastal environments. This is one of only a few studies exploring recovery kinetics of cellular functions and photosynthesis after nitrogen stress in phytoplankton. Our results can be used to enhance ecological models linking phytoplankton traits to species diversity and community structure.  相似文献   

20.
Growth of Euglena gracilis Z Pringsheim under photoheterotrophic conditions in a nitrogen-deprived medium resulted in progressive loss of chloroplastic material until total bleaching of the cells occurred. Biochemical analysis and ultrastructural observation of the first stages of the starvation process demonstrated an early lag phase (from 0 to 9 h) in which cells increased in size, followed by a period of cell division, apparently supported by the mobilization of some chloroplastic proteins such as the photosynthetic CO2-fixing enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase. The degradation of the enzyme started after 9 h of starvation and was preceded by a transient concentration of this protein in pyrenoidal structures. Protein nitrogen and photosynthetic pigments as well as number of chloroplasts per cell decreased during proliferation through mere distribution among daughter cells. However, after 24 h, when cell division had almost ceased, there was a slow but steady decline of photosynthetic pigments. This was paralleled by observable ultrastructural changes including progressive loss of chloroplast structure and accumulation of paramylon granules and lipid globules in the cytoplasm. These findings reinforce the role of chloroplastic materials as a nitrogen source during starvation of E. gracilis in a carbon-rich medium. The excess of ribulose-1,5-bisphosphate carboxylase/oxygenase acts as a first reservoir that, once exhausted, is superseded by the generalized disassembly of the photosynthetic structures, if the adverse environment persists more than 24 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号