首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Insertion elements on lactococcal proteinase plasmids.   总被引:10,自引:3,他引:7       下载免费PDF全文
DNA segments of 809 and 808 nucleotides, with 18-base-pair terminal inverted repeats, are present on the proteinase plasmids pWV05 from Lactococcus lactis subsp. cremoris Wg2 and pSK111 from L. lactis subsp. cremoris SK11, respectively. These DNA segments are highly similar: 77% identical nucleotides and both contain an open reading frame that can encode a protein of 226 amino acids. Furthermore, both DNA segments are located downstream of the proteinase maturation gene prtM, but they differ individually in their orientation with respect to the prtM gene. On the basis of the striking similarity between ISS1, an 808-base-pair insertion sequence (IS) from L. lactis subsp. lactis ML3 lactose plasmid pSK08, and the DNA segments of pWV05 and pSK111, we propose that these DNA segments comprise IS elements. The IS elements from strains Wg2 and SK11 were named ISS1W and ISS1N, respectively. On pWV05, ISS1W is flanked on one side by only part of a second IS element, indicating that pWV05 evolved as a deletion derivative of a precursor plasmid that carried at least two IS elements.  相似文献   

2.
The plasmid-free strain Lactococcus lactis subsp. cremoris BC101 produced an extracellular proteinase physicochemically similar to the proteinase encoded by the plasmid-linked prtP gene of other lactococcal strains. The absence of detectable plasmids in strain BC101 indicated that the prtP proteinase gene may be chromosomally located. The chromosomal linkage of the prtP proteinase gene in BC101 was confirmed by pulsed-field electrophoresis of chromosomal DNA and hybridization, using as a probe the plasmid-linked prtP gene from L. lactis subsp. cremoris Wg2. The prtM gene necessary for the maturation of the proteinase was also chromosomally located adjacent to prtP in BC101. By using as a hybridization probe the ISS1-like element ISS1W, which is found adjacent to the proteinase genes in both pWV05 and pSK111, specific homology to the chromosomal fragment containing the proteinase gene was found. DNA sequencing of a polymerase chain reaction product of chromosomal DNA upstream from prtM revealed a 123-nucleotide sequence which was 100% identical to the equivalent sequence in the ISS1W-containing plasmid. The terminal inverted repeat (18 nucleotides) of the ISS1W element was found in this sequenced DNA. These findings suggest that the chromosomal proteinase gene is organized in a fashion similar to that of the plasmid-linked proteinase gene.  相似文献   

3.
The plasmid-free strain Lactococcus lactis subsp. cremoris BC101 produced an extracellular proteinase physicochemically similar to the proteinase encoded by the plasmid-linked prtP gene of other lactococcal strains. The absence of detectable plasmids in strain BC101 indicated that the prtP proteinase gene may be chromosomally located. The chromosomal linkage of the prtP proteinase gene in BC101 was confirmed by pulsed-field electrophoresis of chromosomal DNA and hybridization, using as a probe the plasmid-linked prtP gene from L. lactis subsp. cremoris Wg2. The prtM gene necessary for the maturation of the proteinase was also chromosomally located adjacent to prtP in BC101. By using as a hybridization probe the ISS1-like element ISS1W, which is found adjacent to the proteinase genes in both pWV05 and pSK111, specific homology to the chromosomal fragment containing the proteinase gene was found. DNA sequencing of a polymerase chain reaction product of chromosomal DNA upstream from prtM revealed a 123-nucleotide sequence which was 100% identical to the equivalent sequence in the ISS1W-containing plasmid. The terminal inverted repeat (18 nucleotides) of the ISS1W element was found in this sequenced DNA. These findings suggest that the chromosomal proteinase gene is organized in a fashion similar to that of the plasmid-linked proteinase gene.  相似文献   

4.
5.
Previously, curing experiments suggested that plasmid pWV05 (17.5 megadaltons [Md]) of Streptococcus cremoris Wg2 specifies proteolytic activity. A restriction enzyme map of pWV05 was constructed, the entire plasmid was subcloned in Escherichia coli with plasmids pBR329 and pACYC184. A 4.3-Md HindIII fragment could not be cloned in an uninterrupted way in E. coli but could be cloned in two parts. Both fragments showed homology with the 9-Md proteinase plasmid of S. cremoris HP. The 4.3-Md HindIII fragment was successfully cloned in Bacillus subtilis on plasmid pGKV2 (3.1 Md). Crossed immunoelectrophoresis of extracts of B. subtilis carrying the recombinant plasmid (pGKV500; 7.4 Md) showed that the fragment specifies two proteins of the proteolytic system of S. cremoris Wg2. PGKV500 was introduced in a proteinase-deficient Streptococcus lactis strain via protoplast transformation. Both proteins were also present in cell-free extracts of S. lactis(pGKV500). In S. lactis, pGKV500 enables the cells to grow normally in milk with rapid acid production, indicating that the 4.3-Md HindIII fragment of plasmid pWV05 specifies the proteolytic activity of S. cremoris Wg2.  相似文献   

