首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A highly sensitive and simple high-performance liquid chromatographic (HPLC) assay has been developed and validated for the quantification of dibenzoylmethane (DBM) in rat plasma. DBM and internal standard (I.S.) 1-(5-chloro-2-hydroxy-4-methylphenyl)-3-phenyl-1,3-propanedione (CHMPP) were extracted from rat plasma by ethyl acetate/methanol (95:5, v/v) and analyzed using reverse-phase gradient elution with a Phenomenex Gemini C18 5-mum column. A gradient of mobile phase (mobile phase A: water/methanol (80:20, v/v) with 0.1% TFA and mobile phase B: acetonitrile with 0.1% TFA) at a flow rate of 0.2 mL/min, and ultraviolet (UV) detection at 335 nm were utilized. The lower limit of quantification (LLOQ) using 50 microL rat plasma was 0.05 microg/mL. The calibration curve was linear over a concentration range of 0.05-20 microg/mL. The mean recoveries were 80.6+/-5.7, 83.4+/-1.6 and 77.1+/-3.4% with quality control (QC) level of 0.05, 1 and 20 microg/mL, respectively. Intra- and inter-day assay accuracy and precision fulfilled US FDA guidance for industry bioanalytical method validation. Stability studies showed that DBM was stable in rat plasma after 4h incubation at room temperature, one month storage at -80 degrees C and three freeze/thaw cycles, as well as in reconstitute buffer for 48 h at 4 degrees C. The utility of the assay was confirmed by the successful analysis of plasma samples from DBM pharmacokinetics studies in the rats after oral and intravenous administrations.  相似文献   

2.
A reliable liquid chromatography/tandem mass spectrometry has been developed for simultaneous evaluation of the activities of five cytochrome P450s (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A) in rat plasma and urine. The five-specific probe substrates/metabolites include phenacetin/paracetamol (CYP1A2), tolbutamide/4-hydroxytolbutamide and carboxytolbutamide (CYP2C9), mephenytoin/4'-hydroxymephenytoin (CYP2C19), dextromethorphan/dextrorphan (CYP2D6), and midazolam/1'-hydroxymidazolam (CYP3A). Internal standards were brodimoprim (for phenacetin, paracetamol, midazolam and 1'-hydroxymidazolam), ofloxacin (for 4'-hydroxymephenytoin, dextromethorphan and dextrorphan) and meloxicam (for tolbutamide, 4-hydroxytolbutamide and carboxytolbutamide). Sample preparation was conducted with solid-phase extraction using Oasis HLB cartridges. The chromatography was performed using a C(18) column with mobile phase consisting of methanol/0.1% formic acid in 20 mM ammonium formate (75:25). The triple-quadrupole mass spectrometric detection was operated in both positive mode (for phenacetin, paracetamol, midazolam, 1'-hydroxymidazolam, brodimoprim, 4'-hydroxymephenytoin, dextromethorphan, dextrorphan and ofloxacin) and negative mode (for tolbutamide, 4-hydroxytolbutamide, carboxytolbutamide and meloxicam). Multiple reaction monitoring mode was used for data acquisition. Calibration ranges in plasma were 2.5-2500 ng/mL for phenacetin, 2.5-2500 ng/mL for paracetamol, 5-500 ng/mL for midazolam, and 0.5-500 ng/mL for 1'-hydroxymidazolam. In urine calibration ranges were 5-1000 ng/mL for dextromethorphan, 0.05-10 microg/mL for dextrorphan and 4'-hydroxymephenytoin, 5-2000 ng/mL for tolbutamide, 0.05-20 microg/mL for 4-hydroxytolbutamide and 0.025-10 microg/mL for carboxytolbutamide. The intra- and inter-day precision were 4.3-12.4% and 1.5-14.8%, respectively for all of the above analytes. The intra- and inter-day accuracy ranged from -9.1 to 8.3% and -10 to 9.2%, respectively for all of the above analytes. The lower limits of quantification were 2.5 ng/mL for phenacetin and paracetamol, 5 ng/mL for midazolam, 0.5 ng/mL for 1'-hydroxymidazolam, 5 ng/mL for dextromethorphan, 50 ng/mL for dextrorphan and 4'-hydroxymephenytoin, 5 ng/mL for tolbutamide, 50 ng/mL for 4-hydroxytolbutamide and 25 ng/mL for carboxytolbutamide. All the analytes were evaluated for short-term (24 h, room temperature), long-term (3 months, -20 degrees C), three freeze-thaw cycles and autosampler (24 h, 4 degrees C) stability. The stability of urine samples was also prepared with and without beta-glucuronidase incubation (37 degrees C) and measured comparatively. No significant loss of the analytes was observed at any of the investigated conditions. The current method provides a robust and reliable analytical tool for the above five-probe drug cocktail, and has been successfully verified with known CYP inducers.  相似文献   

