首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
2.
ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large ring-like structure, termed the Z-ring, during cell division at the site of constriction. The FtsZ monomer is composed of an N-terminal polymerization domain, an unstructured linker region and a C-terminal conserved region. To better understand substrate selection by ClpXP, we engineered FtsZ mutant proteins containing amino acid substitutions or deletions near the FtsZ C-terminus. We identified two discrete regions of FtsZ important for degradation of both FtsZ monomers and polymers by ClpXP in vitro. One region is located 30 residues away from the C-terminus in the unstructured linker region that connects the polymerization domain to the C-terminal region. The other region is near the FtsZ C-terminus and partially overlaps the recognition sites for several other FtsZ-interacting proteins, including MinC, ZipA and FtsA. Mutation of either region caused the protein to be more stable and mutation of both caused an additive effect, suggesting that both regions are important. We also observed that in vitro MinC inhibits degradation of FtsZ by ClpXP, suggesting that some of the same residues in the C-terminal site that are important for degradation by ClpXP are important for binding MinC.  相似文献   

3.
Trans-translation is a process that adds a hydrophobic peptide tag to the C-terminus of polypeptides, which causes them to become unstable. We designed a genetic screen to identify factors involved in the degradation of trans-translated products, using the green fluorescent protein (GFP) fused to the trans-translation tag as a reporter. Two screens were devised to identify insertional mutants that stabilize such substrates. Only disruption of the clpX or clpP gene resulted in stabilization of the tagged substrates. The sspB gene product was recently shown to be a specificity-enhancing factor for the ClpXP degradation machine. In the wild-type background, targeted inactivation of the sspB gene failed to stabilize the tagged substrate. These results indicate that the ATP-dependent ClpXP protease is probably the only main component involved in the degradation of cytoplasmic trans-translated proteins in Escherichia coli that can be completely inactivated.  相似文献   

4.
The first visible event in prokaryotic cell division is the assembly of the soluble, tubulin-like FtsZ GTPase into a membrane-associated cytokinetic ring that defines the division plane in bacterial and archaeal cells. In the temperature-sensitive ftsZ84 mutant of Escherichia coli, this ring assembly is impaired at the restrictive temperature causing lethal cell filamentation. Here I present genetic and morphological evidence that a 2-fold higher dosage of the division gene zipA suppresses thermosensitivity of the ftsZ84 mutant by stabilizing the labile FtsZ84 ring structure in vivo. I demonstrate that purified ZipA promotes and stabilizes protofilament assembly of both FtsZ and FtsZ84 in vitro and cosediments with the protofilaments. Furthermore, ZipA organizes FtsZ protofilaments into arrays of long bundles or sheets that probably represent the physiological organization of the FtsZ ring in bacterial cells. The N-terminal cytoplasmic domain of membrane-anchored ZipA contains sequence elements that resemble the microtubule-binding signature motifs in eukaryotic Tau, MAP2 and MAP4 proteins. It is postulated that the MAP-Tau-homologous motifs in ZipA mediate its binding to FtsZ, and that FtsZ-ZipA interaction represents an ancient prototype of the protein-protein interaction that enables MAPs to suppress microtubule catastrophe and/or to promote rescue.  相似文献   

5.
ftsZ is an essential cell division gene in Escherichia coli.   总被引:28,自引:21,他引:7       下载免费PDF全文
The ftsZ gene is thought to be an essential cell division gene in Escherichia coli. We constructed a null allele of ftsZ in a strain carrying additional copies of ftsZ on a plasmid with a temperature-sensitive replication defect. This strain was temperature sensitive for cell division and viability, confirming that ftsZ is an essential cell division gene. Further analysis revealed that after a shift to the nonpermissive temperature, cell division ceased when the level of FtsZ started to decrease, indicating that septation is very sensitive to the level of FtsZ. Subsequent studies showed that nucleoid segregation was normal while FtsZ was decreasing and that ftsZ expression was not autoregulated. The null allele could not be complemented by lambda 16-2, even though this bacteriophage can complement the thermosensitive ftsZ84 mutation and carries 6 kb of DNA upstream of the ftsZ gene.  相似文献   