6.
Previously, curing experiments suggested that plasmid pWV05 (17.5 megadaltons [Md]) of Streptococcus cremoris Wg2 specifies proteolytic activity. A restriction enzyme map of pWV05 was constructed, the entire plasmid was subcloned in Escherichia coli with plasmids pBR329 and pACYC184. A 4.3-Md HindIII fragment could not be cloned in an uninterrupted way in E. coli but could be cloned in two parts. Both fragments showed homology with the 9-Md proteinase plasmid of S. cremoris HP. The 4.3-Md HindIII fragment was successfully cloned in Bacillus subtilis on plasmid pGKV2 (3.1 Md). Crossed immunoelectrophoresis of extracts of B. subtilis carrying the recombinant plasmid (pGKV500; 7.4 Md) showed that the fragment specifies two proteins of the proteolytic system of S. cremoris Wg2. PGKV500 was introduced in a proteinase-deficient Streptococcus lactis strain via protoplast transformation. Both proteins were also present in cell-free extracts of S. lactis(pGKV500). In S. lactis, pGKV500 enables the cells to grow normally in milk with rapid acid production, indicating that the 4.3-Md HindIII fragment of plasmid pWV05 specifies the proteolytic activity of S. cremoris Wg2.  相似文献   

7.
W M de Vos  P Vos  H de Haard  I Boerrigter 《Gene》1989,85(1):169-176
The Lactococcus lactis subsp. cremoris SK11 plasmid-located prtP gene, encoding a cell-envelope-located proteinase (PrtP) that degrades alpha s1-, beta- and kappa-casein, was identified in a lambda EMBL3 gene library in Escherichia coli using immunological methods. The complete prtP gene could not be cloned in E. coli and L. lactis on high-copy-number plasmid vectors. However, using a low-copy-number vector, the complete prtP gene could be cloned in strains MG1363 and SK1128, proteinase-deficient derivatives of L. lactis subsp. lactis 712 and L. lactis subsp. cremoris SK11, respectively. The proteinase deficiency of these hosts was complemented to wild-type (wt) levels by the cloned SK11 prtP gene. The caseinolytic specificity of the proteinase specified by the cloned prtP gene was identical to that encoded by the wt proteinase plasmid, pSK111. The expression of recombinant plasmids containing 3' and 5' deletions of prtP was analyzed with specific attention directed towards the location of the gene products. In this way the expression signals of prtP were localized and overproduction was obtained in L. lactis subsp. lactis. Furthermore, a region at the C terminus of PrtP was identified which is involved in cell-envelope attachment in lactococci. A deletion derivative of prtP was constructed which specifies a C-terminally truncated proteinase that is well expressed and fully secreted into the medium, and still shows the same capacity to degrade alpha s1-, beta- and kappa-casein.  相似文献   

8.
D C Huang  M Novel  X F Huang  G Novel 《Gene》1992,118(1):39-46
The nucleotide sequence of an insertion sequence (IS) observed during mating experiments using the lactose-protease plasmid, pUCL22, of Lactococcus (Lc.) lactis subsp. lactis CNRZ270, was found to be similar to that of ISS1 from Lc. lactis subsp. lactis ML3. The IS was named ISS1RS. The chromosome of this strain contains several copies of ISS1-like IS as assessed by hybridization. One of these copies was cloned and named ISS1CH. Its sequence differs from that of the plasmid-borne copy, and appears to be more closely related to ISS1N from Lc. lactis subsp. cremoris SK11. This suggests independent introduction of both ISS1 elements. Moreover, the observation of plasmid genes integrated in the CNRZ270 chromosome near ISS1CH suggests that their presence is the result of integration by a Campbell mechanism using both IS homologies. ISS1-like sequences were also found on plasmids of numerous Lc. lactis strains, as well as one out of seven Lactobacillus (Lb.) casei and one out of three Lb. plantarum strains examined.  相似文献   