3.
Tetrahydrocurcumin (THC), one of the major metabolites of curcumin, exhibits many of the same physiologic and pharmacological activities as curcumin and in some systems may exert greater antioxidant activity than curcumin. However, evaluation of clinical efficacy is limited by lack of sensitive methods for quantifying intake/absorption in blood or urine. We have developed a sensitive high performance liquid chromatography (HPLC) analytical method for detection of THC in plasma and urine. The method involves extracting the THC from 0.2 mL samples with 95% ethyl acetate/5% methanol, and beta-17-estradiol acetate as an internal standard. Analysis with a reversed-phase C18 column and UV detection at 280 nm demonstrates linear performance from 0.050 to 6.0 microg/mL in plasma, and 0.060 to 6.0 microg/mL in urine. The coefficients of variation for intra- and inter-assays were each<8.6%. The average recovery of THC from plasma and urine was greater than 98.5%. These data demonstrate a rapid, sensitive and accurate method for HPLC quantification of THC in plasma and urine.  相似文献   

4.
A rapid, selective and highly sensitive reversed-phase high-performance liquid chromatography (HPLC) method was developed for the determination of levosulpiride, 5-(aminosulfonyl)-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxy benzamide, in human serum and urine. The method involved the extraction with a dichloromethane followed by back-extraction into 0.025 M sulfuric acid. HPLC analysis was carried out using reversed-phase isocratic elution with a Luna C(18)(2) 5 microm column, a mobile phase of acetonitrile-0.01 M potassium hydrogen phosphate (30:70, v/v, adjusted to pH 8.5 with triethylamine), and a fluorescence detector with excitation at 300 nm and emission at 365 nm. The chromatograms showed good resolution and sensitivity and no interference of human serum and urine. The calibration curves were linear over the concentration range 0.25-200 ng/ml for serum and 0.2-20 microg/ml for urine with correlation coefficients greater than 0.997. Intra- and inter-day assay precision and accuracy fulfilled the international requirements. The mean absolute recovery for human serum was 89.8+/-3.7%. The lower limits of quantitation in human serum and urine were 0.25 ng/ml and 0.2 microg/ml, respectively, which were sensitive enough for pharmacokinetic studies. Stability studies showed that levosulpiride in human serum and urine was stable during storage, or during the assay procedure. This method was successfully applied to the study of pharmacokinetics of levosulpiride in human volunteers following a single oral administration of levosulpiride (25 mg) tablet.  相似文献   

5.
A sensitive liquid chromatography-mass spectrometric (LC/MS) method for the quantification of schizandrin in rat plasma was developed and validated after solid-phase extraction (SPE). Chromatographic separation was achieved on a reversed-phase Shimadzu C(18) column with the mobile phase of acetonitrile-sodium acetate (10 micromol/L) and step gradient elution resulted in a total run time of about 11.7 min. The analytes were detected using an electrospray positive ionization mass spectrometry in the selected ion monitoring (SIM) mode. A good linear relationship was obtained in the concentration range studied (0.005-2.000 microg/mL) (r=0.9999). Lower limit of quantification (LLOQ) was 5 ng/mL and the lower limit of detection (LLOD) was 2 ng/mL using 100 microL plasma sample. Average recoveries ranged from 75.85 to 88.51% in plasma at the concentrations of 0.005, 0.100 and 1.000 microg/mL. Intra- and inter-day relative standard deviations were 5.95-12.93% and 3.87-14.53%, respectively. This method was successfully applied for the pharmacokinetic studies in rats.  相似文献   