6.
7.
The Fts proteins play an important role in the control of cell division in Escherichia coli. These proteins, which possibly form a functional complex, are encoded by genes that form an operon. In this study, we examined the properties of the temperature-sensitive mutation ftsZ84 harbored by low- or high-copy-number plasmids. Cells of strain AB1157, which had the ftsZ84 mutation, did not form colonies on salt-free L agar at 30 degrees C. When a low-copy-number plasmid containing the ftsZ84 mutation was present in these mutant cells, colony formation was restored on this medium at 30 degrees C, suggesting that FtsZ84 is probably less active than the wild-type protein and is therefore limiting in its capacity to trigger cell divisions. On the other hand, when the ftsZ84 mutation was harbored by the high-copy-number plasmid pBR325, colony formation was prevented on salt-free L agar plates whether the recipients were ftsZ84 mutant or parental cells, suggesting that, at high levels, FtsZ84 acts as a division inhibitor. The fact that colony formation was also prevented at 42 degrees C indicates that the FtsZ84 protein is not inactivated at the nonpermissive temperature. The possibility that FtsZ84 is a more efficient division inhibitor than the wild-type FtsZ is discussed. Evidence is also presented showing that a gene adjacent to mutT codes for a product that, under certain conditions, suppresses the ftsZ84 mutation.  相似文献   

8.
The ftsZ gene is required for cell division in Escherichia coli and Bacillus subtilis. In these organisms, FtsZ is located in a ring at the leading edge of the septum. This ring is thought to be responsible for invagination of the septum, either causing invagination of the cytoplasmic membrane or activating septum-specific peptidoglycan biosynthesis. In this paper, we report that the cell division gene ftsZ is present in two mycoplasma species, Mycoplasma pulmonis and Acholeplasma laidlawii, which are eubacterial organisms lacking a cell wall. Sequencing of the ftsZ homolog from M. pulmonis revealed that it was highly homologous to other known FtsZ proteins. The M. pulmonis ftsZ gene was overexpressed, and the purified M. pulmonis FtsZ bound GTP. Using antisera raised against this purified protein, we could demonstrate that it was expressed in M. pulmonis. Expression of the M. pulmonis ftsZ gene in E. coli inhibited cell division, leading to filamentation, which could be suppressed by increasing expression of the E. coli ftsZ gene. The implications of these results for the role of ftsZ in cell division are discussed.  相似文献   

9.
10.
Escherichia coli mutants lacking activities of all known cytosolic ATP-dependent proteases (Lon, ClpAP, ClpXP, and HslVU), due to double deletions [DeltahslVU and Delta(clpPX-lon)], cannot grow at low (30 degrees C) or very high (45 degrees C) temperatures, unlike those carrying either of the deletions. Such growth defects were particularly marked when the deletions were introduced into strain MG1655 or W3110. To examine the functions of HslVU and other proteases further, revertants that can grow at 30 degrees C were isolated from the multiple-protease mutant and characterized. The revertants were found to carry a suppressor affecting either ftsZ (encoding a key cell division protein) or sulA (encoding the SulA inhibitor, which binds and inhibits FtsZ). Whereas the ftsZ mutations were identical to a mutation known to produce a protein refractory to SulA inhibition, the sulA mutations affected the promoter-operator region, reducing synthesis of SulA. These results suggested that the growth defect of the parental double-deletion mutant at a low temperature was due to the accumulation of excess SulA without DNA-damaging treatment. Consistent with these results, SulA in the double-deletion mutant was much more stable than that in the Delta(clpPX-lon) mutant, suggesting that SulA can be degraded by HslVU. As expected, purified HslVU protease degraded SulA (fused to the maltose-binding protein) efficiently in an ATP-dependent manner. These results suggest that HslVU as well as Lon participates in the in vivo turnover of SulA and that HslVU becomes essential for growth when the Lon (and Clp) protease level is reduced below a critical threshold.  相似文献   

11.
The Caulobacter crescentus chromosomal clp locus contains the genes encoding the components of ClpXP, a multisubunit protease required for cell cycle progression in this organism. Here, we report the identification and characterization of cicA, a gene located between the clpX and clpP genes on the Caulobacter chromosome. cicA is a novel morphogene in C. crescentus and, like clpX and clpP, is essential for growth. A conditional cicA mutant stopped growth, but retained viability under restrictive conditions. In contrast, an increased concentration of CicA led to an immediate loss of the normal rod shape, an almost 10-fold increase of the cell's volume and a cell division block. In parallel with this drastic morphological change, cells rapidly lost viability. Primary sequence analysis suggested that the cicA gene encodes a member of a large superfamily of phosphotransferases, that include phosphoserine phosphatases, the ATPase domain of P-type ATPases and receiver domains of response regulators. Four conserved motifs of this protein family that have been implicated in the catalysis of phosphotransfer reactions were investigated by site-directed mutagenesis and were found to be critical for in vivo function of CicA. Based on our observations, we postulate that CicA is involved in essential phosphotransferase reactions in Caulobacter and that increased activity of CicA has a deleterious effect on cell wall biosynthesis, morphogenesis and cell division.  相似文献   