9.
A rapid and accurate method was developed for detecting replication type of plasmids of Lactococci. Two specific PCR primer sets were designed for rep gene of Lactococci, one (RC1-RCr1) is derived from the RC-type plasmid, pWV01 and the other (J1-Jr1) is derived from the theta-type plasmid, pVS40. The two primer sets could be used to differentiate the RC-type (pWV01) and the theta-type (pWV02, 03, 04, and 05) replication in Lactococcus lactis subsp. cremoris Wg2 and CCRC10791.  相似文献   

10.
The plasmid-encoded proteinase genes prtP and prtM of Lactococcus lactis subsp. cremoris Wg2 were integrated by a Campbell-like mechanism into the L. lactis subsp. lactis MG1363 chromosome by using the insertion vector pKLG610. Two transformants were obtained that differed in the number of amplified pKLG610 copies in head-to-tail arrangements on their chromosomes; MG610 contained approximately two copies, and MG611 contained about eight copies. The amplifications were stably maintained during growth in milk in the absence of antibiotics. The proteolytic activity of strain MG611 was approximately 11-fold higher than that of strain MG610 and about 1.5 times higher than that of strain MG1363(pGKV552), which carried the proteinase genes on an autonomously replicating plasmid with a copy number of approximately 5. All three strains showed rapid growth in milk with concomitant rapid production of acid. The results suggest that a limited number of copies of the proteinase genes prtP and prtM per genome is sufficient for good growth in milk.  相似文献   

11.
Chromosomal stabilization of the proteinase genes in Lactococcus lactis.   总被引:1,自引:0,他引:1  
The plasmid-encoded proteinase genes prtP and prtM of Lactococcus lactis subsp. cremoris Wg2 were integrated by a Campbell-like mechanism into the L. lactis subsp. lactis MG1363 chromosome by using the insertion vector pKLG610. Two transformants were obtained that differed in the number of amplified pKLG610 copies in head-to-tail arrangements on their chromosomes; MG610 contained approximately two copies, and MG611 contained about eight copies. The amplifications were stably maintained during growth in milk in the absence of antibiotics. The proteolytic activity of strain MG611 was approximately 11-fold higher than that of strain MG610 and about 1.5 times higher than that of strain MG1363(pGKV552), which carried the proteinase genes on an autonomously replicating plasmid with a copy number of approximately 5. All three strains showed rapid growth in milk with concomitant rapid production of acid. The results suggest that a limited number of copies of the proteinase genes prtP and prtM per genome is sufficient for good growth in milk.  相似文献   

12.
The complete nucleotide sequence of a gene located immediately upstream of the Lactococcus lactis subsp. cremoris SK11 prtP gene encoding the cell envelope-attached proteinase was determined. This gene, designated prtM, was found to be transcribed from the same promotor region as was the proteinase gene but in the opposite direction. The prtM gene directed the expression in Escherichia coli of a protein with a size similar to the expected value of 33 kilodaltons, as deduced from the nucleotide sequence data. The derived amino acid sequence of the PrtM protein indicated the presence of a consensus lipoprotein signal sequence at the N terminus, which suggested that PrtM is a lipoprotein. Plasmids containing the prtM gene, the prtP gene, or both were constructed. Expression studies of L. lactis clones containing these plasmids showed that the prtM gene encodes a trans-acting activity involved in the maturation of cell envelope-located and -secreted forms of the SK11 proteinase.  相似文献   

13.
The replication region of pSK11L, the lactose plasmid of Lactococcus lactis subsp. cremoris (L. cremoris) SK11, was isolated on a 14.8-kbp PvuII fragment by shotgun cloning into an Escherichia coli vector encoding erythromycin resistance and selection for erythromycin-resistant transformants of L. lactis subsp. lactis (L. lactis) LM0230. Deletion analysis and Tn5 mutagenesis of the resulting plasmid (pKMP1) further localized the replication region to a 2.3-kbp ScaI-SpeI fragment. DNA sequence analysis of this 2.3-kbp fragment revealed a 1,155-bp open reading frame encoding the putative replication protein, Rep. The replication origin was located upstream of rep and consisted of an 11-bp imperfect direct repeat and a 22-bp sequence tandemly repeated three and one-half times. The overall organization of the pSK11L replicon was remarkably similar to that of pCI305, suggesting that pSK11L does not replicate by the rolling-circle mechanism. Like pSK11L, pKMP1 was unstable in L. lactis LM0230. Deletion analysis allowed identification of several regions which appeared to contribute to the maintenance of pKMP1 in L. lactis LM0230. pKMP1 was significantly more stable in L. cremoris EB5 than in L. lactis LM0230 at all of the temperatures compared. This stability was lost by deletion of a 3.1-kbp PvuII-XbaI fragment which had no effect on stability in L. lactis LM0230. Other regions affecting stability in L. cremoris EB5 but not in L. lactis LM0230 were also identified. Stability assays conducted at various temperatures showed that pKMP1 maintenance was temperature sensitive in both L. lactis LM0230 and L. cremoris EB5, although the plasmid was more unstable in L. lactis LM0230. The region responsible for the temperature sensitivity phenotype in L. lactis LM0230 was tentatively localized to a 1.2-kbp ClaI-HindIII fragment which was distinct from the replication region of pSK11L. Our results suggest that the closely related L. lactis and L. cremoris subspecies behave differently regarding maintenance of plasmids.  相似文献   