6.
A HPLC method with UV detection was developed and validated for the determination of thiorphan in human plasma. Nevirapine was used as the internal standard. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 degrees C. The mobile phase was a mixture of 0.05 M phosphate buffer with the pH adjusted to 2.6 and acetonitrile (74:26, v/v) at a flow rate of 1.0 mL/min. The UV detector was set at 210 nm. An original pre-treatment of plasma samples was developed, based on solid-phase extraction (SPE) with solid-phase extraction cartridges (Oasis HLB 3 mL, 60 mg). The extraction recovery for plasma samples of thiorphan at 0.1, 0.4 and 2.0 microg/mL was 93.5%, 98.2% and 97.8%, respectively. The calibration curve was linear with the correlation coefficient (r) above 0.9998. Linearity was verified over the range of 0.05-4 microg/mL thiorphan in plasma. The limit of quantification (LOQ) is 0.05 microg/mL. The mean accuracy was 92.7-99.6%. The coefficient of variation (precision) in the within- and between-batch was 2.2-8.4% and 4.1-8.1%, respectively. This method is simple, economical and specific, and has been used successfully in a pharmacokinetic study of thiorphan.  相似文献   

7.
Gadocoletate ion is a new paramagnetic intravascular contrast agent for magnetic resonance imaging (MRI). An high-performance liquid chromatographic method for assaying Gadocoletate ion in human plasma, urine and faecal samples is described. The analysis is based on the reversed-phase chromatographic separation of Gadocoletate ion from the endogenous components of the biological matrices and its detection during elution by ultraviolet light absorption at 200 nm. The selectivity of the method was satisfactory. The mean absolute recovery during the analytical sample preparation was greater than 87%. The precision, expressed as coefficient of variation (CV%) ranged from 0.29 to 5.90% and the accuracy, expressed as mean relative error (R.E.%) of the analytical method ranged from -3.7 to +7.1%. The detection limit in plasma and urine was 2.01 and 10.0 microg/mL (0.00203 and 0.0101 micromol/mL), respectively. The detection limit in homogenized faecal samples was 17.7 microg/g (0.0179 micromol/g). Stability studies were performed in human plasma and urine samples during the analytical cycle. Gadocoletate ion was shown to be stable in human plasma and in human urine when stored at about +4 degrees C for up 24 h, and after three freeze-thaw cycles. In addition, it was shown to be stable in samples of processed plasma and in diluted urine at about +4 degrees C for 48 h, and at room temperature for at least 24 h. As regards the long-term stability of Gadocoletate ion, the results of dedicated studies showed that Gadocoletate ion is stable in human plasma samples when stored at +4 degrees C for up to 30 days and at -80 degrees C for up to 90 days. Gadocoletate ion is stable in samples of human urine when stored at +4 degrees C for up to 30 days, and when stored at -20 degrees C and at -80 degrees C for up to 90 days. The method has been successfully validated in human plasma, urine and faeces and it has been shown to be precise, accurate and reliable.  相似文献   

8.
A sensitive liquid chromatography-mass spectrometric (LC/MS) method for the quantification of ginsenoside Rd in dog plasma was developed and validated after solid-phase extraction (SPE).Chromatographic separation was achieved on a reversed-phase Cromosil C(18) column with the mobile phase of acetonitrile-ammonium chloride (500 micromol/L) and step gradient elution resulted in a total run time of about 5.5 min. The analytes were detected by using an electrospray negative ionization mass spectrometry in the selected ion monitoring (SIM) mode. A good linear relationship was obtained in the concentration range studied (0.005-2.500 microg/mL) (r=0.9998). Lower limit of quantification (LLOQ) was 5 ng/mL by using 500 microL plasma sample. Average recoveries ranged from 70.71 to 75.89% in plasma at the concentrations of 0.010, 0.100 and 2.500 microg/mL. Intra- and inter-day relative standard deviations were 8.49-11.71 and 5.71-16.48%, respectively. This method was successfully applied to the pharmacokinetic studies on dogs. The absolute bioavailability of Rd in dogs was 0.26%.  相似文献   

9.
Gentamicin and netilmicin (internal standard) were extracted from urine using C18 solid-phase extraction cartridges (94.3% recovery) and then derivatised with o-phthalaldehyde and 3-mercaptopropionic acid. The derivative was stable for >6 h. The mobile phase methanol-glacial acetic acid-water (800:20:180, v/v), contained 0.02 M sodium heptanesulfonic acid, pH 3.4, and was passed at 1.0 ml min(-1) through a C18 column with fluorescence detection (excitation 340 nm, emission 418 nm). The four main components of gentamicin (C1, C1a, C2, C2a) and netilmicin, the internal standard, were separated. Using the C1a gentamicin peak, linearity was demonstrated from 0.5 to 10 microg ml(-1) and the limit of detection was 75 microg l(-1). Following 80-mg oral, 40-mg intravenous and 80-mg nebulised administration, the mean (SD) gentamicin urinary excretion was zero, 38.27 (0.96) and 1.93 (0.28) mg, respectively. Despite the relatively low lung deposition following inhalation of gentamicin the assay developed can be used to quantify the low urinary concentrations. Using this assay it should be possible to carry out urinary pharmacokinetic studies to identify the relative lung deposition of gentamicin following different methods of inhalation.  相似文献   