12.
We isolated five new temperature-sensitive alleles of the essential cell division gene ftsZ in Escherichia coli, using P1-mediated, localized mutagenesis. The five resulting single amino acid changes (Gly109-->Ser109 for ftsZ6460, Ala129-->Thr129 for ftsZ972, Val157-->Met157 for ftsZ2066, Pro203-->Leu203 for ftsZ9124, and Ala239-->Val239 for ftsZ2863) are distributed throughout the FtsZ core region, and all confer a lethal cell division block at the nonpermissive temperature of 42 degrees C. In each case the division block is associated with loss of Z-ring formation such that fewer than 2% of cells show Z rings at 42 degrees C. The ftsZ9124 and ftsZ6460 mutations are of particular interest since both result in abnormal Z-ring formation at 30 degrees C and therefore cause significant defects in FtsZ polymerization, even at the permissive temperature. Neither purified FtsZ9124 nor purified FtsZ6460 exhibited polymerization when it was assayed by light scattering or electron microscopy, even in the presence of calcium or DEAE-dextran. Hence, both mutations also cause defects in FtsZ polymerization in vitro. Interestingly, FtsZ9124 has detectable GTPase activity, although the activity is significantly reduced compared to that of the wild-type FtsZ protein. We demonstrate here that unlike expression of ftsZ84, multicopy expression of the ftsZ6460, ftsZ972, and ftsZ9124 alleles does not complement the respective lethalities at the nonpermissive temperature. In addition, all five new mutant FtsZ proteins are stable at 42 degrees C. Therefore, the novel isolates carrying single ftsZ(Ts) point mutations, which are the only such strains obtained since isolation of the classical ftsZ84 mutation, offer significant opportunities for further genetic characterization of FtsZ and its role in cell division.  相似文献   

13.
The Escherichia coli starvation-induced DNA protection protein Dps was observed to be degraded rapidly during exponential growth. This turnover is dependent on the clpP and clpX genes. The clpA gene is not required for Dps proteolysis, suggesting that Dps is a substrate for ClpXP protease but not for ClpAP protease. Dps proteolysis was found to be highly regulated. Upon carbon starvation, Dps is stabilized, which together with increased Dps synthesis allows strong accumulation of Dps in the stationary phase. The addition of glucose to starving cells results in rapid resumption of Dps proteolysis by ClpXP. Oxidative stress also leads to efficient stabilization of Dps. After hyperosmotic shift, however, proteolysis remains unaffected. Thus, regulated proteolysis of Dps strongly contributes to controlling Dps levels under very specific stress conditions. In contrast to the regulated degradation of RpoS by ClpXP, Dps proteolysis is independent of the recognition factor RssB. In addition, during starvation, clpP and, to a somewhat lesser extent, clpA are involved in maintaining ongoing Dps synthesis (acting at the level of Dps translation), which is required for strong Dps accumulation in long-term stationary phase cells. In summary, both ClpXP and ClpAP exert significant control of Dps levels by affecting log phase stability and stationary phase synthesis of Dps respectively.  相似文献   

14.
To investigate the interaction between FtsZ and the Min system during cell division of Escherichia coli, we examined the effects of combining a well-known thermosensitive mutation of ftsZ, ftsZ84, with DeltaminCDE, a deletion of the entire min locus. Because the Min system is thought to down-regulate Z-ring assembly, the prediction was that removing minCDE might at least partially suppress the thermosensitivity of ftsZ84, which can form colonies below 42 degrees C but not at or above 42 degrees C. Contrary to expectations, the double mutant was significantly more thermosensitive than the ftsZ84 single mutant. When shifted to the new lower nonpermissive temperature, the double mutant formed long filaments mostly devoid of Z rings, suggesting a likely cause of the increased thermosensitivity. Interestingly, even at 22 degrees C, many Z rings were missing in the double mutant, and the rings that were present were predominantly at the cell poles. Of these, a large number were present only at one pole. These cells exhibited a higher than expected incidence of polar divisions, with a bias toward the newest pole. Moreover, some cells exhibited dramatically elongated septa that stained for FtsZ, suggesting that the double mutant is defective in Z-ring disassembly, and providing a possible mechanism for the polar bias. Thermoresistant suppressors of the double mutant arose that had modestly increased levels of FtsZ84. These cells also exhibited elongated septa and, in addition, produced a high frequency of branched cells. A thermoresistant suppressor of the ftsZ84 single mutant also synthesized more FtsZ84 and produced branched cells. The evidence from this study indicates that removing the Min system exposes and exacerbates the inherent defects of the FtsZ84 protein, resulting in clear septation phenotypes even at low growth temperatures. Increasing levels of FtsZ84 can suppress some, but not all, of these phenotypes.  相似文献   