14.
The proteinase genes from Lactococcus lactis subsp. lactis UC317 were identified on a plasmid, pCI310, which is a deletion derivative of a cointegrate between pCI301, the 75 kb Lac Prt plasmid from UC317 and the 38.5 kb cryptic plasmid from that strain. The prt genes were cloned using a replacement cloning strategy whereby fragments from pCI310 were exchanged with the equivalent fragments in pNZ521, which contains the cloned proteinase genes from L. lactis subsp. lactis SK112. This generated two plasmids which encoded a cell-envelope-associated and a secreted proteinase, respectively. Specific regions of the UC317 structural prtP gene known to encode seven of the amino acids essential for substrate cleavage specificity were sequenced and compared with the known sequences of prt genes from L. lactis strains SK112, Wg2 and NCDO763. In spite of various differences that were detected in the nucleotide sequence of this region, it appears that these seven amino acids in strains UC317 and NCDO763 are identical, and represent a combination of three of the amino acids from SK112 and four from Wg2. These results indicate that the UC317 proteinase is a natural hybrid of the SK112 and Wg2 proteinases.  相似文献   

15.
In Streptococcus lactis ML3, the lactose plasmid (pSK08) forms cointegrates with a conjugal plasmid (pRS01). It has been proposed that cointegration is mediated by insertion sequences (IS) present on pSK08 (D. G. Anderson and L.L. McKay, J. Bacteriol. 158:954-962, 1984). We examined the junction regions of the cointegrate pPW2 and the corresponding regions of pSK08 (donor) and pRS01 (target) and identified a new IS element on pSK08 (ISS1S) which was involved in and duplicated during formation of pPW2. ISS1S was 808 base pairs (bp) in size, had 18-bp inverted repeats (GGTTCTGTTGCAAAGTTT) at its ends, contained a single long open reading frame encoding a putative protein of 226 amino acids, and generated 8-bp direct repeats of target DNA during cointegrate formation. An iso-IS element, ISS1T, which is duplicated in some other cointegrate plasmids, was also found on pSK08. ISS1T was also 808 bp in size and was identical to ISS1S in sequence except for 4 bp, none of which altered the inverted repeats or amino acid sequence of the open reading frame. Comparison of ISS1 with gram-negative IS26 revealed strong homologies in size (820 bp), sequence of inverted repeats (GGCACTGTTGCAAA), size of direct repeats generated after cointegration (8 bp), and number, size, and amino acid sequence (44.5% identical) of the open reading of frame.  相似文献   

16.
Lactococcus lactis subsp. cremoris Ropy352 produces two distinct heteropolysaccharides, phenotypically described as ropy and mucoid, when cultured in nonfat milk. One exopolysaccharide precipitated with 50% ethanol as a series of elongated threads and was composed of glucose and galactose in a molar ratio of 3:2. The second exopolysaccharide precipitated with 75% ethanol as a fine flocculant and consisted of galactose, glucose, and mannose with a molar ratio of 67:21:12. A mutant strain, L. lactis subsp. cremoris EK240, lacking the ropy phenotype did not produce the exopolysaccharide that precipitated with 50% ethanol; however, it produced the exopolysaccharide that precipitated with 75% ethanol, indicating that the former exopolysaccharide is essential for the ropy phenotype. Cultures of L. lactis subsp. cremoris Ropy352 in 10% nonfat milk reached a viscosity of 25 Pa-s after 24 h, while those of the nonropy L. lactis subsp. cremoris EK240 mutant did not change. A mutation abolishing ropy exopolysaccharide expression mapped to a region on a plasmid containing two open reading frames, epsM and epsN, encoding novel glycosyltransferases bordered by ISS1 elements oriented in the same direction. Sequencing of this plasmid revealed two other regions involved in exopolysaccharide expression, an operon located between partial IS981 and IS982 elements, and an independent gene, epsU. Two and possibly three of these regions are involved in L. lactis subsp. cremoris Ropy352 exopolysaccharide expression and are arranged in a novel fashion different from that of typical lactococcal exopolysaccharide loci, and this provides genetic evidence for exopolysaccharide gene reorganization and evolution in Lactococcus.  相似文献   