10.
We have previously reported an iothalamate assay for the assessment of the glomerular filtration rate (GFR) that required a long column equilibration time and 22 min run time per sample. We now report a simpler assay that requires a run time of only 5.5 min and is more precise and accurate than the earlier technique. The mobile phase consisted of methanol-acetonitrile-50 mM sodium monobasic phosphate (10:5:85, v/v) at pH 4.4, pumped at a rate of 1.5 ml/min on a C(18) reversed-phase column. Samples of plasma and urine were deproteinized with 1 volume of 4% perchloric acid or 9 volumes of 2% perchloric acid, respectively. No internal standard was used. The diode array detection system collected absorbance at 240 nm and the peak height areas of iothalamate were determined. The iothalamate peak appeared at 3.5 min. Detector response was linear over the range tested (10-2000 microg/ml). Within-run precision was <3% for both plasma and urine and accuracy was 96-102%. Between-day precision for plasma and urine analyses were <7%. The recovery of iothalamate in urine and plasma were 102% and 91%, respectively. There was excellent thermal and pH stability of iothalamate. No interference was found with para-amino hippuric acid (PAH) or N-acetyl PAH, which can be simultaneously assayed, if desired.  相似文献   

11.
Liquid chromatography-electrospray ionization mass spectrometry methods are described for the simultaneous quantification of a bis-thiazolium compound (T3), its related prodrug (TE3) and an intermediate compound (mTE3) that appeared during the prodrug/drug conversion process, in human plasma, whole blood and red blood cells (RBCs). The methods involve solid phase extraction (SPE) of the compounds and the internal standard (verapamil) from the three different matrices using OasisHLB columns with an elution solvent of 2x1 ml of acetonitrile containing 1 ml/l trifluoroacetic acid (TFA). HPLC separation was performed on a C18 encapped Xterra column packed with 3.5 microm particles. The mobile phase used a 8 min gradient, from water containing 1 ml/l TFA to acetonitrile containing 1 ml/l TFA, at a flow rate of 400 microl/min. Verapamil and the TE3 compound were characterized by the protonated molecules at m/z 455 and m/z 541, respectively. The mTE3 species was detected through the (M)+ ion at m/z 497. The T3 compound was detected by use of two ions, the quaternary ammonium salt (M2+/2) at m/z 227.3 and by the adduct with TFA (M+TFA)+ at m/z 567.3. The drug/internal standard peak area ratios were linked via a quadratic relationship to plasma (or whole blood) concentrations in the tested range of 6.4-1282 microg/l (12.8-2564 microg/kg) for T3, 20-2000 microg/l (40-4000 microg/kg) for mTE3 and 10-2000 microg/l (40-4000 microg/kg) for TE3, and to T3 concentrations in RBCs ranging from 12.8 to 2564 microg/kg. Inter-assay precision (in terms of R.S.D.) was below 13.5% and accuracy ranged from 95.4 to 107%. The dilution of the samples (plasma or whole blood) has no influence on the performance of the methods. The extraction recoveries averaged 87% for T3, 53% for mTE3 and 79% for TE3 in plasma; 79% for T3, 57% for mTE3 and 65% for TE3 in blood; and 93% for T3 in RBCs, and was constant across the calibration range. The lower limits of quantitation were 6.4 microg/l for T3, 20 microg/l for mTE3 and 10 microg/l for TE3 in plasma; 12.8 microg/kg for T3 and 40 microg/kg for mTE3 and TE3 in blood; and 12.8 microg/kg for T3 in RBCs. Stability tests under various conditions were also investigated. The three-step SPE procedure (loading, clean-up, and elution) described in this paper to quantify these new anti-malarial compounds in plasma, whole blood and RBCs, can easily be automated by using either robotisation or an automated sample preparation system.  相似文献   