15.
衣藻叶绿体分裂基因CrFtsZ1在E.coli中的表达   总被引:1,自引:0,他引:1  
FtsZ蛋白在细菌的分裂中起着重要作用,能够在分裂位点形成一个环状结构而控制细菌的分裂过程。细胞内FtsZ蛋白浓度的明显降低或异常升高均可阻断正常的细胞分裂过程进而导致丝状菌体的产生。为了研究衣藻叶绿体分裂基因ftsZ的功能,构建了衣藻CrFtsZ1的原核表达重组质粒。试验结果表明,衣藻ftsZ的表达严重影响了大肠杆菌的分裂,初步证明衣藻FtsZ蛋白不仅与E.coli FtsZ蛋白在序列上相似,而且也有着相似的功能,同时这一结果也为真核细胞中质体的内共生起源提供了直接的证据。  相似文献   

16.
Escherichia coli lon mutants are sensitive to UV light and other DNA-damaging agents. This sensitivity is due to the loss of the lon-encoded ATP-dependent proteolytic activity which results in increased stability of the cell division inhibitor SulA. Introduction of the multicopy plasmid pZAQ containing the ftsZ gene, which is known to increase the level of FtsZ, suppressed the sensitivity of lon mutants to the DNA-damaging agents UV and nitrofurantoin. Alterations of pZAQ which reduced the expression of ftsZ reduced the ability of this plasmid to suppress the UV sensitivity. Examination of the kinetics of cell division revealed that pZAQ did not suppress the transient filamentation seen after exposure to UV, but did suppress the long-term inhibition that is normally observed. lon strains carrying pZAQ could stably maintain a multicopy plasmid carrying sulA (pBS2), which cannot otherwise be introduced into lon mutants. In addition, the increased temperature sensitivity of lexA(Ts) strains containing pBS2 was suppressed by pZAQ. These results suggest that SulA inhibits cell division by inhibiting FtsZ and that this interaction is stoichiometric.  相似文献   

17.
Proteolytic control of Caulobacter cell cycle proteins is primarily executed by ClpXP, a dynamically localized protease implicated in turnover of several factors critical for faithful cell cycle progression. Here, we show that the transient midcell localization of ClpXP that precedes cytokinesis requires the FtsZ component of the divisome. Although ClpAP does not exhibit subcellular localization, FtsZ is a substrate of both ClpXP and ClpAP in vivo and in vitro. A peptide containing the C‐terminal portion of the FtsA divisome protein is a substrate of both ClpXP and ClpAP in vitro but is primarily degraded by ClpAP in vivo. Caulobacter carries out an asymmetric division in which FtsZ and FtsA are stable in stalked cells but degraded in the non‐replicative swarmer cell where ClpAP alone degrades FtsA and both ClpAP and ClpXP degrade FtsZ. While asymmetric division in Caulobacter normally yields larger stalked and smaller swarmer daughters, we observe a loss of asymmetric size distribution among daughter cells when clpA is depleted from a strain in which FtsZ is constitutively produced. Taken together, these results suggest that the activity of both ClpXP and ClpAP on divisome substrates is differentially regulated in daughter cells.  相似文献   

18.
FtsZ是与真核微管蛋白类似的原核骨架蛋白,能在细胞分裂位点聚合组装成环状结构而调控细胞分裂过程。为了研究钝顶螺旋藻(Spirulina platensis)FtsZ蛋白的功能,构建了钝顶螺旋藻FtsZ与绿色荧光蛋白GFP融合表达的质粒,并在大肠杆菌中进行了表达和定位研究,结果发现,表达融合蛋白GFP-FtsZ的大肠杆菌细胞由短杆状变为长丝状,且菌丝体长度与融合蛋白的表达量呈正比。在荧光显微镜下观察到融合蛋白GFP-FtsZ在长丝状体细菌中呈有规律的点状分布,这说明FtsZ蛋白功能高度保守,钝顶螺旋藻FtsZ蛋白能识别大肠杆菌分裂位点并装配成环状结构调控大肠杆菌细胞分裂,FtsZ蛋白的过量表达能抑制大肠杆菌正常的细胞分裂而导致长丝状体细胞的形成。  相似文献   

19.
ATP-dependent proteases of the ClpP type are widespread in eubacteria. These proteolytic complexes are composed of a proteolytic subunit and an ATPase subunit. They are involved in the degradation of denatured proteins, but also play a role in specific regulatory pathways. In Streptomyces lividans strains which lack the proteolytic subunit ClpP1, cell cycle progression has been shown to be blocked at early stages of growth. In this study, we examined the role of the ATPase subunit ClpX, a possible partner of the products of the clpP1 operon. A clpX mutant was obtained and it was shown that its growth was impaired only on acidic medium. Thus, the clpX phenotype differs from the clpP1 phenotype, indicating that these two components have only partially overlapping roles. We also analyzed the expression of clpX. Although clpX expression is increased under heat-shock conditions in many bacteria, we found that this is not the case in S. lividans.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号