17.
Transformation of group A streptococci by electroporation   总被引:1,自引:0,他引:1  
Abstract The introduction, via electroporation, of free plasmid DNA into three strains of Streptococcus pyogenes is described. The method is very simple and rapid and efficiencies vary from 1 × 103 to 4 × 104 per μg of DNA. The method was also used to introduce an integrative plasmid and transformants were obtained, albeit at a somewhat lower frequency (2 × 102). Some of the plasmids used in this study are derivatives of the Lactococcus lactis subsp. cremoris Wg2 plasmid pWV01. These broad host range vectors replicate in Gram-positives as well as Gram-negatives (viz. Escherichia coli ). Here we show that they also replicate in S. pyogenes and S. sanguis .  相似文献   

18.
When Lactococcus lactis subsp. lactis LM0230 is transformed by the lactose plasmid (pSK11L) from Lactococcus lactis subsp. cremoris SK11, variants with pSK11L in the integrated state can be derived (J. M. Feirtag, J. P. Petzel, E. Pasalodos, K. A. Baldwin, and L. L. McKay, Appl. Environ. Microbiol. 57:539-548, 1991). In the present study, a 1.65-kb XbaI-XhoI fragment of pSK11L was subcloned for use as a probe in Southern hybridization analyses of the mechanism of integration, which was shown to proceed via a Campbell-like, single-crossover event. Furthermore, the presence of the XbaI-XhoI fragment in a nonreplicating vector facilitated the stable, Rec-dependent integration of the vector into the chromosome of L. lactis subsp. lactis LM0230 and other lactococci. DNA sequence analysis of the fragment revealed an open reading frame of 885 bp with lactococcal expression sequences. The putative gene did not have significant homology with other genes in computer data bases. The XbaI-XhoI fragment is a naturally occurring piece of lactococcal DNA that can be used as a recombinogenic cassette in the construction of integration vectors for the industrially important lactococci.  相似文献   

19.
When Lactococcus lactis subsp. lactis LM0230 is transformed by the lactose plasmid (pSK11L) from Lactococcus lactis subsp. cremoris SK11, variants with pSK11L in the integrated state can be derived (J. M. Feirtag, J. P. Petzel, E. Pasalodos, K. A. Baldwin, and L. L. McKay, Appl. Environ. Microbiol. 57:539-548, 1991). In the present study, a 1.65-kb XbaI-XhoI fragment of pSK11L was subcloned for use as a probe in Southern hybridization analyses of the mechanism of integration, which was shown to proceed via a Campbell-like, single-crossover event. Furthermore, the presence of the XbaI-XhoI fragment in a nonreplicating vector facilitated the stable, Rec-dependent integration of the vector into the chromosome of L. lactis subsp. lactis LM0230 and other lactococci. DNA sequence analysis of the fragment revealed an open reading frame of 885 bp with lactococcal expression sequences. The putative gene did not have significant homology with other genes in computer data bases. The XbaI-XhoI fragment is a naturally occurring piece of lactococcal DNA that can be used as a recombinogenic cassette in the construction of integration vectors for the industrially important lactococci.  相似文献   

20.
Evidence is presented that lactose-fermenting ability (Lac+) in Lactococcus lactis subsp. cremoris AM1, SK11, and ML1 is associated with plasmid DNA, even though these strains are difficult to cure of Lac plasmids. When the Lac plasmids from these strains were introduced into L. lactis subsp. lactis LM0230, they appeared to replicate in a thermosensitive manner; inheritance of the plasmid was less efficient at 32 to 40 degrees C than at 22 degrees C. The stability of the L. lactis subsp. cremoris Lac plasmids in lactococci appeared to be a combination of both host and plasmid functions. Stabilized variants were isolated by growing the cultures at 32 to 40 degrees C; these variants contained the Lac plasmids integrated into the L. lactis subsp. lactis LM0230 chromosome. In addition, the presence of the L. lactis subsp. cremoris Lac plasmids in L. lactis subsp. lactis resulted in a temperature-sensitive growth response; growth of L. lactis subsp. lactis transformants was significantly inhibited at 38 to 40 degrees C, thereby resembling some L. lactis subsp. cremoris strains with respect to temperature sensitivity of growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号