12.
Direct injection high-performance liquid chromatographic (HPLC) methods with column switching and UV detection were developed for the rapid and accurate determination of S-1090 in human plasma and urine. An internal-surface reversed-phase pre-column and a C18 analytical column were used for the plasma assay. Two pre-columns packed with cyano and phenyl materials and a C18 analytical column were used for the urine assay. The calibration curves for plasma and urine assays were linear in the ranges 0.09–9 μg/ml and 0.5–100 μg/ml of S-1090, respectively. The relative standard deviations for plasma and urine assays were less than 6% with low relative errors. The established HPLC methods were demonstrated to be useful for clinical pharmacokinetic studies after oral administration of S-1090.  相似文献   

13.
Metabolic activation in the disposition of 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") has been implicated in some of its pharmacological and toxicological effects, with the major metabolite 3,4-dihydroxymethamphetamine (HHMA) as a putative toxicant through the formation of thioether adducts. We describe the first validated method for HHMA determination based on acid hydrolysis of plasma and urine samples, further extraction by a solid-phase strong cation-exchange resin (SCX, benzenesulfonic acid), and analysis of extracts by high-performance liquid chromatography with electrochemical detection. The chromatographic separation was performed in an n-butyl-silane (C4) column and the mobile phase was a mixture of 0.1 M sodium acetate containing 0.1 M 1-octanesulphonic acid and 4 mM EDTA (pH 3.1) and acetonitrile (82:18, v/v). Compounds were monitored with an electrochemical cell (working potentials 1 and 2, +0.05 and +0.35 V, respectively, gain 60 microA). A mobile phase conditioning cell with a potential set at +0.40 V was connected between the pumping system and the injector. Calibration curves were linear within the working concentration ranges of 50-1000 microg/L for urine and plasma. Limits of detection and quantification were 10.5 and 31.8 microg/L for urine and 9.2 and 28.2 microg/L for plasma. Recoveries for HHMA and DHBA (3,4-dihydroxybenzylamine, internal standard) were close to 50% for both biological matrices. Intermediate precision and inter-day accuracy were within 3.9-6.5% and 7.4-15.3% for urine and 5.0-10.8% and 9.2-13.4% for plasma.  相似文献   

14.
An isocratic and sensitive HPLC assay was developed allowing the determination of the new anticancer drug nilotinib (AMN107) in human plasma, urine, culture medium and cell samples. After protein precipitation with perchloric acid, AMN107 underwent an online enrichment using a Zirchrom-PBD precolumn, was separated on a Macherey-Nagel C18-HD column and finally quantified by UV-detection at 258 nm. The total run time is 25 min. The assay demonstrates linearity within a concentration range of 0.005-5.0 microg/ml in plasma (r(2)=0.9998) and 0.1-10.0 microg/ml in urine (r(2)=0.9913). The intra-day precision expressed as coefficients of variation ranged depending on the spiked concentration between 1.27-9.23% in plasma and 1.77-3.29% in urine, respectively. The coefficients of variation of inter-day precision was lower than 10%. Limit of detection was 0.002 microg/ml in plasma and 0.01 microg/ml in urine. The described method is stable, simple, economic and is routinely used for in vivo and in vitro pharmacokinetic studies of AMN107.  相似文献   

15.
A sensitive assay for the determination of unbound ertapenem in human plasma and bronchoalveolar lavage (BAL) was developed using ultrafiltration of plasma and BAL samples. A rapid HPLC method was used with ultraviolet detection set at a wavelength of 305 nm and a separation on a Prontosil AQ C18 column, with imipenem used as internal standard. This assay was linear over the concentration range of 0.5-100 microg/mL and 0.25-50 microg/mL in plasma and BAL, respectively. Limits of detection and quantitation were respectively 0.05 and 0.25 microg/mL. Validation data for accuracy and precision were CV<2.48 and 8.25%, accuracy in the range 98.1-104.2% and 102.2-108.4%, respectively, for intra and inter-day.  相似文献   

16.
A HPLC method was developed for determination of cimetidine in human plasma and urine. Plasma samples were alkalinized followed by liquid extraction with water-saturated ethyl acetate then evaporated under nitrogen. The extracts were reconstituted in mobile phase and injected onto a C(18) reversed-phase column; UV detection was set at 228 nm. Urine samples were diluted with an internal standard/mobile phase mixture (1:9) prior to injection. The lower limit of quantification in plasma and urine were 100 ng/ml and 10 microg/ml, respectively; intra- and inter-day coefficients of variation were 相似文献   

17.
A sensitive and efficient liquid chromatography-mass spectrometry method was developed and validated for the simultaneous determination of two active chromones (prim-O-glucosylcimifugin and 4'-O-D-glucosyl-5-O-methylvisamminol) from Saposhnikovia root in rat plasma and urine. The plasma or urine samples were prepared by protein precipitation. Chromatographic separation of the two active chromones from matrix interferences was achieved on an Angilent TC-C(18) column with a mobile phase consisted of methanol, water and 0.1% formic acid. Puerarin was added as the internal standard. The method was validated with the concentration range 1.0-100 ng/mL in rat plasma and 10-1000 ng/mL in urine for prim-O-glucosylcimifugin, 1.5-150 ng/mL in plasma and 15-1500 ng/mL in urine for 4'-O-D-glucosyl-5-O-methylvisamminol. The lower limit of quantitation (LLOQ) of prim-O-glucosylcimifugin and 4'-O-D-glucosyl-5-O-methylvisamminol was 1.0 and 1.5 ng/mL in plasma, 10 and 15 ng/mL in urine, respectively. The intra- and inter-day precision across three validation days over the entire concentration range was lower than 9.0% as terms of relative standard deviation (R.S.D.). Accuracy determined at three quality control concentrations (2.0, 25 and 75 ng/mL for prim-O-glucosylcimifugin; 3.0, 37.5 and 112.5 ng/mL for 4'-O-D-glucosyl-5-O-methylvisamminol) ranged from -1.9 to 3.9% as terms of relative error (R.E.). The LC-ESI-MS method was further applied to assess pharmacokinetics and urine excretion of the two chromones after oral administration of Fangfeng extract to rats. Practical utility of this new LC-MS method was confirmed in pilot pharmacokinetic studies in rats following oral administration.  相似文献   

18.
A simple and sensitive high-performance liquid chromatography (HPLC) method utilizing ultraviolet (UV) detection was developed for the determination of inosine and hypoxanthine in human plasma. For component separation, a monolithic C(18) column at a flow rate of 1.0 mL/min with an aqueous mobile phase of trifluoroacetic acid (0.1% TFA in deionized water pH 2.2, v/v) and methanol gradient was used. The method employed a one-step sample preparation utilizing centrifugal filtration with high component recoveries (approximately 98%) from plasma, which eliminated the need of an internal standard. The method demonstrated excellent linearity (0.25-5 microg/mL, R>0.9990) for both inosine and hypoxanthine with detection limits of 100 ng/mL. This simple and cost effective method was utilized to evaluate potential endogenous plasma biomarker(s), which may aid hospital emergency personnel in the early detection of acute cardiac ischemia in patients presenting with non-traumatic chest pain.  相似文献   

19.
A simple and sensitive method was developed for the quantification of amikacin in human plasma and urine samples. The method involves centrifugation of body fluid plasma after dilution with an ethanol/sodium carbonate mixture, and then an aliquot of the supernatant is directly injected into the chromatograph. After separation on a reversed-phase C18 column (runtime 20 min), aminoglycoside is detected on the basis of its complex formation reaction with Cu(II), the catalyst of the luminol/hydrogen peroxide chemiluminescence system. Using a volume of 500 microl biological sample, linearity is established over the concentration range 0.15-2.0 microg/ml and the limit of detection (LOD) is ca. 50 microg/l in plasma or urine. The intra-day and inter-day precision (measured by relative standard deviation, R.S.D.%) are always less than 9%, and relative recoveries are found to be over 92%.  相似文献   

20.
20 (R,S)-Ginsenoside-Rg2, an anti-shock agent, is prescribed as a racemate. To analyze simultaneously the enantiomers of 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2 in plasma, a simple and reproducible high-performance liquid chromatographic (HPLC) method has been developed. The enantiomeric separation and determination were successfully achieved using a Diamonsil ODS C18 reversed-phase column (5 microm, 250 mm x 4.6 mm) with an RP18 (5 microm) guard column and a mobile phase of MeOH-aq. 4% H3PO4 (65:35, v/v, pH 5.1) with UV detection at 203 nm. Both enantiomers, 20 (R)-ginsenoside-Rg2 and 20 (S)-ginsenoside-Rg2, were well separated at 14.5 min and 13.6 min, respectively. The linear ranges of the standard curves were 2.0-250 microg/ml. The intra- and inter-day precision (R.S.D.) were 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号